Memory Systems:
Design and Implementation

Arvind

Computer Science & Artificial Intelligence Lab
Massachusetts Institute of Technology

October 11, 2019 http://csg.csail.mit.edu/6.375 L13-1

Memory Technologies

Register ~ 1K bits 20 ps $$$% Fgr:tcae;asfhr
SRAM ~10 KB-10 MB 1-10 ns ~$1000 Memory
DRAM ~10 GB 80 ns ~$10 Hierarchy
Flash* ~100 GB 100 us ~$1 1/0

Hard disk* ~1 TB 10 ms ~$0.1 subsystem

* non-volatile (retains contents when powered off)

= Different technologies have vastly different tradeoffs

= Sjze is a fundamental limit, even setting cost aside:

= Small + low latency or
= Large + high-latency

= Can we get best of both worlds? (large, fast, cheap)

http://csg.csail.mit.edu/6.375 L13-2

October 11, 2019

Implicit Memory Hierarchy

Main
Cache Cache memory

s Siai DRAM

= Programming model: Single memory, single address
space

= Machine transparently stores data in fast or slow
memory, depending on usage patterns

= CPU effectively sees large, fast memory if values are
found in cache most of the time.

October 11, 2019 http://csg.csail.mit.edu/6.375 113-3

Why Caches Work

= Two predictable properties of memory accesses:

= Temporal locality: If a location has been accessed recently,
it is likely to be accessed (reused) in the near future

= Spatial locality: If a location has been accessed recently,

it is likely that nearby locations will be accessed in the
near future

October 11, 2019 http://csg.csail.mit.edu/6.375 L13-4

Typical Memory Access Patterns

array
address accesses . . 022
[N J [J [J ([N N J
o000 O0 [J [)
[N J [J ([N N J [J [J [J
o000 [J [J [) [J [X J
data oee .° cose o oot
(N N J [J
local procedure calls

variable / | Ne®e®e®.®
accesses e e o o e 0’6 e’

stack cee o o .o ®e © o o000

code

October 11, 2019 http://csg.csail.mit.edu/6.375

L13-5

Caches

= Cache: A small, interim storage component that
transparently retains (caches) data from recently
accessed locations

Address
CPU Data

d

= Processor sends accesses to cache. Two options:
= Cache hit: Data for this address in cache, returned quickly
= Cache miss: Data not in cache
= Fetch data from memory, send it back to processor

= Retain this data in the cache (replacing some other

data)
Processor must deal with variable

access-time of memory

October 11, 2019 http://csg.csail.mit.edu/6.375 L13-6

Cache Metrics

. . hits
= Hit Ratio: HR=— ——=1-MR
hits + misses
= Miss Ratio: mr=—""°% _1_HR
hits + misses

= Average Memory Access Time (AMAT):
AMAT = HitTime + MissRatio x MissPenalty

Cache design is all about reducing AMAT

October 11, 2019 http://csg.csail.mit.edu/6.375

L13-7

How High of a Hit Ratio?

Memory

4 cycles 100 cycles
AMAT without a cache = 100 cycles

Latency with cache: Hit = 4 cycles; Miss = 104 cycles
What hit ratio do we need to break even?

100 = 4 + (1 — HR) x 100 = HR = 4% should be easy

to achieve
AMAT for different hit ratios:
HR=50% = AMAT =4 + (1 — .50) x 100 = 54
HR=90% = AMAT =4 + (1 — .90) x 100 = 14 Canwe achieve
HR=99% = AMAT =4 + (1 —.99) x 100 = 5 suchhigh HR?

