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Chapter 1

Introduction: Why a new
introductory book on Digital
Design?

This chapter discusses the context and rationale for this book.
Readers keen on starting on the technical content can skip to
the next chapter.

The foundations of Digital Design, Boolean Logic and Finite State Machines (FSMs)
have not changed in more than 75 years. Numerous textbooks cover these basic concepts
adequately, so what is the justification for writing a new introductory book on this topic?
The following sections discuss how the landscape has changed, requiring changes in focus,
emphasis, scale and methodology.

1.1 Modern digital designs are extremely large and complex

Modern digital systems are the most complex artefacts ever built by man. Advances in
semiconductor technology have made it possible, in 2019, to build single chips containing
several tens of billions of transistors. Electronic systems, in turn, are built with tens to
hundreds of chips. The only way human designers can manage and control artefacts of such
staggering scale and complexity is through powerful abstraction mechanisms for expressing
designs, and powerful design automation tools that render such designs into silicon (actual
hardware).

In introductory logic design courses it is common to use small contrived examples to
motivate sequential circuits, like a controller for a set of traffic lights or a clothes-washing
machine. The worst aspects of such an approach is that it leads to a dead end; students do
not know what do with this knowledge.

Today, it should be (and is) feasible for students in an introductory digital design class
to design and build simple microprocessors, an idea which would have seemed totally insane
50 years ago.

1-1
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Although the design of small microprocessors has appeared in introductory digital design
courses in the last few decades, the methodology is still old school: we teach students first
how to design the “datapath”, and then how to orchestrate data on it by controlling various
muxes and register enable signals. Most students have difficulty connecting the fundamental
concepts of sequential machines to the resulting hardware of microprocessors.

1.1.1 Modularity and compositionality are required for large, complex,
evolving systems

The best way for human designers to tackle large complex systems is using modularity and
compositionality. Starting with small, basic, often single-function modules (“primitives”),
one should be able to design a more interesting module with more complex behavior. Then,
just based on a summary description of this module and forgetting internal details, we
should be able to use it in an even more complex design, and also to reuse it across diverse
complex designs. Or, to look at it in a top-down manner, modules are composed of lower-
level modules which, in turn, are themselves composed of even lower-level modules, and so
on. At any level, we should not have to know details of the lower levels, i.e., we should
be able to summarize, or abstract the properties of lower-level modules into just what is
needed for the current level.

Current Hardware Design Languages (HDLs) such as Verilog, SystemVerilog and VHDL,
and even modern HDLs like Chisel, do indeed have a “module” construct from which one
builds hierarchically structured designs. The problem is that, while their modularity and
compositionality is fairly strong regarding structure (how components are wired together),
they are very weak on compositionality of behavior (how is the behavior of a module ex-
plained systematically as a composition of the behaviors of its sub-modules).

This is a fundamental problem with the older methods of teaching Sequential Machines,
based on the mature theory of Finite State Machines (FSMs). A module in Verilog is a
clocked synchronous FSM. When used in a parent module, the ensemble is also an FSM,
just a larger FSM (this is a well known theoretical property of FSMs—composition of FSMs
produces an FSM). Unfortunately, this is not a modular description of behavior—it is hard
to reason about the outer FSM without “plugging in” the inner FSM to produce the larger
FSM. The usual techniques for describing small FSMs, such as state transition diagrams,
simply do not scale as we get larger and larger FSMs.

This is also a problem that affects evolution and refinement of designs. In real life, one
frequently has to change a design—to fix bugs, to improve some metric like performance
or area, or to add some previously unanticipated functionality. A change to a module may
mean that its behavior now is a different FSM. This can have a wide-ranging ripple effect
because, by definition of FSM composition, the FSM for any module that uses this changed
module has also changed. There is no systematic way to help isolate these changes.

