
Multicycle processors and
Realistic Memories

Arvind
Computer Science & Artificial Intelligence Lab.

Massachusetts Institute of Technology

October 2, 2019 http://csg.csail.mit.edu/6.375 L11-1

Single-cycle processor
Clock Speed

§ Clock speed depends upon the longest combinational
path between two state elements
§ tClock > tM + tDEC + tRF + tALU+ tM+ tWB

§ We can breakdown the execution in multiple phases
and execute each phase in one cycle
§ tClock > max {tM , tDEC + tRF , tALU, tM, tWB}
§ Clock will be faster but each instruction will take

multiple cycles!

slo…w

… but some times multicycle
implementations are unavoidable

October 2, 2019 http://csg.csail.mit.edu/6.375 L11-2

Realistic Memory Interface
Request/Response methods

interface Memory;
method Action req(MemReq req);
method ActionValue#(Word) resp();

endinterface
typedef struct {MemOp op; Word addr; Word data;}

MemReq deriving(Bits, Eq);
typedef enum {Ld, St} MemOp deriving(Bits, Eq);

No response for
Stores;
Load responses
come back in the
requested order

op
address

data(store)
en
rdy

re
q memory

re
sp data (load)

en
rdy

m.req(MemReq{op:Ld, addr:a, data:dwv});
m.req(MemReq{op:St, addr:a, data:v});
let data <- m.resp();

October 2, 2019 http://csg.csail.mit.edu/6.375 L11-3

Request/Response methods must
be called from separate rules
interface Memory;

method Action req(MemReq req);
method ActionValue#(Word) resp();

endinterface
typedef struct {MemOp op; Word addr; Word data;}

MemReq deriving(Bits, Eq);
typedef enum {Ld, St} MemOp deriving(Bits, Eq);

rule doFetch if (state == Fetch);
m.req(MemReq{op:Ld, addr:pc, data:dwv});
state <= Execute;

endrule

rule doExecute if (state == Execute);
let inst <- mem.resp;
… decode(inst);…

endrule

default value

Often we need to hold the state of a partially executed
instruction in new state elements between cycles

x <= …;

read x

October 2, 2019 http://csg.csail.mit.edu/6.375 L11-4

Processor with realistic memory
multicycle
module mkProcMulticycle(Empty);

Instantiate pc, rf, mem, and registers to hold the state of a
partially executed instruction
rule doFetch if (state == Fetch);

Initiate instruction fetch; go to Execute
rule doExecute if (state == Execute);

let inst <- mem.resp;
if instruction is not memory type, execute it; go to Fetch
else initiate memory access;
if Store, go to Fetch (Store); if Load, go to LoadWait

rule doLoadWait if (state == LoadWait);
Wait for the load value; update rf; go to Fetch

endmodule

October 2, 2019 http://csg.csail.mit.edu/6.375 L11-5

Multicycle ALU’s
any multicycle, floating point ALU operations

§ Multicycle ALU’s can be viewed as request/response modules
§ Instructions can be further classified after decoding as simple

1 cycle, multicycle (e.g., multiply) or memory access

PC Decode

Register File

Execute

Memory

state

re
q

re
sp

October 2, 2019 http://csg.csail.mit.edu/6.375 L11-6

Processor with realistic memory
and multicycle ALUs
module mkProcMulticycle(Empty);

Instantiate pc, rf, mem, and registers to hold the state of a
partially executed instruction
rule doFetch if (state == Fetch);

Initiate instruction fetch; go to Execute
rule doExecute if (state == Execute);

let inst <- mem.resp;
if instruction is not memory type, execute it; go to Fetch
else initiate memory access;
if instruction is memory type, initiate memory access
if Store, go to Fetch (Store); if Load, go to LoadWait
if multicycle instruction; initiate it; go to MCWait

rule doLoadWait if (state == LoadWait);
Wait for the load value, update rf, go to Fetch

rule doMCWait if (state == MCWait);
Wait for MC value, update rf, go to Fetch

endmodule

Lab 5

October 2, 2019 http://csg.csail.mit.edu/6.375 L11-7

Reducing cycle counts further
module mkProcMulticycle(Empty);

