
Memory Systems: 
Design and Implementation

Arvind
Computer Science & Artificial Intelligence Lab

Massachusetts Institute of Technology

October 11, 2019 L13-1



Memory Technologies

§ Different technologies have vastly different tradeoffs
§ Size is a fundamental limit, even setting cost aside:

§ Small + low latency or
§ Large + high-latency

§ Can we get best of both worlds? (large, fast, cheap)

Capacity Latency Cost/GB
Register ~1K bits 20 ps $$$$

SRAM ~10 KB-10 MB 1-10 ns ~$1000
DRAM ~10 GB 80 ns ~$10

Flash* ~100 GB 100 us ~$1

Hard disk* ~1 TB 10 ms ~$0.1
I/O

subsystem

Memory
Hierarchy

Processor
Datapath

* non-volatile (retains contents when powered off)

October 11, 2019 L13-2



Implicit Memory Hierarchy

§ Programming model: Single memory, single address 
space

§ Machine transparently stores data in fast or slow 
memory, depending on usage patterns

§ CPU effectively sees large, fast memory if values are 
found in cache most of the time.

10 KB 
SRAM

X?

10 MB 
SRAM

10 GB 
DRAMCPU

L1 
Cache

Main 
memory

L2 
Cache

October 11, 2019 L13-3



Why Caches Work
§ Two predictable properties of memory accesses:

§ Temporal locality: If a location has been accessed recently, 
it is likely to be accessed (reused) in the near future

§ Spatial locality: If a location has been accessed recently,
it is likely that nearby locations will be accessed in the 
near future

October 11, 2019 L13-4



Typical Memory Access Patterns

time

address

data

stack

code

loop

local
variable
accesses

array
accesses

procedure calls

Spatial localityTemporal locality
October 11, 2019 L13-5



Caches
§ Cache: A small, interim storage component that 

transparently retains (caches) data from recently 
accessed locations

§ Processor sends accesses to cache. Two options:
§ Cache hit: Data for this address in cache, returned quickly
§ Cache miss: Data not in cache

§ Fetch data from memory, send it back to processor
§ Retain this data in the cache (replacing some other 

data)

CPU Cache Main
Memory

Address
Data

Address
Data

Processor must deal with variable 
access-time of memory 

October 11, 2019 L13-6



§ Hit Ratio:

§ Miss Ratio:

§ Average Memory Access Time (AMAT):

Cache Metrics
HR = hits

hits+misses
=1−MR

MR = misses
hits+misses

=1−HR

AMAT = HitTime + MissRatio × MissPenalty

Cache design is all about reducing AMAT

October 11, 2019 L13-7



How High of a Hit Ratio?

AMAT without a cache = 100 cycles
Latency with cache: Hit = 4 cycles; Miss = 104 cycles
What hit ratio do we need to break even?

CPU Cache Main
Memory

4 cycles 100 cycles

AMAT for different hit ratios:

100 = 4 + (1 − HR) × 100  ⇒ HR = 4%

HR=50% ⇒ AMAT = 4 + (1 − .50) × 100 = 54
HR=90% ⇒ AMAT = 4 + (1 − .90) × 100 = 14
HR=99% ⇒ AMAT = 4 + (1 − .99) × 100 = 5

With high HR caches can dramatically improve AMAT

should be easy 
to achieve

Can we  achieve 
such high HR?

October 11, 2019 L13-8



Basic Cache Algorithm (Reads)

(1-HR)

Tag Data

A

B

Mem[A]

Mem[B]

How do we “search” the cache?  

CPU

Main
Memory

On reference to Mem[X],
look for X among cache tags

HIT: X = Tag(i)
for some

cache line i

MISS: X not 
found in Tag

of any cache line

Return Data(i) 1. Read Mem[X]
2. Return Mem[X]
3. Select a line k

to hold Mem[X]
4. Write Tag(k)=X, 

Data(k) = Mem[X]
October 11, 2019 L13-9



00000000000000000000000011101000

Direct-Mapped Caches
§ Each word in memory maps into a single cache line
§ Access (for cache with 2W lines):

§ Index into cache with W address bits (the index bits)
§ Read out valid bit, tag, and data
§ If valid bit == 1 and tag matches upper address bits, HIT

§ Example 8-line
direct-mapped cache: Tag (27 bits)Valid bit Data (32 bits)

32-bit BYTE address

Index
bits

Tag
bits

Byte 
offset
bits =? HIT

0
1
2
3
4
5
6
7

October 11, 2019 L13-10



Example: Direct-Mapped Caches
64-line direct-mapped cache à 64 indexes à 6 index bits

