
Arvind

Computer Science & Artificial Intelligence Lab.

Massachusetts Institute of Technology

Implementing Processor
Pipelines

October 9, 2019 http://csg.csail.mit.edu/6.375 L12-1

Epoch: a method to manage
control hazards

 Add an epoch register to the processor state

 The Execute stage changes the epoch whenever the pc
prediction is wrong and sets the pc to the correct value

 The Fetch stage associates the current epoch to every
instruction sent to the Execute stage

 The epoch of the instruction is examined when it is
ready to execute. If the processor epoch has changed
the instruction is thrown away

nap

inst

targetPC

iMem

rf

execute

dMem

f2d
pc

epoch

Next address
predictor,
e.g., pc+4

October 9, 2019 http://csg.csail.mit.edu/6.375 L12-2

From multicycle to a Two-Stage
Pipeline processor

rule doFetch;
iMem.req(MemReq{op: Ld, addr: pc, data: dwv});
let ppc = nap(pc); pc <= ppc;
f2d.enq(F2D {pc: pc, ppc: ppc, epoch: epoch});

endrule

rule doExecute if (state != LoadWait);
let inst <- iMem.resp;
let x = f2d.first; f2d.deq;
let pcD = x.pc; let ppc = x.ppc; let epochD = x.epoch;
if (epochD == epoch) begin // right-path instruction

Compute eInst from inst
let mispred = (eInst.nextPC != ppc);
if (mispred) begin pc <= eInst.nextPC; epoch <= !epoch; end
Update the state;
If a memory op, initiate memory req;
If Ld, go to LoadWait

endrule

rule doLoadWait if (state == LoadWait); ... go to Execute ...

Can doFetch and
doExecute execute
concurrently?

October 9, 2019 http://csg.csail.mit.edu/6.375 L12-3

Two-Stage Pipeline processor
Fix1: avoid rule conflict use EHRs

rule doFetch;
iMem.req(MemReq{op: Ld, addr: pc[], data: dwv});
let ppc = nap(pc[]); pc[] <= ppc;
f2d.enq(F2D {pc: pc[], ppc: ppc, epoch: epoch});

endrule

rule doExecute if (state == Execute);
let inst <- iMem.resp;
let x = f2d.first; f2d.deq;
let pcD = x.pc; let ppc = x.ppc; let epochD = x.epoch;
if (epochD == epoch) begin // right-path instruction

code to compute eInst from inst
let mispred = eInst.nextPC != ppc;
if (mispred) begin pc[] <= eInst.nextPC;

epoch <= !epoch; end
code to update the state;
in case of a memory op, initiate memory req and

in case of Ld go to LoadWait
endrule

rule doLoadWait if (state == LoadWait); ... go to Execute ...

Instantiate pc
as an EHR

0

1

1
1 1

Is this
the
correct
value of
epoch?

October 9, 2019 http://csg.csail.mit.edu/6.375 L12-4

Two-Stage Pipeline processor
Fix1: avoid rule conflict use EHRs

rule doFetch;
iMem.req(MemReq{op: Ld, addr: pc[], data: dwv});
let ppc = nap(pc[]); pc[] <= ppc;
f2d.enq(F2D {pc: pc[], ppc: ppc, epoch: epoch[]});

endrule

rule doExecute if (state == Execute);
let inst <- iMem.resp;
let x = f2d.first; f2d.deq;
let pcD = x.pc; let ppc = x.ppc; let epochD = x.epoch;
if (epochD == epoch[]) begin // right-path instruction

code to compute eInst from inst
let mispred = eInst.nextPC != ppc;
if (mispred) begin pc[] <= eInst.nextPC;

epoch[] <= !epoch[]; end
code to update the state;
in case of a memory op, initiate memory req and

in case of Ld go to LoadWait
endrule

rule doLoadWait if (state == LoadWait); ... go to Execute ...