With high HR caches can dramatically improve AMAT

October 11, 2019 http://csg.csail.mit.edu/6.375

L13-8

Basic Cache Algorithm (Reads)

On reference to Mem[X],
look for X among cache tags

Tag { Data / \

A [FenTA] HIT: X = Tag(i) MISS: X not
for some found in Tag
B |Mem[B] cache line i of any cache line
I Return Data(i) 1. Read Mem[X
j (1-HR) 2. Return Mem[X]

. Select a line k

to hold Mem|[X]
4. Write Tag(k)=X,
How do we “search” the cache? Data(k) = Mem[X]

October 11, 2019 http://csg.csail.mit.edu/6.375 L13-9

W

Direct-Mapped Caches

= Each word in memory maps into a single cache line

= Access (for cache with 2% lines):
= Index into cache with W address bits (the index bits)

= Read out valid bit, tag, and data
= If valid bit == 1 and tag matches upper address bits, HIT

= Example 8-line

direct-mapped cache:

32-bit BYTE address

000000000000000000000000111P10p0

October 11, 2019

Tag
bits

Valid bit Tag (27 bits) Data (32 bits)

Index Byte
bits offset

bits

http://csg.csail.mit.edu/6.375

v
)= HIT

O

L13-10

Example: Direct-Mapped Caches

64-line direct-mapped cache - 64 indexes - 6 index bits

Read Mem[0x400C]

Valid bit Tag (24 bits) Data (32 bits)

1

0Xx000058

OxDEADBEEF

0Xx000058

0Xx00000000

0Xx000058

0x00000007

0x000040

0x42424242

0100 0000 0000 1100 .
TAG :\ 0x40 !
INDEX: O0x3 2
OFFSET: 0x0 j
HIT, DATA 0x42424242
Would 0x4008 hit? s

INDEX: Ox2 — tag mismatch
— MISS

1
1
1
(%]

0x000007

Ox6FBA2381

0Xx000058

OxF7324A32

Part of the address (index bits) is encoded in the location

Tag + Index bits unambiguously identify the data’s address

October 11, 2019 http://csg.csail.mit.edu/6.375

L13-11

Exploiting spatial locality
= Store multiple words per data line

= Reduces size of tag memory!

= Potential disadvantage: Fewer lines in the cache (more
conflicts)

= Example: 4-word line, 16-word direct-mapped cache

Valid bit Tag (26 bits) Line (4 words, 16 bytes)

v v 2 v
32-bit BYTE address | >0 e 3]
A AN A Line offset bits: 2

Tag bits: 26 (=32-4-2) 1ndex bits: 2 (line size = 4)

Byte offset bits: 2
(ensure word

alignment)
October 11, 2019 http://csg.csail.mit.edu/6.375 L13-12

(4 indexes)

Line Size Tradeoffs

= Larger line sizes...
= Take advantage of spatial locality

= Incur larger miss penalty since it takes longer to transfer
the line from memory

= Can increase the average hit time and miss ratio

= AMAT = HitTime + MissPenalty*MissRatio

-I?;/\ A _ _] A)
© O | Exploits spatial locality Increased miss penalty
- 4 — and miss rate
) © <
ol / Y Z ~64 bytes
0) bFew lines, < !
v B2 compromises :
> = temporal locality]
> > 1 >
Line Size Line Size Line Size

October 11, 2019 http://csg.csail.mit.edu/6.375 L13-13

erte Policy

. Write-through: CPU writes are cached, but also written
to main memory immediately; Memory always holds
current contents

2. Write-back: CPU writes are cached, but not written to

main memory until we replace the line. Memory contents
can be “stale”

= Upon replacement, a modified cache line must first be
written back to memory before loading the new cache
line

= To avoid unnecessary writebacks, a Dirty bit is added to

each cache line to indicate if the value has been modified
since it was loaded from memory

3. No cache write on a Write-miss: On a cache miss,
write is sent directly to the memory without a cache write

Write-back is the most commonly used policy,

because it saves cache-memory bandwidth
October 11, 2019 http://csg.csail.mit.edu/6.375 L13-14

Direct-Mapped Cache Problem:
Conflict Misses

Word Cache Hit/
Address Line index Miss
LOOp A: 1024 0 HIT Assume:
Code at 37 37 HIT e 1024-line DM cache
1024, 02 1 HIT line size = 1 word
data at 38 38 HiT « Consider looping code
1026 2 HIT ping '
37 39 39 HIT in steady state
1024 0 HIT « Assume WORD, not
37 37 HIT

BYTE, addressing

Loop B: égig 8 mgg Inflexible mapping
Code at 1025 1 MISS (each address can only be
1024, 2049 1 MISS in one cache location) =>
data at 1026 2 MISS Conflict misses!
2048 2050 2 MISS
1024 0 MISS
2048 0 MISS

