
Non-pipelined processors

Arvind
Computer Science & Artificial Intelligence Lab.

Massachusetts Institute of Technology

September 30, 2019 http://csg.csail.mit.edu/6.375 L10-1

Processor Components and
Datapath

PC

Inst
Memory

Decode

Register File

Execute

Data
Memory

Datapath (arrows in this diagram) are conceptual; the real
datapaths are derived automatically from the Bluespec description

2 read &
1 write
ports

separate
Instruction &

Data memories
Harvard Architecture

September 30, 2019 http://csg.csail.mit.edu/6.375 L10-2

Processor function

§ Fetch the instruction at pc
§ Decode the instruction
§ Execute the instruction (compute the next

state values for the register file and pc)
§ Access the memory if the instruction is a Ld or St

§ Update the register file and pc

First, we will examine the major components: register
file, ALU, memory, decoder, execution unit;
and then put it all together to build single-cycle and
multicycle nonpipelined implementations of RISC-V

September 30, 2019 http://csg.csail.mit.edu/6.375 L10-3

Arithmetic-Logic Unit (ALU)
func

- Add, Sub, And, Or, ...

result
a

b
ALU

function Word alu(Word a, Word b,
AluFunc func);

ALU performs all the
arithmetic and logical
functions

typedef Bit#(32) Word;

typedef enum {Add, Sub, And, Or, Xor, Slt, Sltu,
Sll, Sra, Srl} AluFunc deriving(Bits, Eq);

This is what you implemented in Lab4
September 30, 2019 http://csg.csail.mit.edu/6.375 L10-4

ALU for Branch Comparisons
func

- GT, LT, EQ, ...

c
a

b

ALU
Br

function Bool aluBr(Word a, Word b,
BrFunc func);

Like ALU but
returns a Bool

typedef enum {Eq, Neq, Lt, Ltu, Ge, Geu}
BrFunc deriving(Bits, Eq);

September 30, 2019 http://csg.csail.mit.edu/6.375 L10-5

Register File
2 Read ports + 1 Write port

typedef Bit#(32) Word;
typedef Bit#(5) RIndx;

interface RFile2R1W;
method Word rd1(RIndx index) ;
method Word rd2(RIndx index) ;
method Action wr (RIndx index, Word data);

endinterface

Registers can be
read or written any
time, so the guards
are always true
(not shown)

rd
1

rf
rd

2

w
r

en
data
indexdata

index

data
index

September 30, 2019 http://csg.csail.mit.edu/6.375 L10-6

Register File implementation

module mkRFile2R1W(RFile2R1W);
Vector#(32,Reg#(Word)) rfile <- replicateM(mkReg(0));
method Word rd1(RIndx rindx) = rfile[rindx];
method Word rd2(RIndx rindx) = rfile[rindx];
method Action wr(RIndx rindx, Word data);

if(rindx!=0) begin rfile[rindx] <= data; end
endmethod

endmodule

{rd1, rd2} < wr

All three methods of the register file can be called
simultaneously, and in that case the read methods
read the value already in the register file

Register 0 is hardwired to
zero and cannot be written

September 30, 2019 http://csg.csail.mit.edu/6.375 L10-7

Magic Memory Model

§ Reads and writes behave as in a register file (not
true for real SRAM or DRAM)
§ Reads are combinational
§ Write, if enabled, is performed at the rising clock edge

§ However, unlike a register file, there is only one
port, which is used either for reading or for writing

MAGIC
RAM

ReadData

WriteData

Address

WriteEnableClock

Next lecture we will consider more realistic memory systems

September 30, 2019 http://csg.csail.mit.edu/6.375 L10-8

Magic Memory Interface

interface MagicMemory;
method ActionValue#(Word) req(MemReq r);

endinterface
typedef struct {MemOp op; Word addr; Word data;}

MemReq deriving(Bits, Eq);
typedef enum {Ld, St} MemOp deriving(Bits, Eq);

Magic memory can
be read or written
any time, so the
guards are always
true (not shown)

re
q magic

memory
load data

op
address

store data

en

let data <- m.req(MemReq{op:Ld, addr:a, data:dwv});
let dummy <- m.req(MemReq{op:St, addr:a, data:v});

// default word value
Word dwv = 0;

September 30, 2019 http://csg.csail.mit.edu/6.375 L10-9

Instruction Decoding
§ An instruction can be executed only after each of

its fields has been extracted
§ Fields are needed to access the register file, compute

address to access memory, supply the proper opcode to
ALU, set the pc, ...