1

1

1

1

0

1

0x000058

0x000058

0x000058

0x000040

0x000007

0x000058

0xDEADBEEF

0x00000000

0x00000007

0x42424242

0x6FBA2381

0xF7324A32

Tag (24 bits)Valid bit Data (32 bits)
0

1

2

3

4

63

… ……

Read Mem[0x400C]

HIT, DATA 0x42424242

Part of the address (index bits) is encoded in the location
Tag + Index bits unambiguously identify the data’s address

0100 0000 0000 1100

TAG:    0x40
INDEX:   0x3 
OFFSET: 0x0

Would 0x4008 hit?
INDEX: 0x2 → tag mismatch

→ MISS

October 11, 2019 L13-11



Exploiting spatial locality
§ Store multiple words per data line

§ Reduces size of tag memory!
§ Potential disadvantage: Fewer lines in the cache (more 

conflicts)

§ Example: 4-word line, 16-word direct-mapped cache

Tag (26 bits)Valid bit Line (4 words, 16 bytes)

Index bits: 2
(4 indexes)

Tag bits: 26 (=32-4-2)
Line offset bits: 2

(line size = 4)
Byte offset bits: 2 

(ensure word 
alignment)

32-bit BYTE address 0                     1                     2                    3

October 11, 2019 L13-12



Line Size Tradeoffs
§ Larger line sizes…

§ Take advantage of spatial locality
§ Incur larger miss penalty since it takes longer to transfer 

the line from memory
§ Can increase the average hit time and miss ratio

§ AMAT = HitTime + MissPenalty*MissRatio

Line Size

M
is

s 
Pe

na
lty

M
is

s 
R
at

io

Line Size

Exploits spatial locality

Few lines,
compromises
temporal locality

A
M

AT
Line Size

Increased miss penalty
and miss rate

~64 bytes

October 11, 2019 L13-13



Write Policy
1. Write-through: CPU writes are cached, but also written 

to main memory immediately; Memory always holds 
current contents

2. Write-back: CPU writes are cached, but not written to 
main memory until we replace the line.  Memory contents 
can be “stale”
§ Upon replacement, a modified cache line must first be 

written back to memory before loading the new cache 
line

§ To avoid unnecessary writebacks, a Dirty bit is added to 
each cache line to indicate if the value has been modified 
since it was loaded from memory

3. No cache write on a Write-miss: On a cache miss, 
write is sent directly to the memory without a cache write

Write-back is the most commonly used policy, 
because it saves cache-memory bandwidth

October 11, 2019 L13-14



Loop A:
Code at 
1024, 
data at 
37

Direct-Mapped Cache Problem:
Conflict Misses

Assume:
• 1024-line DM cache
• line size = 1 word
• Consider looping code, 

in steady state
• Assume WORD, not 

BYTE, addressing

Word
Address

1024
37

1025
38

1026
39

1024
37
…

Cache
Line index

0
37
1
38
2
39
0
37

Hit/
Miss

HIT
HIT
HIT
HIT
HIT
HIT
HIT
HIT

Inflexible mapping
(each address can only be 
in one cache location) à
Conflict misses!

Loop B:
Code at 
1024, 
data at 
2048

1024
2048
1025
2049
1026
2050
1024
2048

...

0
0
1
1
2
2
0
0

MISS
MISS
MISS
MISS
MISS
MISS
MISS
MISS

April 4, 2019 L15-15



N-way Set-Associative Cache
§ Use multiple direct-mapped caches in parallel to reduce 

conflict misses
§ Nomenclature:

§ # Rows = # Sets
§ # Columns = # Ways
§ Set size = #ways

= “set associativity”
(e.g. 4-way à 4 lines/set)

§ Each address maps to
only one set, but can be
in any way within the set

§ Tags from all ways are
checked in parallel

§ Fully-associative cache: Number of ways =  Number of lines
§ Any address can be in any line à No conflict misses, but expensive

8 
se

ts

4 ways

Tag Line Tag LineTag Line Tag Line

=? =? =? =?

INCOMING  ADDRESStag index

April 4, 2019 L15-16



§ Compare addr
with only one tag

§ Location A can be 
stored in exactly 
one cache line

Issue: Replacement Policy

Associativity Implies Choices

address

Fully associative
address

Direct-mapped

N
address

N-way set-associative

§ Compare addr with N  
tags simultaneously

§ Location A can be 
stored in exactly one 
set, but in any of the 
N cache lines 
belonging to that set

§ Compare addr with 
each tag 
simultaneously

§ Location A can be 
stored in any cache 
line

April 4, 2019 L15-17



Replacement Policies
§ Least Recently Used (LRU): Replace the line that was accessed 
furthest in the past

§ Works well in practice
§ Need to keep ordered list of N items → N! orderings

→ O(log2N!) = O(N log2N) “LRU bits” + complex logic
§ Caches often implement cheaper approximations of LRU