April 4, 2019 http://csg.csail.mit.edu/6.375 L15-15

N-way Set-Associative Cache

= Use multiple direct-mapped caches in parallel to reduce
conflict misses

= Nomenclature: tag _ |index INCOMING ADDRESS
= # ROWSs = # Sets Tag Line Tagline Tagline Tagline _

= # Columns = # Ways

= Set size = #ways)
= “set associativity” g -
(e.g. 4-way 2 4 lines/set)

= Each address maps to
only one set, but can be -
in any way within the set -— --é} ----- -é- _____ .é ______ é

= Tags from all ways are
checked in parallel 4 ways

8 sets

= Fully-associative cache: Number of ways = Number of lines
= Any address can be in any line > No conflict misses, but expensive

April 4, 2019 http://csg.csail.mit.edu/6.375 L15-16

Associativity Implies Choices

Issue: Replacement Policy

Direct-mapped N-way set-associative Fully associative
address address address
| []
= N — | |
, ——] | |
4’{ oo ©0O0
\ 4 A 4 \ 4 | |
R v | | | [
= Compare addr = Compare addr with N = Compare addr with
with only one tag tags simultaneously each tag
simultaneously
= Location A can be = Location A can be
stored in exactly stored in exactly one = Location A can be
one cache line set, but in any of the stored in any cache
N cache lines line

belonging to that set

April 4, 2019 http://csg.csail.mit.edu/6.375 L15-17

Replacement Policies

= | east Recently Used (LRU): Replace the line that was accessed
furthest in the past

= Works well in practice

= Need to keep ordered list of N items — N! orderings
— O(log5N!) = O(N log,N) “LRU bits” + complex logic

= Caches often implement cheaper approximations of LRU

= Other policies:
= First-In, First-Out (least recently replaced)

= Random: Choose a candidate at random
= Not very good, but does not have adversarial access patterns

April 4, 2019 http://csg.csail.mit.edu/6.375 L15-18

Cache Design

= Cache designs have many parameters:
= Cache size in bytes :

. L . ‘h b ; ds i i Decreasing
ine size, i.e., the number of words in a line | . 4.. of

* Number of ways, the degree of associativity | importance

= Replacement policy v

= A typical method of evaluating performance is by
calculating the number of cache hits for a given set
of cache parameters and a give set of memory
reference sequences

= Memory reference sequences are generated by simulating
program execution

= Number of hits, though fixed for a given memory reference
pattern and cache design parameters, is extremely tedious
to calculate (so it is done using a cache simulator)

October 11, 2019 http://csg.csail.mit.edu/6.375 L13-19

Blocking vs. Non-Blocking
cache

= Blocking cache
= At most one outstanding miss
= Cache must wait for memory to respond

= Cache does not accept processor requests in
the meantime

= Non-blocking cache
= Continuous processing of cache hits

= Blocking processing in case N outstanding
misses

We will discuss the implementation of
blocking caches

October 11, 2019 http://csg.csail.mit.edu/6.375 L13-20

Now we will implement a cache

= One-way, Direct-mapped |Back-end memory (DRAM)
= Write-back is updated only when a line
is evicted from the cache

= Write-miss allocate

= non-blocking cache but only one outstanding
cache miss

Cache is updated on Store
miss

Cache processes one
request at a time

October 11, 2019 http://csg.csail.mit.edu/6.375 L13-21

Cached Memory Systems

rf reg

Processor

| | SRAM
based

resp

j cache

pC

—

lineResp
o L

lineReq | |

|

—

DRAM

based
memory

The memory has a
small SRAM cache
which is backed by
much bigger DRAM

memory

Processor accesses are for words while DRAM
accesses are for lines

mkDRAM and mkSRAM primitives are given:

DRAM dram <- mkDRAM;
SRAM# (LogNumEntities, dataT) sram <- mkSRAM;

To avoid type clutter we assume that DRAM has 64Byte (16
word) lines and uses line addresses