§ Some 32 bit values may not represent an
instruction or may represent an instruction not
supported by our implementation

§ Many instructions differ only slightly from each
other in both decoding and execution

Unlike RISC-V, some instruction sets
are extremely complicated to decode,
e.g. Intel X86

September 30, 2019 http://csg.csail.mit.edu/6.375 L10-10

ALU Instructions
Differ only in the ALU op to be performed
Instruction Description Execution

ADD rd, rs1, rs2 Add reg[rd] <= reg[rs1] + reg[rs2]

SUB rd, rs1, rs2 Sub reg[rd] <= reg[rs1] – reg[rs2]

SLL rd, rs1, rs2 Shift Left Logical reg[rd] <= reg[rs1] << reg[rs2]

SLT rd, rs1, rs2 Set if < (Signed) reg[rd] <= (reg[rs1] <s reg[rs2])
? 1 : 0

SLTU rd, rs1, rs2 Set if < (Unsigned) reg[rd] <= (reg[rs1] <u reg[rs2])
? 1 : 0

XOR rd, rs1, rs2 Xor reg[rd] <= reg[rs1] ^ reg[rs2]

SRL rd, rs1, rs2 Shift Right Logical reg[rd] <= reg[rs1] >>u reg[rs2]

SRA rd, rs1, rs2 Shift Right Arithmetic reg[rd] <= reg[rs1] >>s reg[rs2]

OR rd, rs1, rs2 Or reg[rd] <= reg[rs1] | reg[rs2]

AND rd, rs1, rs2 And reg[rd] <= reg[rs1] & reg[rs2]

§ These instructions are grouped in a category called OP
with fields (func, rd, rs1, rs2) where func is the function
for the ALU

September 30, 2019 http://csg.csail.mit.edu/6.375 L10-11

ALU Instructions
with one Immediate operand
Instruction Description Execution

ADDI rd, rs1, immI Add Immediate reg[rd] <= reg[rs1] + immI

SLTI rd, rs1, immI Set if < Immediate
(Signed)

reg[rd] <= (reg[rs1] <s immI) ?
1 : 0

SLTIU rd, rs1, immI Sef it < Immediate
(Unsigned)

reg[rd] <= (reg[rs1] <u immI) ?
1 : 0

XORI rd, rs1, immI Xor Immediate reg[rd] <= reg[rs1] ^ immI

ORI rd, rs1, immI Or Immediate reg[rd] <= reg[rs1] | immI

ANDI rd, rs1, immI And Immediate reg[rd] <= reg[rs1] & immI

SLLI rd, rs1, immI Shift Left Logical
Immediate

reg[rd] <= reg[rs1] << immI

SRLI rd, rs1, immI Shift Right Logical
Immediate

reg[rd] <= reg[rs1] >>u immI

SRAI rd, rs1, immI Shift Right Arithmetic
Immediate

reg[rd] <= reg[rs1] >>s immI

§ These instructions are grouped in a category called
OPIMM with fields (func, rd, rs1, immI) where func is
the function for the aluSeptember 30, 2019 http://csg.csail.mit.edu/6.375 L10-12

Branch Instructions
differ only in the aluBr operation they perform
Instruction Description Execution