Instantiate pc, rf, mem, and registers to hold the state of a
partially executed instruction
rule doFetch if (state == Fetch);

Initiate instruction fetch; go to Execute
rule doExecute if (state == Execute);

let inst <- mem.resp;
if instruction is not memory type, execute it; go to Fetch
else initiate memory access;
if instruction is memory type, initiate memory access
if Store, go to Fetch (Store); if Load, go to LoadWait
if multicycle instruction; initiate it; go to MCWait

rule doLoadWait if (state == LoadWait);
Wait for the load value, update rf, go to Fetch

rule doMCWait if (state == MCWait);
Wait for MC value, update rf, go to Fetch

endmodule

Any disadvantage?

initiate fetch

initiate fetch

initiate fetch
October 2, 2019 http://csg.csail.mit.edu/6.375 L11-8

Multicycle RISC-V: Analysis

Lot of unused hardware in any
given clock cycle!

PC

Inst
Memory

Decode

Register File

Execute

Data
Memory

Execute LoadW
ait

Fetch

Non-Load InstructionsLoad Instructions

§ Assuming 20% load instructions, and memory latency
of one, the average number of cycles per instruction:
§ 2 x .8 + 3 x .2 = 2.2 Mullticycle memory latency will make

this number much worse

Þ pipeline

October 2, 2019 http://csg.csail.mit.edu/6.375 L11-9

Pipeline the processor to increase its
throughput

PC Decode

Register File

Execute

Data
Memory

Inst
Memory

InstiInsti+1 Insti-1

§ Pipelining processor provides the ultimate
challenge in computer architecture
§ Requires speculative execution of instructions to pipeline

at all!
§ Requires dealing with a variety of feedbacks in the pipeline

§ Easy to make the processor functionally wrong!
The goal is always to achieve highest performance but
within a given area and power budget

October 2, 2019 http://csg.csail.mit.edu/6.375 L11-10

New problems in pipelining instructions
over arithmetic pipelines

§ Control hazard: pc for Insti+1 is not known until at least Insti
is decoded. So which instruction should be fetched?
§ Solution: Speculate and squash if the prediction is wrong

§ Data hazard: Insti may be dependent on Insti-1, and thus, it
must wait for the effect of Insti-1 on the state of the machine
(pc, rf, dMem) to take place
§ Solution: Stall instruction Insti until the dependency is resolved
§ Number of stalls can be reduced by bypassing, that is by

providing additional datapaths

PC Decode

Register File

Execute

Data
Memory

Inst
Memory

InstiInsti+1 Insti-1

October 2, 2019 http://csg.csail.mit.edu/6.375 L11-11

Plan

1. Develop a two-stage pipeline by providing a
solution for control hazards

2. Develop a three-stage pipeline by also
providing a solution for data hazards

Many code fragments from the multicycle
implementation are resuable

October 2, 2019 http://csg.csail.mit.edu/6.375 L11-12

Control hazard

§ Fetch stage initiates instruction fetches and sends them to
Execute stage via f2d. It speculatively updates pc to pc+4

§ Execute stage picks up instruction from f2d and executes
it. It may take one or more cycles to do this

§ These two stages operate independently except in case of
a branch misprediction when Execute redirects the pc to
the correct pc

pc rf

fetch execute

iMem dMem

f2d

We will offer a solution
that is independent of
how many cycles each
stage takes

redirect

October 2, 2019 http://csg.csail.mit.edu/6.375 L11-13

Ex LWF

Timing diagrams and bubbles

t0 t1 t2 t3 t4 t5 t6 t7 t8 t9 t10
Fetch
Ex
LW

I0

I2

I1

Ex LWF

I0 I1
I2

I2
I3

I3

Multicycle Processor

Execution of
I0; I1; I2; I3; ...
only I2 is a load
instruction

t0 t1 t2 t3 t4 t5 t6 t7 t8 t9 t10
Fetch
Ex
LW

I0

I2

I1
I0 I1

I2
I2
I3

I3

Two-stage Pipeline

Fetch
Ex
LW

I0 I1
I0 I7

I8
I8

I7

Suppose I0 is a
branch instruction
which jumps to I7
instead of I1

I1

prediction

squash
Is

speculation
correct?