Instantiate
epoch also as

an EHR

0

1

1
1 1

0 0

1

0

October 9, 2019 http://csg.csail.mit.edu/6.375 L12-5

Synthesis results

 EHRs reduced the cycle count by eliminating the rule
conflict

 But increased the clock period

Message:
1. Exploiting rule concurrency in the common case is essential
2. EHRs are often necessary for concurrency but care is needed

because the clock period can get worse

Processors Clock (ps) Benchmarks (Cycles)

No Re-
timing

Re-
timing gcd

No
hazard

Control
hazard

Data
hazard

Three-cycle 567 457 3508 294 98 288

TwoStage
1st Attempt 701 522 4884 290 113 284

TwoStage
EHR 817 615 2022 272 91 271

October 9, 2019 http://csg.csail.mit.edu/6.375 L12-6

Retiming

 Retiming moves registers in the datapath to improve
timing but preserving the functionality

Processors Clock (ps) Benchmarks (Cycles)

No Re-
timing

Re-
timing gcd

No
hazard

Control
hazard

Data
hazard

Three-cycle 567 457 3508 294 98 288

TwoStage
1st Attempt 701 522 4884 290 113 284

Circuit is difficult to analyze after retiming!

f1 f2 f3

Suppose max{tf1+f2 ,tf3} < max{tf2+f3, tf1}

October 9, 2019 http://csg.csail.mit.edu/6.375 L12-7

Two-Stage Pipeline processor
Fix 2: delay the redirection

 Instead of redirecting the pc and epoch from the
execute stage, delay redirection by one clock cycle
by moving it into a separate rule

 This may reduce the critical path delay and increase cycle
count in case of redirection

rule doFetch;
iMem.req(MemReq{op: Ld, addr: pc[1], data: dwv});
let ppc = nap(pc[1]); pc[1] <= ppc;
f2d.enq(F2D {pc: pc[1], ppc: ppc, epoch: epoch[1]});

endrule
rule doExecute if (state == Execute);

...
if (epochD == epoch[0]) begin // right-path instruction

code to compute eInst from inst
let mispred = eInst.nextPC != ppc;
if (mispred) begin pc[0] <= eInst.nextPC;

epoch[0] <= !epoch[0]; end
…

endrule

October 9, 2019 http://csg.csail.mit.edu/6.375 L12-8

Two-Stage Pipeline processor
Fix 2: move redirection out of Execute - 1

rule doExecute if (state == Execute);
...
if (epochD == epoch) begin // right-path instruction

code to compute eInst from inst
let mispred = eInst.nextPC != ppc;
if (mispred) begin pc[0] <= eInst.nextPC;

epoch[0] <= !epoch[0]; end
code to update the state;
in case of a memory op, initiate memory req and

in case of Ld go to LoadWait
endrule
rule doLoadWait if (state == LoadWait); ... go to Execute ...
rule doRedirect if (state == Redirect); ... go to Execute ...

 In doExecute set the state to Redirect

 Introduce a new doRedirection rule to change epoch
and pc

October 9, 2019 http://csg.csail.mit.edu/6.375 L12-9

Two-Stage Pipeline processor
Fix 2 – move redirection out of Execute -2
rule doExecute if (state == Execute);

...
if (epochD == epoch) begin // right-path instruction

code to compute eInst from inst
let mispred = eInst.nextPC != ppc;
if (mispred) begin state <= Redirect;

nextPC <= eInst.nextPC; end
code to update the state;
in case of a memory op, initiate memory req and

in case of Ld go to LoadWait
endrule

rule doLoadWait if (state == LoadWait); ... go to Execute ...

rule doRedirect if (state == Redirect);
pc[0] <= nextPC; epoch[0] <= !epoch[0];
state <= Execute;

endrule

 We also need to remember nextPC in a register and
pass it to doRedirect

Still not
correct !

doRedirect
must
throwaway
another
wrong path
instruction
that may
have been
fetched

f2e.deq;
let inst <- iMem.resp();

October 9, 2019 http://csg.csail.mit.edu/6.375 L12-10

So what is best
execution time for gcd?