BEQ rs1, rs2, immB Branch = pc <= (reg[rs1] == reg[rs2]) ? pc +
immB : pc + 4

BNE rs1, rs2, immB Branch != pc <= (reg[rs1] != reg[rs2]) ? pc + immB
: pc + 4

BLT rs1, rs2, immB Branch <
(Signed)

pc <= (reg[rs1] <s reg[rs2]) ? pc + immB
: pc + 4

BGE rs1, rs2, immB Branch ≥
(Signed)

pc <= (reg[rs1] ≥s reg[rs2]) ? pc + immB
: pc + 4

BLTU rs1, rs2, immB Branch <
(Unsigned)

pc <= (reg[rs1] <u reg[rs2]) ? pc + immB
: pc + 4

BGEU rs1, rs2, immB Branch ≥
(Unsigned)

pc <= (reg[rs1] ≥u reg[rs2]) ? pc + immB
: pc + 4

§ These instructions are grouped in a category called
BRANCH with fields (brFunc, rs1, rs2, immB) where
brFunc is the function for aluBr

September 30, 2019 http://csg.csail.mit.edu/6.375 L10-13

Remaining Instructions
Instruction Description Execution

JAL rd, immJ Jump and
Link

reg[rd] <= pc + 4
pc <= pc + immJ

JALR rd, immI(rs1) Jump and
Link Register

reg[rd] <= pc + 4
pc <= {(reg[rs1] + immI)[31:1], 1’b0}

LUI rd, immU Load Upper
Immediate

reg[rd] <= immU

LW rd, immI(rs1) Load Word reg[rd] <= mem[reg[rs1] + immI]

SW rs2, immS(rs1) Store Word mem[reg[rs1] + immS] <= reg[rs2]

§ Each of these instructions is in a category by itself and
needs to extract different fields from the instruction

§ LW and SW need to access memory for execution and
thus, are required to compute an effective memory
address

September 30, 2019 http://csg.csail.mit.edu/6.375 L10-14

Decoding instructions
An Example

§ What RISC-V instruction is represented by these
32 bits?

§ Reference manual specifies the fields as follows:
§ opcode = 0110011
§ funct3 = 000
§ rd = 00011
§ rs1 = 00010
§ rs2 = 00001

§ What is the meaning of executing this instruction?

=> opCode Op, R-type encoding
=> ADD
=> x3
=> x2

opcode

00000000000100010000000110110011

rs1rs2

funct3funct7

rd

=> x1

rf.wr(3, alu(rf.rd1(2), rf.rd2(1), Add)); pc<=pc+4;
September 30, 2019 http://csg.csail.mit.edu/6.375 L10-15

Decoding can be complicated!

§ What is this instruction?
§ Reference manual specifies the fields as follows:

§ opcode = 1100011
§ funct3 = 001
§ rs1 = 00001
§ rs2 = 00000
§ imm[12:1] = {1, 1, 111111, 1110};
§ imm[0] = 0; imm[31:13] are sign extended

=> imm[31:0] = -4

=> opCode branch, B-type encoding
=> BNEQ
=> x1
=> x0

11111110000000001001111011100011

opcoders1rs2

funct3

imm[4:1]imm[12]

imm[11]imm[10:5]

brAlu(rf.rd1(1), rf.rd2(0), Neq) ? pc <= pc + (-4)
: pc <= pc + 4

September 30, 2019 http://csg.csail.mit.edu/6.375 L10-16

Instruction decoder
§ We need a function to extract the category

and the various fields for each category from a
32-bit instruction

§ Fields we have identified so far are:
§ Instruction category: OP, OPIMM, BRANCH, JAL,

JALR, LUI, LOAD, STORE, Unsupported
§ Function for alu: aluFunc
§ Function for brAlu: brFunc
§ Register fields: rd, rs1, rs2
§ Immediate constants: immI(12), immB(12),

immJ(20), immU(20), immS(12) but each is used as
a 32-bit value with proper sign extension

Notice that no instruction has all the fields

September 30, 2019 http://csg.csail.mit.edu/6.375 L10-17

Encoding Examples
§ Immediate encodings

§ Sample instruction encodings

September 30, 2019 http://csg.csail.mit.edu/6.375 L10-18

Decoded Instruction Type
typedef struct {

IType iType;
AluFunc aluFunc;
BrFunc brFunc;
RDst dst;
RIndx src1;
RIndx src2;
Word imm;