When module M1 uses a sub-module M2, it is often the case that these modules are
designed by different people at different times. The designer of M1 does not want to, nor
should they need to know about all the internal details of M2. How should the designer of
M2 communicate a description of M2 to the designer of M1, that contains just enough and
no more detail than is necessary? Describing the full FSM for M2 is too detailed, since it
may contain a lot of internal state and have many internal state transitions, and in some
sense effectively exposes the internal implementation. So, with HDLs today, designers resort
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to diagrams of waveforms on the input and output wires of their module, accompanied by
much English text to describe behavior. These descriptions are notoriously incomplete and
error-prone, and written in a variety of inconsistent styles.

There is no systematic way to abstract or to summarize the behavior of the inner FSM
and to just use the summary while considering the behavior of the outer FSM. This issue
of compositionality of behavior is not discussed systematically in any text book today.

A better, more scalable and more tractable approach would be if large digital circuits are
viewed as a composition of many conceptually separate sequential machines (each module
a separate sequential machine), which cooperate with each other in well-behaved ways to
deliver the required functionality. The cooperation should be entirely characterized by well-
structured interfaces with well-structured interface behavior. We can make internal changes
to a module as long as this interface behavior is preserved. Thus, we need a systematic
vocabulary and a theory of how to characterize interface behaviors.

1.1.2 We need appropriate computation models

When studying computational machines in Computer Science, one encounters a sequence
of increasing expressive power: FSMs, stack machines, and Turing Machines. A modern
computer system, technically, is just an FSM since it has a finite number of states (billons
of bits, but still finite). But it is neither insightful nor productive to think of it in those
terms. It is much more useful to view it as a Turing Machine.

Similarly, although each of our hardware designs is still technically a single (often giant)
FSM, it will be much more insightful and productive to view them as collections of coop-
erating sequential machines that can be independently designed and verified, with simple
and well-defined cooperation protocols.

1.1.3 We need HDLs suitable for formal verification

By “formal verification” we mean automatic proofs of correctness of a system, guaranteeing
that its behavior meets expectations. For example, in a traffic-light controller we would want
to prove that it never gets into a state where it is displaying Green for two intersecting flows.
For an elevator (lift) controller we may want to prove that it never gets into a state where
the elevator is moving with its door open. One can similarly imagine correctness properties
for self-driving cars, or trains or planes, or medical devices that control dosage or radiation
exposure. As we use computers more and more to control physical artefacts, it becomes
increasingly important to prove correctness.

Experience in the software field has shown that formal proofs of correctness are facili-
tated:

• by higher-level languages for design;
• by design language with cleaner semantics that have been created with formal verification

in mind from the beginning;
• by design languages that support abstraction, modularity, and compositionality.

Experience also shows that clean, high-level design languages facilitate manual and auto-
mated debugging. Unfortunately most existing HDLs fail to meet these criteria.
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1.2 Why software engineers should learn about hardware de-
sign

In the past, teaching software and hardware design has often been done in disjoint silos, often
coinciding with the unfortunate separation of Computer Science and Electrical Engineering
departments. This disjointness is becoming increasingly untenable.

In principle, any algorithm can be implemented either in software or in hardware, i.e., it
is an implementation choice. Software of course provides maximum flexibility and change-
ability, and hardware can have a high up-front cost, but a direct hardware implementa-
tion:

• is often one to three orders of magnitude faster (10x to 1,000x), due to much higher
levels of parallelism, removal of layers of interpretation, and extensive specialization,
and
• often uses two to four orders of magnitude less energy (100x to 10,000x), due to removal

of layers of interpretations and extensive specialization.

This is becoming an increasingly important issue today.

In 2019 we are approaching (or have reached) the limits of Moore’s Law (ability to
double the number of transistors on a chip about every two years) and Dennard Scaling
(power consumption stays proportional to area). Consequently, it has become critical to
move more and more critical algorithms from software implementations into direct hardware
implementations. Your cell phone likely has many such purposeful hardware modules which,
if done in software, would have killed your battery in a few minutes. Much of modern
graphics computation and neural-net AI computation is done with special hardware. As we
move towards the “Internet of Things”, many devices will require direct hardware assists
to stay within very limited power budgets. Modern Supercomputing (High Performance
Computing) would not be possible without hardware accelerators. In other words, many
major software applications have an increasing reliance on hardware assists.