If squashing takes more than
one cycle then I7 will get
further delayed

bubble: Ex/LW can hold
only one instruction

October 2, 2019 http://csg.csail.mit.edu/6.375 L11-14

How to detect a misprediction?

§ We initiate a fetch for the instruction at pc,
and make a prediction for the next pc (ppc)

§ The instruction at pc carries the prediction
(ppc) with it as it flows through the pipeline

§ At the Execute stage we know the real next
pc. It is a misprediction if the next pc ≠ ppc

October 2, 2019 http://csg.csail.mit.edu/6.375 L11-15

What does it mean to squash a
partially executed instruction?
§ A squashed instruction should have no effect

on the processor state
§ must not update register file or pc
§ must not launch a Store

§ These conditions are easy to ensure in our
two-stage processor because there is at most
one instruction in the Ex/LW state

October 2, 2019 http://csg.csail.mit.edu/6.375 L11-16

Epoch: a method to manage
control hazards

§ Add an epoch register to the processor state
§ The Execute stage changes the epoch whenever the pc

prediction is wrong and sets the pc to the correct value
§ The Fetch stage associates the current epoch to every

instruction sent to the Execute stage
§ The epoch of the instruction is examined when it is

ready to execute. If the processor epoch has changed
the instruction is thrown away

nap

inst

targetPC

iMem

rf

execute

dMem

f2d
pc

epoch

Next address
predictor,
e.g., pc+4

October 2, 2019 http://csg.csail.mit.edu/6.375 L11-17

From multicycle to a Two-Stage
Pipeline processor (1)
module mkProcMulticycle(Empty);

Instantiate pc, rf, mem, and registers to hold the state of a
partially executed instruction; epoch
rule doFetch if (state == Fetch);

Initiate instruction fetch; go to Execute
rule doExecute if (state == Execute);

let inst <- mem.resp;
if instruction is not memory type, execute it; go to Fetch
else initiate memory access;
if Store, go to Fetch (Store); if Load, go to LoadWait

rule doLoadWait if (state == LoadWait);
Wait for the load value; update rf; go to Fetch

endmodule

But doExecute
must wait if state
is LoadWait

October 2, 2019 http://csg.csail.mit.edu/6.375 L11-18

From multicycle to a Two-Stage
Pipeline processor (2)
rule doFetch;

iMem.req(MemReq{op: Ld, addr: pc, data: dwv});
let ppc = nap(pc); pc <= ppc;
f2d.enq(F2D {pc: pc, ppc: ppc, epoch: epoch});

endrule

rule doExecute if (state != LoadWait);
let inst <- iMem.resp;
let x = f2d.first; f2d.deq;
let pcD = x.pc; let ppc = x.ppc; let epochD = x.epoch;
if (epochD == epoch) begin // right-path instruction

Compute eInst from inst
let mispred = (eInst.nextPC != ppc);
if (mispred) begin pc <= eInst.nextPC; epoch <= !epoch; end
Update the state;
If a memory op, initiate memory req;
If Ld, go to LoadWait

endrule

rule doLoadWait if (state == LoadWait); ... go to Execute ...

Can doFetch and
doExecute execute
concurrently?
solution – next time

October 2, 2019 http://csg.csail.mit.edu/6.375 L11-19

pc rf

fetch execute

iMem dMem

f2d

epoch

Pipelining Decode and Execute

pc rf

fetch decode

iMem dMem
f2d

epoch

d2e
execute

§ Execute step probably has the longest propagation delay
(decode + register-file read + execute)

§ Separate Execute into two stages:
§ Decode and register-file-read
§ Execute – including the initiation of memory instructions

§ This introduces a new problem known as a Data Hazard,
that is, the register file, when it is read, may have stale
values

October 2, 2019 http://csg.csail.mit.edu/6.375 L11-20

Three stage pipeline
data hazard

D LWEx

§ I1 must be stalled until I0 updates the register file, i.e.,
the data hazard disappears

§ The data hazard will disappear as pipeline drains

F

RF

I0 R1 ¬ Ld R2
I1 R4 ¬ R1+R2
I2 ...