} DecodedInst deriving(Bits, Eq);
typedef enum {OP, OPIMM, BRANCH, LUI, JAL, JALR, LOAD, STORE,
Unsupported} IType deriving(Bits, Eq);
typedef enum {Add, Sub, And, Or, Xor, Slt, Sltu, Sll, Sra, Srl}
AluFunc deriving(Bits, Eq);
typedef enum {Eq, Neq, Lt, Ltu, Ge, Geu}
BrFunc deriving(Bits, Eq);
typedef struct {Bool valid; RIndx index;}
RDst deriving (Bits);

Destination register 0 behaves
like an Invalid destination

If dst is invalid, register file
update is not performed

Field names
Type of the Field names

September 30, 2019 http://csg.csail.mit.edu/6.375 L10-19function DecodedInst decode(Bit#(32) inst);

Single-Cycle Implementation
Putting it all together

module mkProcessor(Empty);
Reg#(Word) pc <- mkReg(0);
RFile2R1W rf <- mkRFile2R1W;
MagicMemory iMem <- mkMagicMemory;
MagicMemory dMem <- mkMagicMemory;

rule doProcessor;
let inst <- iMem.req(MemReq{op:Ld, addr:pc, data:dwv});
let dInst = decode(inst);

// dInst fields: iType, aluFunc, brFunc, dst, src1, src2, imm
let rVal1 = rf.rd1(dInst.src1.index);
let rVal2 = rf.rd2(dInst.src2.index);
let eInst = execute(dInst, rVal1, rVal2, pc);

// eInst fields: iType, dst, data, addr, nextPC
updateState(eInst, pc, rf, dMem);

endrule
endmodule

extract the fields

compute values
needed to
update the
processor state

instantiate
the state

read the register file

actions to update
the processor state

September 30, 2019 http://csg.csail.mit.edu/6.375 L10-20

Function execute
function ExecInst execute(DecodedInst dInst,

Word rVal1, Word rVal2, Word pc);
// extract from dInst: iType, aluFunc, brFunc, imm
// initialize eInst and its fields: data, nextPc, addr to dwv

case (iType) matches
OP: begin data = alu(rVal1, rVal2, aluFunc);

nextPc = pc+4; end
OPIMM: begin data = alu(rVal1, imm, aluFunc);

nextPc = pc+4; end
BRANCH: begin nextPc = aluBr(rVal1, rVal2, brFunc) ?

pc+imm : pc+4; end
LUI: begin data = imm; nextPc = pc+4; end
JAL: begin data = pc+4; nextPc = pc+imm; end
JALR: begin data = pc+4; nextPc = (rVal1+imm) & ~1; end
LOAD: begin addr = rVal1+imm; nextPc = pc+4; end
STORE: begin data = rVal2; addr = rVal1+imm;

nextPc = pc+4; end
endcase
endfunction

// assign to eInst;

To zero out
the LSB

September 30, 2019 http://csg.csail.mit.edu/6.375 L10-21

Updating the state
//Extract fileds of eInst: data, addr, dst;

let data = eInst.data;
// memory access

if (eInst.iType == LOAD) begin
data <- dMem.req(MemReq{op:Ld, addr:addr, data: dwv});

end else if (eInst.iType == STORE) begin
let dummy <- dMem.req(MemReq{op:St, addr:addr,

data:data});
end

// register file write
if (dst.valid) rf.wr(dst.index, data);

// pc update
pc <= eInst.nextPc;

An elegant coding trick: you can package these
update actions in a procedure that returns these
actions

September 30, 2019 http://csg.csail.mit.edu/6.375 L10-22

Update Function
a function that returns an action
function Action updateState(ExecInst eInst, Reg#(Word) pc,