October 11, 2019

http://csg.csail.mit.edu/6.375

L13-22

Memory, SRAM and DRAM

interfaces

Interfaces assume fixed sizes for memory, DRAM, line,

interface Memory;
method Action req(MemReq req);
method ActionValue#(Word) resp;
endinterface

interface DRAM;
method Action req(LReqg req);
method ActionValue#(Line) resp;
endinterface

and addresses

no response
for Stores

method ActionValue#(dataT) resp;

interface SRAM#(numeric type indexSz, type dataT);
method Action rdReq(Bit#(indexSz) index);
method Action wrReq(Bit#(indexSz) index, dataT wrData);

endinterface Size of SRAM = 2indexSz dqtq elements

typedef enum {Ld, St} MemOp deriving(Bits, EQ);
typedef struct {MemOp op; Word addr; Word data;} MemReq...;
typedef struct {MemOp op; LAddr laddr; Line line;} LReq...;

October 11, 2019 http://csg.csail.mit.edu/6.375

L13-23

Cache Interface

=9, | | lineReq [
SRAM| —

based | B
cache

f—
=3P] | lineResp

DRAM
based
memory

method Action req(MemReqg req);
method ActionValue#(Word) resp();

method Action lineResp(Line r);
endinterface

method ActionValue#(LReq) lineReq; :

interface Cache#f(numeric type logNLines);

]

processor-side methods:
— fixed size words and
(byte) addresses

. back-side methods;
fixed size cache lines

and line-addresses

Notice, the cache size does not appear in any of its interface
methods, i.e., users do not have to know the cache size

module mkMemory(Memory);
DRAM dram <- mkDRAM;

Cache#(LogNLines) cache <- mkNonBlockingCache;

October 11, 2019 http://csg.csail.mit.edu/6.375

L13-24

Cache Organization

req

resp

cau current reqQ

|:Eh

lineRegQ

lineReq
>

BN
oy

itQ |State

current regQ

lineResp

<

neResp

= cache-array unit encapsulates data, tag and status arrays,
which are all made from SRAM

= Need queues to communicate with the back-end memory
= hitQ holds the responses until the processor picks them up

= state and current req registers hold the request and its
status while the request is being processed

October 11, 2019

http://csg.csail.mit.edu/6.375

L13-25

Cache-Array Unit Functionality

req || cache-array unit
resp
update .
cau current reqQ

= Suppose a request gets a hit in the cache-array unit
= Load hit returns a word
= Store hits returns nothing (void)

= In case of a miss, the line slot must have been occupied;
all the data in the missed slot is returned so that it can
be written to the back-end memory if necessary

» When the correct data becomes available from the back
end memory, the cache-array line is updated

October 11, 2019 http://csg.csail.mit.edu/6.375 L13-26

Cache-Array Unit Interface

req || cache-array unit
resp
update .
cau current reqQ

interface CAU#(numeric type logNLines);
method Action req(MemReq r);
method ActionValue#(CAUResp) resp();
method Action update(Cachelndex index, TaggedLine newline);

endinterface

typedef struct{HitMissType hitMiss; Word ldValue;
TaggedLine taggedLine;} CAUResp;
typedef enum{LdHit, StHit, Miss} hitMiss;
typedef struct{Line line; CacheStatus status; CacheTag tag;
} TaggedLine;

October 11, 2019 http://csg.csail.mit.edu/6.375

L13-27

Cache with non-blocking hits

module mkNonBlockingCache(Cache#(LogNLines));
CAU#(LogNLines) cau <- mkCAU();

FIFO#(Word) hitQ <- mkBypassFIFO;

FIFO#(MemReq) currReqQ <- mkPipelineFIFO;

Reg#(ReqStatus) state <- mkReg(WaitCAUResp); ofate Elements
FIFO#(LReq) lineRegQ <- mkFIFO;

FIFO#(Line) lineRespQ <- mkFIFO;

Rule to process CAU Response
Rule to send a LineReq to DRAM
Rule to process a LineResp from DRAM
WaitCAUResp ->
(if miss SendReqg -> WaitDramResp) -> WaitCAUResp

method Action req(MemReqg req) ...
method ActionValue#(Word) resp() ...