I0I1
t1 t2 t3 t4 t5 t6 t7 t8 t9 t10

Fetch
Decode
Ex
LW

I0

I0

E1
W1

I1
I0

I0

I2
I1

I2

E2
W2

D2

mutually
exclusive

I1
I1

I2
I2

Complication: the stalled instruction may
be a wrong-path instruction

rd < wr

Þ need a mechanism to stall

next lecture
October 2, 2019 http://csg.csail.mit.edu/6.375 L11-21

Data Hazard

§ Data hazard arises when a source register of
the fetched instruction matches the destination
register of an instruction already in the pipeline

§ Both the source and destination registers must
be valid for a hazard to exist

October 2, 2019 http://csg.csail.mit.edu/6.375 L11-22

Dealing with data hazards
(aka read-after-write (RAW) hazard)

§ Introduce a Scoreboard -- a data structure to keep track
of the destinations of the instructions in the pipeline
beyond the Decode stage
§ Initially the scoreboard is empty

§ Compare sources of an instruction when it is decoded
with the destinations in the scoreboard

§ Stall the Decode from dispatching the instruction to
Execute if there is a RAW hazard

§ When the instruction is dispatched, enter its destination
in the scoreboard

§ When an instruction completes, delete its source from
the scoreboard

A stalled instruction will be unstalled when the RAW
hazard disappears. This is guaranteed to happen as the
pipeline drains.

October 2, 2019 http://csg.csail.mit.edu/6.375 L11-23

Scoreboard

§ method insert(dst): inserts the destination of an
instruction or Invalid in the scoreboard when the
instruction is decoded

§ method search1(src): searches the scoreboard for a
data hazard, i.e., a dst that matches src

§ method search2(src): same as search1
§ method remove: deletes the oldest entry when an

instruction commits

scoreboard
search1 search2 insert remove

October 2, 2019 http://csg.csail.mit.edu/6.375 L11-24

Two designs for scoreboard

§ A fifo of depth equal to the
number of pipeline stages in
Execute

§ Insert: enq (dst)
§ Remove: deq
§ Search: compare source

against each entry

Counter design takes less hardware, especially for
deep pipelines, and is more efficient because it avoids
searching each element of the fifo

versus

§ One Boolean flag for each
register (Initially all False)

§ Insert: set the flag for register
rd to True (block if it is already
True)

§ Remove: set the flag for
register rd to False

§ Search: Return the value of
the flag for the source register

Fifo Flag or counter

October 2, 2019 http://csg.csail.mit.edu/6.375 L11-25

pc rf

fetc
h

execute

iMem dMem

f2d

epoch

Scoreboard in the pipeline

pc rf

fetch decode

iMem dMem

f2d

epoch

d2e
execute

§ If search by Decode does not see an instruction in
scoreboard, then that instruction must have updated the
state

§ Thus, when an instruction is removed from the
scoreboard, its updates to Register File must be visible
to the subsequent register reads in Decode
§ remove and wr should happen simultaneously
§ search, and rd1, rd2 should happen simultaneously

scoreboard remove

insertsearch

This will require a bypass register file
October 2, 2019 http://csg.csail.mit.edu/6.375 L11-26

Bypassing

§ Bypassing is a technique to reduce the number of stalls
(that is, the number of cycles) by providing extra data
paths between the producer of a value and its consumer

§ Bypassing introduces new combinational paths and this
can increase combinational delay (and hence the clock
period) and area

§ The effectiveness of a bypass is determined by how often
it is used

D E/LWF

RF

bypass

October 2, 2019 http://csg.csail.mit.edu/6.375 L11-27

Processor Performance

§ Pipelining lowers tClk. What about CPI?

§ CPI = CPIideal + CPIhazard
§ CPIideal: cycles per instruction if no stall

§ CPIhazard contributors
§ Data hazards: long operations, cache misses
§ Control hazards: branches, jumps, exceptions

Cycle
Time

nInstructio
Cycles

Program
nsInstructio

Program
Time ××=

CPI tClk

October 2, 2019 http://csg.csail.mit.edu/6.375 L11-28