RFile2R1W rf, MagicMemory dMem);
return (action

//Extract fileds of eInst: data, addr, dst;
let data = eInst.data;

// memory access
if (eInst.iType == LOAD) begin

data <- dMem.req(MemReq{op:Ld, addr:addr, data: dwv});
end else if (eInst.iType == STORE) begin

let dummy <- dMem.req(MemReq{op:St, addr:addr,
data:data});

end
// register file write

if (dst.valid) rf.wr(dst.data, data);
// pc update

pc <= eInst.nextPc;

endaction);
endfunction

we are passing the register, not its
value, as a parameter

It can be called as follows:
updateState(eInst, pc, rf, dMem);

September 30, 2019 http://csg.csail.mit.edu/6.375 L10-23

Processor Interface

§ For testing, processor is connected to a host computer* which
can read and write the memory of the processor directly

§ The processor’s memory is preloaded with program and data;
it always starts at pc=0

§ When the program terminates it writes a 0 in a
predetermined location and stops the simulation
§ If the program hits an illegal or unsupported instruction, it

dumps the processor state and stops the simulation

Consequently the processor interface has
no methods, ie, it’s interface is Empty!

*In the simulation environment the host computer is the
same computer on which the simulator runs

module mkProcessor(Empty);
...

endmodule

September 30, 2019 http://csg.csail.mit.edu/6.375 L10-24

Understanding generated
hardware (the real datapath)

§ Not all instructions have both src1 and src2 fields but there is
no harm/cost in reading unused registers; we never use
results generated by the use of undefined fields

§ When the same function is called with two different
arguments, a mux is generated automatically

rVal1

rVal2

RFsrc1

src2
ALU

dInst

let rVal1 = rf.rd1(dInst.src1.index);
let rVal2 = rf.rd2(dInst.src2.index);

imm

September 30, 2019 http://csg.csail.mit.edu/6.375 L10-25

Understanding generated hardware
- continued

§ How many alu circuits?
§ The two uses of alu are mutually exclusive, so the BSV

compiler/backend tools should share the same alu circuit;
ones needs to check the output to determine this

§ Can address calculation use the same alu?

§ Reuse is not necessarily a good idea because it
prevents specialization
§ The circuit for pc+4 has a lot fewer gates than the circuit

for pc+imm

case (iType)
OP: data = alu(rVal1, rVal2, aluFunc);
OPIMM: data = alu(rVal1, imm, aluFunc);
...
LOAD: begin addr = rVal1+imm; nextPc = pc+4; end
STORE: begin addr = rVal1+imm; data = rVal2;

nextPc = pc+4; end ...

Generally we don’t concern ourselves with
the sharing of combinational circuits

September 30, 2019 http://csg.csail.mit.edu/6.375 L10-26

Single-cycle processor
Clock Speed

September 30, 2019 http://csg.csail.mit.edu/6.375 L10-27

§ Clock speed depends upon the longest combinational
path between two state elements
§ tClock > tM + tDEC + tRF + tALU+ tM+ tWB

§ We can breakdown the execution in multiple phases
and execute each phase in one cycle
§ tClock > max {tM , tDEC + tRF , tALU, tM, tWB}
§ Clock will be faster but each instruction will take

multiple cycles!

slo…w

… but some times multicycle
implementations are unavoidable

Realistic Memory Interface
Request/Response methods

interface Memory;
method Action req(MemReq req);
method ActionValue#(Word) resp();

endinterface
typedef struct {MemOp op; Word addr; Word data;}

MemReq deriving(Bits, Eq);
typedef enum {Ld, St} MemOp deriving(Bits, Eq);

No response for
Stores;
Load responses
come back in the
requested order

op
address

data(store)
en
rdy

re
q memory

re
sp data (load)

en
rdy

m.req(MemReq{op:Ld, addr:a, data:dwv});
m.req(MemReq{op:St, addr:a, data:v});
let data <- m.resp();