Improved two-stage pipeline

 Delaying redirection improved the clock period
but increased the number of cycles as expected

Processors Clock (ps) Micro Benchmarks (Cycles)

No Re-
timing

Re-
timing gcd

No
hazard

Control
hazard

Data
hazard

Three-cycle 567 457 3508 294 98 288

TwoStage
1st Attempt 701 522 4884 290 113 284

TwoStage
EHR 817 615 2022 272 91 271

TwoStage
DelayRedir 599 524 2711 272 98 271

Processors Clock (ps) gcd (cycles) gcd (ns)

Three-cycle 457 3508 2081

TwoStage 1st Attempt 522 4884 2982

TwoStage EHR 615 2022 1914

TwoStage DelayRedir 524 2711 1625

October 9, 2019 http://csg.csail.mit.edu/6.375 L12-11

pc rf

fetc
h

execute

iMem dMem

f2d

epoch

Three stage pipeline

pc rf

fetch decode

iMem dMem

f2d

epoch

d2e
execute

 Pipeline the Execute stage by separating decode; should
reduce the clock period

scoreboard remove

insertsearch

From L11

Processors Clock (ps) gcd Data hazard

Three-cycle 567 3508 288

TwoStage DelayRedir 599 2711 271

Four-cycle(separate
decode and execute) 499 5004 306

ThreeStage Bypass 492 3410 272
how?

October 9, 2019 http://csg.csail.mit.edu/6.375 L12-12

Pipeline doExecute
three-stage pipeline

rule doExecute (...);
let dInst = d2e.first; d2e.deq;
... filter wrong-path instructions ...
... execute (dInst, rval1,rval2, pc) ...
... detect and handle misprediction ...
... launch memory instructions if needed ...
... save info for the LoadWait step ...

endrule
rule doLoadWait(...) ... endrule

Danger Data Hazards:
doDecode may read
stale values

rule doDecode;
let inst <- iMem.resp;
... filter wrong-path instructions ...
... decode (inst) ...
... read rf ...
d2e.enq(...);

endrule

rule doFetch; ... endrule

Introduce scoreboard

October 9, 2019 http://csg.csail.mit.edu/6.375 L12-13

pc rf

fetc
h

execute

iMem dMem

f2d

epoch

Three stage pipeline
a correctness issue

pc rf

fetch decode

iMem dMem

f2d

epoch

d2e
execute

 When an instruction is removed from the scoreboard, its
updates to Register File must be visible to the
subsequent register reads in Decode

 remove and wr should happen simultaneously

 search, and rd1, rd2 should happen simultaneously

scoreboard remove

insertsearch

October 9, 2019 http://csg.csail.mit.edu/6.375 L12-14

doDecode rule

rule doDecode;
let inst <- iMem.resp;
let x = f2d.first; f2d.deq;
if (x.epoch == epoch) begin
let dInst = decode(inst); // src1 and src2 are Maybe types;
// check for data hazard
if (!(sb.search1(dInst.src1)||sb.search2(dInst.src2))) begin
read rVal1 and read rVal2 from rf
sb.insert(dInst.dst); //to stall future inst for data hazard
enqueue into e2d fifo: pc, ppc, epoch, rVal1, rVal2, dInst

end
end

endrule

Still not quite correct. Why?

We need to keep the fetched instruction while stalling!

Need a register to hold the fetched instruction while stalling

October 9, 2019 http://csg.csail.mit.edu/6.375 L12-15

Fixing the doDecode rule

rule doDecode;
let inst <- iMem.resp;
let x = f2d.first; f2d.deq;
if (x.epoch == epoch) begin
let dInst = decode2(inst); // src1 and src2 are Maybe types;
if (!(sb.search1(dInst.src1)||sb.search2(dInst.src2))) begin
read rVal1 and read rVal2 from rf
sb.insert(dInst.dst); //to stall future inst for data hazard
enqueue into e2d fifo: pc, ppc, epoch, rVal1, rVal2, dInst
f2d.deq;

end else begin
fetchedInst <= inst; ...