Software engineers may view hardware design as the activity of designing chips, a daunt-
ing task, totally outside their domain of expertise or interest. However, in 2019, we now
have Field Programmable Gate Arrays (FPGAs) using which we can create a hardware
implementation in a few hours in the comfort of one’s own office. Amazon already provides
cloud-based servers that have attached FPGAs boards that software programmers are using
today on a daily basis. Intel is creating new CPUs with FPGAs tightly integrated into x86
CPUs (for which they recently acquired Altera, one of the major FPGA vendors).

Thus, a modern software application designer needs to consider speed and power bud-
gets, and whether it is productive to move parts of the application into direct hardware
implementation, using FPGAs or custom chips. The software application designer needs to
be concerned about the architecture of such hardware-software ensembles, and in particular
how software and hardware components cooperate to solve a problem. Technically, we say
that system design is evolving towards hardware-software codesign.

This course provides a minimum background in hardware design for the software engineer
to address these modern challenges.1

1Ironically, the latest revision of ACM 2013 CS education curriculum guidelines devotes exactly zero
hours of training in computer hardware, while making it an entirely upper-division subject!
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1.3 Is so-called “High-Level Synthesis” (HLS) the answer?

In the last decade, a radically different approach to hardware design called High-Level
Synthesis (HLS) has gained much attention. Here, one specifies an algorithm in C or C++,
and an HLS tool converts that into implementation in hardware. One can think of it as an
alternative compiler which, instead of targeting machine code for some instruction set like
x86 or ARM, instead targets hardware logic gates and flipflops.

The commercial appeal of HLS is undeniable, especially for designing hardware acceler-
ators for signal-processing algorithms. If the same language can be used for both hardware
design and software implementations, it should reduce the cost of system development.
Software engineers may find HLS more approachable because one codes in C or C++.

The reality is more complicated: the style of C one writes for hardware synthesis is
quite different compared to the style of C one writes for software programming. Unless
programmers have a good hardware model in their head, and know how to use the extra-
lingual annotations provided by the HLS tool to express parallelism, their code is unlikely
to produce useful hardware.

In general, HLS does reasonably well for algorithms that can be expressed as for-loops
over dense rectangular arrays, but not for much else. The central problem is that complex
hardware requires sophisticated understanding of hardware microarchitectures, and HLS
tools are not good for specifying this.

1.4 The new approach in this book

In this book we teach digital design with a new approach addressing all the concerns listed
above.

Modularity and compositionality are addressed using a new semantic model for hard-
ware, that of cooperating sequential machines. Each module is a sequential machine, and a
collection of modules cooperate through well-defined and well-structured behavioral inter-
faces. At the heart of behavioral descriptions are Guarded Atomic Actions. These semantics
and the associated methodology scales well, from small designs (like traffic-light controllers)
to very large designs (like the most advance high-performance microprocessors and hardware
accelerators for neural networks and signal-processing algorithms).

Our vehicle for the exposition is BSV, a high-level hardware design language (HLHDL)
that supports this way of thinking directly in the language semantics.2 BSV incorporates
ideas on types and abstraction and behavior from advanced software programming lan-
guages, notably:

• types, functions and functional programming from the modern functional programming
language Haskell,
• object-orientation from object-oriented languages, and

2High-level semantics can always, in principle, be coded in a lower-level language by adopting a suitable
coding discipline and style, but this is not really practical at scale. One could do object-oriented programming
in C or Assembly Language, but it is vastly more convenient, understandable, changeable, correct and
automated in C++. Similarly, the semantic concepts in BSV can, in principle, be manually coded in an
existing HDL, but it is not practical at scale.
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• atomic transactions from multithreaded and distributed programming languages.