September 30, 2019 http://csg.csail.mit.edu/6.375 L10-28

Request/Response methods must
be called from separate rules
interface Memory;

method Action req(MemReq req);
method ActionValue#(Word) resp();

endinterface
typedef struct {MemOp op; Word addr; Word data;}

MemReq deriving(Bits, Eq);
typedef enum {Ld, St} MemOp deriving(Bits, Eq);

September 30, 2019 http://csg.csail.mit.edu/6.375 L10-29

rule doFetch if (state == Fetch);
m.req(MemReq{op:Ld, addr:pc, data:dwv});
state <= Execute;

endrule

rule doExecute if (state == Execute);
let inst <- mem.resp;
… decode(inst);…

endrule

default value

Often we need to hold the state of a partially executed
instruction in new state elements between cycles

x <= …;

read x

Processor with realistic memory
multicycle
module mkProcMulticycle(Empty);

Code to instantiate pc, rf, mem, and registers that hold the
state of a partially executed instruction
rule doFetch if (state == Fetch);

Code to initiate instruction fetch; go to Execute
rule doExecute if (state == Execute);

let inst <- mem.resp;
Code to 1. execute all instructions except memory

instructions; go to Fetch
Or 2. initiate memory access;

go to Fetch (Store) OR go to LoadWait (Load)
rule doLoadWait if (state == LoadWait);

Code to wait for the load value, update rf, go to Fetch
endmodule

September 30, 2019 http://csg.csail.mit.edu/6.375 L10-30

Multicycle ALU’s
multicycle or floating point ALU operations

§ Multicycle ALU’s can be viewed as request/response modules
§ Instructions can be further classified after decoding as simple

1 cycle, multicycle (e.g., multiply) or memory access

PC Decode

Register File

Execute

Memory

state

re
q

re
sp

September 30, 2019 http://csg.csail.mit.edu/6.375 L10-31

Processor with realistic memory
and multicycle ALUs
module mkProcMulticycle(Empty);

Code to instantiate pc, rf, mem, and registers to hold the
state of a partially executed instruction
rule doFetch if (state == Fetch);

Code to initiate instruction fetch; go to Execute
rule doExecute if (state == Execute);

let inst <- mem.resp;
Code to 1. execute all instructions except

memory and multicycle instructions; go to Fetch
Or 2. initiate memory access

go to Fetch (Store) OR go to LoadWait (Load)
Or 3. initiate multicycle instruction; go to MCWait

rule doLoadWait if (state == LoadWait);
Code to wait for the load value, update rf, go to Fetch

rule doMCWait if (state == MCWait);
Code to wait for MC value, update rf, go to Fetch

endmodule
September 30, 2019 http://csg.csail.mit.edu/6.375 L10-32

Reducing cycle counts further

September 30, 2019 http://csg.csail.mit.edu/6.375 L10-33

Any disadvantage?

module mkProcMulticycle(Empty);
Code to instantiate pc, rf, mem, and registers to hold the
state of a partially executed instruction
rule doFetch if (state == Fetch);

Code to initiate instruction fetch; go to Execute
rule doExecute if (state == Execute);

let inst <- mem.resp;
Code to 1. execute all instructions except

memory and multicycle instructions; go to Fetch
Or 2. initiate memory access

go to Fetch (Store) OR go to LoadWait (Load)
Or 3. initiate multicycle instruction; go to MCWait

rule doLoadWait if (state == LoadWait);
Code to wait for the load value, update rf, go to Fetch

rule doMCWait if (state == MCWait);
Code to wait for MC value, update rf, go to Fetch

endmodule

initiate fetch

initiate fetch

initiate fetch

Cycle counts

§ Different instructions take different number of
cycles in our designs
§ Depending upon the type of opcode, an instruction has to

go through 1 to 3 processor-rule firings
§ The number of cycles between processor-rule firings

depends on how quickly the memory responds or a
multicycle functional unit completes its work for the input
data

Next we will study how memory systems are
organized internally

September 30, 2019 http://csg.csail.mit.edu/6.375 L10-34