§ Other policies:
§ First-In, First-Out (least recently replaced)
§ Random: Choose a candidate at random

§ Not very good, but does not have adversarial access patterns

April 4, 2019 L15-18



Cache Design
§ Cache designs have many parameters:

§ Cache size in bytes
§ Line size, i.e., the number of words in a line
§ Number of ways, the degree of associativity
§ Replacement policy

§ A typical method of evaluating performance is by 
calculating the number of cache hits for a given set 
of cache parameters and a give set of memory 
reference sequences
§ Memory reference sequences are generated by simulating 

program execution
§ Number of hits, though fixed for a given memory reference 

pattern and cache design parameters, is extremely tedious 
to calculate (so it is done using a cache simulator)

Decreasing 
order of 
importance

October 11, 2019 L13-19



Blocking vs. Non-Blocking 
cache
§ Blocking cache

§ At most one outstanding miss
§ Cache must wait for memory to respond
§ Cache does not accept processor requests in 

the meantime
§ Non-blocking cache

§ Continuous processing of cache hits
§ Blocking processing in case N outstanding 

misses

We will discuss the implementation of 
blocking caches 

October 11, 2019 L13-20



Now we will implement a cache 

§ One-way, Direct-mapped 
§ Write-back 
§ Write-miss allocate 
§ non-blocking cache but only one outstanding 

cache miss

Back-end memory (DRAM) 
is updated only when a line 
is evicted from the cache 

Cache is updated on Store 
miss

Cache processes one 
request at a time

October 11, 2019 L13-21



Cached Memory Systems

resp

SRAM
based
cache

DRAM
based

memory

lineReq

lineResp
Processor

pc

rf req

Processor accesses are for words while DRAM 
accesses are for lines

The memory has a 
small SRAM cache 
which is backed by 
much bigger DRAM 
memory

mkDRAM and mkSRAM primitives are given:

To avoid type clutter we assume that DRAM has 64Byte (16 
word) lines and uses line addresses

DRAM dram <- mkDRAM;
SRAM#(LogNumEntities, dataT) sram <- mkSRAM;

October 11, 2019 L13-22



Memory, SRAM and DRAM 
interfaces

interface SRAM#(numeric type indexSz, type dataT);
method Action rdReq(Bit#(indexSz) index);
method Action wrReq(Bit#(indexSz) index, dataT wrData);  

method ActionValue#(dataT) resp;
endinterface

interface Memory;
method Action req(MemReq req); 
method ActionValue#(Word) resp; 

endinterface no response 
for Stores

typedef enum {Ld, St} MemOp deriving(Bits, Eq);
typedef struct {MemOp op; Word addr; Word data;} MemReq...;
typedef struct {MemOp op; LAddr laddr; Line line;} LReq...;

interface DRAM;
method Action req(LReq req);
method ActionValue#(Line) resp;

endinterface

Interfaces assume fixed sizes for memory, DRAM, line,
and addresses

Size of SRAM = 2indexSz data elements 

October 11, 2019 L13-23



Cache Interface

SRAM 
based 
cache

req

resp

lineReq

lineResp

DRAM 
based 

memory

interface Cache#(numeric type logNLines);
method Action req(MemReq req); 
method ActionValue#(Word) resp(); 
method ActionValue#(LReq) lineReq;
method Action lineResp(Line r);

endinterface

processor-side methods: 
fixed size words and 
(byte) addresses
back-side methods; 
fixed size cache lines 
and line-addresses

module mkMemory(Memory);
DRAM dram <- mkDRAM;
Cache#(LogNLines) cache <- mkNonBlockingCache;

...

Notice, the cache size does not appear in any of its interface 
methods, i.e., users do not have to know the cache size

October 11, 2019 L13-24



req

resp

lineReq

lineResp

Cache Organization

lineReqQ

lineRespQstate

§ cache-array unit encapsulates data, tag and status arrays, 
which are all made from SRAM

§ Need queues to communicate with the back-end memory
§ hitQ holds the responses until the processor picks them up
§ state and current req registers hold the request and its 

status while the request is being processed

current reqQ

cache-array unit

hitQ

October 11, 2019 L13-25

cau current reqQ



Cache-Array Unit Functionality

§ Suppose a request gets a hit in the cache-array unit 
§ Load hit returns a word
§ Store hits returns nothing (void)

§ In case of a miss, the line slot must have been occupied; 
all the data in the missed slot is returned so that it can 
be written to the back-end memory if necessary

§ When the correct data becomes available from the back 
end memory, the cache-array line is updated