end
end else begin f2d.deq; ... end

endrule

stalled instruction must be saved

No new instruction
should be fetched in the
stalled state

October 9, 2019 http://csg.csail.mit.edu/6.375 L12-16

Execute rule

rule doExecute (...);
... filter wrong-path instructions ...
... execute (dInst, rval1,rval2, pc) ...
... detect and handle misprediction ...
... launch memory instructions if needed ...
... save info for the LoadWait step ...

endrule

rule doLoadWait (...);
...

endrule

sb.remove has to be inserted whenever an
instruction completes execution

October 9, 2019 http://csg.csail.mit.edu/6.375 L12-17

Further pipelining

 In the three-stage pipeline (Fetch, Decode, Execute), the
Execute stage takes an extra cycle in case of a load

 We can increase the throughput by running the Execute and
LoadWait stages concurrently

 Complication: Both Execute and LoadWait stage may want to
update the register file and Scoreboard concurrently

 It is a good practice to update state from only one stage in
the pipeline, therefore, we can move the RF update from
Execute to LoadWait. (In such a case LoadWait state is often
referred to as the Write-Back stage)

 But this will introduce extra bubbles to resolve RAW hazards

 Bypassing becomes essential to reduce these extra bubbles

October 9, 2019 http://csg.csail.mit.edu/6.375 L12-18

FIFOs

 Normally we use Pipeline FIFOs in pipelines, which
results in the following ordering between the
stages:

 WB < EX < DEC < Fetch

 For maximum flexibility is scheduling use Conflict
Free FIFOs, which will not force the stages to be
ordered from WB to Fetch

October 9, 2019 http://csg.csail.mit.edu/6.375 L12-19

Two more techniques to improve
processor performance

 Branch prediction dynamically changes the next
address prediction based on the past behavior of
the program. Fewer wrong-path instructions
reduces the number of pipeline bubbles

 Bypasses, i.e., extra data paths between the
producer of a value and its consumer can reduce
the number of stalls (that is, the number of cycles)
by providing

October 9, 2019 http://csg.csail.mit.edu/6.375 L12-20

Dynamic Branch Prediction
Learning from past behavior

 The way a branch resolves may be a good
predictor of the way the branch will resolve when
executed next

 Record every branch resolution in a data structure and
consult the data structures at the fetch stage

PC

Truth/Feedback

Prediction
Predictor

p
re

d
ic

t

update

October 9, 2019 http://csg.csail.mit.edu/6.375 L12-21

Next Address prediction:
Branch Target Buffer (BTB)

 BTB is a cache for targets: Remembers last target
PC for taken branches and jumps

 If hit, use stored target as predicted next PC

 If miss, use PC+4 as predicted next PC

 After target is known, update if the prediction was wrong

2k-entry direct-mapped BTB
(can also be set-associative)

PC

k

Valid

valid

Entry PC

=

match

predicted

target

target PC

October 9, 2019 http://csg.csail.mit.edu/6.375 L12-22

Integrating the BTB in the Pipeline

Fetch

Decode

WriteBack

PC

RegRead

Execute

…
…

…
…

Predict next PC
immediately

Tight loop

Correct
mispred

Correct misprediction when
the right outcome is known

+4 BTB

October 9, 2019 http://csg.csail.mit.edu/6.375 L12-23

BTB Implementation Details

 Unlike caches, it is fine if the BTB produces an invalid next PC
 It’s just a prediction!