o . lineR
method ActionValue#(LReq) lineReq -+ E meﬂeq lineReq
method Action lineResp(Line r) ... Cache-array amit (CAU)
lineResp
resp — 2
—] <—[E—h‘tQ | state | | current req | jiner CJ:
endmodule ' =P

October 11, 2019 http://csg.csail.mit.edu/6.375 L13-28

non-blocking hits methods

method Action req(MemReqg r);
cau.req(r);
currRegQ.enq(r);

endmethod

method ActionValue#(Word) resp;
hitQ.deq(); return hitQ.first;
endmethod

method ActionValue#(LReq) lineReq();

lineReqgQ.deq(); return lineReqQ.first();

endmethod

method Action lineResp (Line r);

lineRespQ.enq(r); _req|
endmethod

-

cache-array unit (CAU)

resp

lineReq

-1

.

‘—j - [EhitQ [state | [current req |IineResp

October 11, 2019 http://csg.csail.mit.edu/6.375

lineReq
T

lineResp
—— "

L13-29

. @_.:
cache-array unit Prpn H

— cache-array unit

module mkCAU(CAU#(LogNLines));
Instantiate SRAMs for dataArray, tagArray, statusArray;
Reg#(CAUStatus) status <- mkReg(Ready);
Reg#(MemReq) currReq <- mkRegU; //shadow of outer currReq
method Action req(MemReqg r);
initiate reads to tagArray, dataArray, and statusArray;
store request r in currReq
endmethod
method ActionValue#(CAUResp) resp;
Wait for responses for earlier requests
Get currTag, idx, wOffset from currReq.addr and do tag match
In case of a Ld hit, return the word; St hit, update the word;
In case of a miss, return the data, tag and status;
endmethod
method Action update(Cachelndex index, TaggedLine newline);
update the SRAM arrays at index
endmethod

endmodule

October 11, 2019 http://csg.csail.mit.edu/6.375 L13-30

non-blocking hits cache rules

rule waitCAUResponse

rule waitCAUResponse (state == WaitCAUResp);
let x <- cau.resp; let currReq = currReqgQ.first;
case (x.hitMiss)
LdHit : begin Word v = x.ldValue;
hitQ.enq(v); currReqgQ.deq; end
StHit : currReqQ.deq;
Miss : begin let oldTaggedlLine = x.taggedLine;
extract cstatus, evictLaddr, line from oldTaggedLine
if (cstatus == Dirty) begin // writeback required
lineRegQ.enq(LReq{op:St, laddr:evictLaddr, line:line});
state<= SendReq;
end else begin // no writeback required
extract newLaddr from currReq
lineRegQ.enq(LReqgq{op:Ld, laddr:newlLaddr, line: ldv});
state <= WaitDramResp;

end req lineReq
lineR
end E ﬂ ineReq
cache-array unit (CAU) _
endcase eso i:mamw
endrule D [hitQ | state | [current req |IineResp

October 11, 2019 http://csg.csail.mit.edu/6.375 L13-31

Blocking cache rules

rule waitDramResponse

rule waitDramResponse(state == WaitDramResp);
let line = lineRespQ.first(); lineRespQ.deq();
let currReq = currReq.first;
currReq.deq;
get idx, tag, wOffset from currReq.addr;
if (currReq.op == Ld) begin
hitQ.enqg(line[wOffset]);
cau.update(idx,
TaggedLine {line: line, status: Clean, tag: tag});
end else begin // St
line[wOffset] = currReq.data;
cau.update(idx,
TaggedLine {line: line, status: Dirty, tag: tag});

end _req E lineReq
state <= WaitCAUResp; EN
endrule resp

cache-array unit (CAU)

j) [EhitQ | state | | current req |IineResp

L

October 11, 2019 http://csg.csail.mit.edu/6.375

lineReq
_—

lineResp
— "

L13-32

Hit and miss performance

= Hit
= Directly related to the latency of L1
= 1-cycle latency with appropriate hitQ design
= Miss
= No evacuation: DRAM load latency + 2 X SRAM latency

= Evacuation: DRAM store latency + DRAM load latency +
2 X SRAM latency

Adding a few extra cycles in the miss case
does not have a big impact on performance

October 11, 2019 http://csg.csail.mit.edu/6.375 L13-33