October 11, 2019 L13-26

req

resp

cache-array unit

update
cau current reqQ



Cache-Array Unit Interface

interface CAU#(numeric type logNLines);
method Action req(MemReq r);
method ActionValue#(CAUResp) resp();
method Action update(CacheIndex index, TaggedLine newline);

endinterface

typedef struct{HitMissType hitMiss; Word ldValue;
TaggedLine taggedLine;} CAUResp; 

typedef enum{LdHit, StHit, Miss} hitMiss;
typedef struct{Line line; CacheStatus status; CacheTag tag;

} TaggedLine;

October 11, 2019 L13-27

req

resp

cache-array unit

update
cau current reqQ



Cache with non-blocking hits
module mkNonBlockingCache(Cache#(LogNLines));

CAU#(LogNLines) cau <- mkCAU();

FIFO#(Word)      hitQ <- mkBypassFIFO;
FIFO#(MemReq)    currReqQ <- mkPipelineFIFO;
Reg#(ReqStatus)  state <- mkReg(WaitCAUResp);
FIFO#(LReq) lineReqQ <- mkFIFO;
FIFO#(Line) lineRespQ <- mkFIFO;

method Action req(MemReq req) ...
method ActionValue#(Word) resp() ... 
method ActionValue#(LReq) lineReq ... 
method Action lineResp(Line r) ... 

endmodule

Rule to process CAU Response
Rule to send a LineReq to DRAM
Rule to process a LineResp from DRAM
WaitCAUResp -> 

(if miss SendReq -> WaitDramResp) -> WaitCAUResp

State Elements

October 11, 2019 L13-28



non-blocking hits methods
method Action req(MemReq r);

cau.req(r);
currReqQ.enq(r); 

endmethod

method ActionValue#(Word) resp;
hitQ.deq(); return hitQ.first;

endmethod

method ActionValue#(LReq) lineReq();
lineReqQ.deq(); return lineReqQ.first();

endmethod

method Action lineResp (Line r);
lineRespQ.enq(r);

endmethod

October 11, 2019 L13-29



cache-array unit
module mkCAU(CAU#(LogNLines));

Instantiate SRAMs for dataArray, tagArray, statusArray;
Reg#(CAUStatus) status <- mkReg(Ready);
Reg#(MemReq) currReq <- mkRegU; //shadow of outer currReq
method Action req(MemReq r);
initiate reads to tagArray, dataArray, and statusArray;
store request r in currReq
endmethod
method ActionValue#(CAUResp) resp;
Wait for responses for earlier requests
Get currTag, idx, wOffset from currReq.addr and do tag match
In case of a Ld hit, return the word; St hit, update the word;
In case of a miss, return the data, tag and status;
endmethod
method Action update(CacheIndex index, TaggedLine newline);
update the SRAM arrays at index 
endmethod

endmodule

req
resp

cache-array unit
update

October 11, 2019 L13-30



non-blocking hits cache rules

rule waitCAUResponse
rule waitCAUResponse (state == WaitCAUResp); 

let x <- cau.resp; let currReq = currReqQ.first;
case (x.hitMiss) 

LdHit : 

StHit : 
Miss  : begin let oldTaggedLine = x.taggedLine;

extract cstatus, evictLaddr, line from oldTaggedLine
if (cstatus == Dirty) begin // writeback required

lineReqQ.enq(LReq{op:St, laddr:evictLaddr, line:line});
state<= SendReq;

end else begin // no writeback required
extract newLaddr from currReq
lineReqQ.enq(LReq{op:Ld, laddr:newLaddr, line: ldv});
state <= WaitDramResp;

end
end

endcase
endrule

begin Word v = x.ldValue; 
hitQ.enq(v); currReqQ.deq; end
currReqQ.deq;

October 11, 2019 L13-31



Blocking cache rules 

rule waitDramResponse
rule waitDramResponse(state == WaitDramResp);

let line = lineRespQ.first(); lineRespQ.deq();
let currReq = currReq.first;
currReq.deq;
get idx, tag, wOffset from currReq.addr;
if (currReq.op == Ld) begin

hitQ.enq(line[wOffset]);
cau.update(idx,

TaggedLine {line: line, status: Clean, tag: tag});
end else begin // St

line[wOffset] = currReq.data;
cau.update(idx,

TaggedLine {line: line, status: Dirty, tag: tag});
end
state <= WaitCAUResp;

endrule

October 11, 2019 L13-32



Hit and miss performance
§ Hit

§ Directly related to the latency of L1
§ 1-cycle latency with appropriate hitQ design

§ Miss
§ No evacuation: DRAM load latency + 2 X SRAM latency
§ Evacuation: DRAM store latency + DRAM load latency + 

2 X SRAM latency

Adding a few extra cycles in the miss case 
does not have a big impact on  performance

October 11, 2019 L13-33