 Therefore, BTB area & delay can be reduced by
 Making tags arbitrarily small (match with a subset of PC bits)

 Storing only a subset of target PC bits (fill missing bits from current PC)

 Not storing valid bits

 Even small BTBs are very effective!

iMem
pc

tag(pci) targeti valid

match

k

2k-entry direct-mapped BTB

October 9, 2019 http://csg.csail.mit.edu/6.375 L12-24

BTB Interface

interface BTB;
method Addr predict(Addr pc);
method Action update(Addr pc, Addr nextPC,

Bool taken);
endinterface

 predict: Simple lookup to predict nextPC in Fetch stage

 update: On a pc misprediction, if the jump or branch
at the pc was taken, then the BTB is updated with the
new (pc, nextPC). Otherwise, the pc entry is deleted

BTB is a good way to improve the performance;
if we use small BTB tables there is no danger of
increasing the clock period

October 9, 2019 http://csg.csail.mit.edu/6.375 L12-25

Modern Processors Combine Multiple
Specialized Predictors

Fetch

Decode

WriteBack

PC

RegRead

Execute

…
…

…
…

Predict next PC
immediately

Instruction type &
branch/JAL target known

Branch direction &
JALR target known

BTB

Branch dir
predictor

Correct
mispred

Loop
predictor

Return addr
predictor

Best predictors reflect
program behavior

October 9, 2019 http://csg.csail.mit.edu/6.375 L12-26

Bypassing

 Bypassing is a technique to reduce the number of stalls
(that is, the number of cycles) by providing extra data
paths between the producer of a value and its consumer

 Bypassing introduces new combinational paths and this
can increase combinational delay (and hence the clock
period) and area

 The effectiveness of a bypass is determined by how often
it is used

 For correctness, both RF and ScoreBoard must be
bypassed.

D E/LWF

RF

bypass

October 9, 2019 http://csg.csail.mit.edu/6.375 L12-27

Normal vs Bypass Register File

module mkRFile(RFile);

Vector#(32,Reg#(Data)) rfile <- replicateM(mkReg(0));

method Action wr(RIndx rindx, Data data);

if(rindx!=0) rfile[rindx] <= data;

endmethod

method Data rd1(RIndx rindx) = rfile[rindx];

method Data rd2(RIndx rindx) = rfile[rindx];

endmodule

{rd1, rd2} < wr

Can we design a bypass register file so that:
wr < {rd1, rd2}

October 9, 2019 http://csg.csail.mit.edu/6.375 L12-28

Bypass Register File using EHR

module mkBypassRFile(RFile);

Vector#(32,Ehr#(2, Data)) rfile <-

replicateM(mkEhr(0));

method Action wr(RIndx rindx, Data data);

if(rindex!=0) (rfile[rindex])[0] <= data;

endmethod

method Data rd1(RIndx rindx) = (rfile[rindx])[1];

method Data rd2(RIndx rindx) = (rfile[rindx])[1];

endmodule

wr < {rd1, rd2}

October 9, 2019 http://csg.csail.mit.edu/6.375 L12-29

Bypass Register File
with external bypassing

module mkBypassRFile(BypassRFile);

RFile rf <- mkRFile;
SFifo#(1, RIdxData#(Bit#(5), Bit#(32)))

bypass <- mkBypassSFifo;
rule move;

…take a entry out of the bypass fifo and
write it into rf…

method Action wr(Bit#(5) rindx, Bit#(32) data);
… bypass.enq…

method Bit#(32) rd1(RIndx rindx);

… look for the value in the bypass fifo,

if not found then read rf…

endmodule

wr < {rd1, rd2}

rf

move

rd

bypass

typedef struct {Bit#(5) index; Bit#(32) data}

RIdxData deriving (Bits);

Sfifo = Searchable Fifo

October 9, 2019 http://csg.csail.mit.edu/6.375 L12-30

Summary

 Modern processors rely on a handful of techniques
to improve performance

 Deep pipelines  Multi-GHz frequency

 Wide (superscalar) pipelines  Multiple instructions/cycle

 Out-of-order execution  Reduce impact of data hazards

 Branch prediction  Reduce impact of control hazards

 However, one also needs to improve the memory
system at the same time to realize full benefits

 Store buffers

 Non-blocking memory, i.e., several outstanding misses

 Fetching multiple words

October 9, 2019 http://csg.csail.mit.edu/6.375 L12-31