BSV’s module hierarchy mechanism, and its purely method-based communication between
modules should be very familiar to software engineers who know object-oriented program-
ming. Objects are connected to each other by atomic rules, where a rule is simply a
composition of method calls. A rule must be executed atomically, that is, either each of its
method calls is executed or none of them is executed. All the rules are active all the time,
however, if two rules conflict then only a non-conflicting subset of rules can be executed, ie
affect the state. This idea of atomic transactions should be familiar to software engineers
who have had exposure to distributed systems, multithreaded or multiprocessing programs,
or operating systems. In fact, atomicity of BSV rules and the methods they invoke in many
ways makes the treatment of concurrency more powerful, and easier to use, than in many
object-oriented software languages.

A compiler for BSV, bsc, translates our designs into lower-level hardware primitives in
the older, more low-level HDL Verilog.3 In BSV a rule execution is compiled into Verilog
code that always completes in one clock cycle and after the execution of a rule or rules
the state of the system changes. Just like in a synchronous sequential machine, the state
of system changes only at clock edges. This generated Verilog can be simulated on a
workstation (using a any Verilog simulation tool such as Verilator), or processed further by
other tools into gates and transistors and ultimately into FPGAs or ASIC silicon.

In addition to BSV, the book relies on Yosys, a hardware synthesis tool that takes bsc’s
output Verilog into gates, so the student can develop insight into the actual hardware cost
of a design (measured in gates and time delay). Without such a tool it would be difficult
to quantify the advantage of one hardware design over another.

BSV hardware descriptions using modules with guarded interfaces and atomic rules are
significantly higher level or more abstract than typical hardware descriptions written in
Verilog, and yet the synthesized hardware from such description is generally as efficient as
hand coded RTL.

1.5 Traditional topics deliberately dropped

Teaching software design used to begin with Assembly Language programming, a long time
ago, but we have long since moved away from that. This is not to say that Assembly
Language programming is no longer important, just that it is no longer central to the
theory and practice of modern sofware system design. Nowadays tools (compilers) manage
the generation of Assembly code, calling conventions, register optimization, etc. Specialists
who build those tools of course still study Assembly Language programming.

Similarly, in teaching hardware design, it is time to move away from obsessing over
Truth Tables, State Transition Diagrams, Karnaugh Maps, state-machine minimization,
logic optimization, and so on. Besides, logic optimization today is a complex multi-axis
problem, looking at area, speed, power, latency, throughput, and other considerations; it
requires a lot of mathematical sophistication, and it is too tedious and unproductive to do
these by hand. Today, tools do these jobs for us, and specialists who build those tools still

3Conceptually, Verilog is bsc’s “Assembly Language”, by analogy to software compilers that compile
C/C++ to Assembly Language.
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need to study those topics. The modern hardware designer needs to have general sense of
what these tools do, but need not be an expert.

We also drop any discussion of semiconductors and semiconductor technology (e.g.,
CMOS). Today, most modern hardware designers assume higher-level building blocks such
as gates, flipflops, memory cells and so on. FPGA designers work with LUTs (lookup
tables), flipflops, BRAMs and DSPs as primitives. ASIC designers uses vendor-supplied
standard-cell libraries and memory compilers. It is important for a designer to understand
the area-delay-power properties of his or her design but this does not require understanding
how primitive design elements are implemented in CMOS. A modern digital designer deals
with designs that require hundreds of thousands, if not millions, of gates to implement
and can’t afford to focus on the implementation of individual gates. Fortunately, hardware
synthesis tools do all the low-level work for us.

1.6 Audience for this book, and their possible futures

This book has been written for MIT’s introductory hardware design course (6.004), which
teaches both digital design and computer architecture. This book is intended for the first
half (digital design). 6.004 also has a significant laboratory component to cement the ideas
in this book. Students create designs in BSV and execute them initially in simulation but
then also on off-the-shelf FPGA boards.

At MIT, this course is required for all students of Electrical Engineering and Computer
Science. In both cases, it assumes no hardware background in circuits or digital electronics.
It is not surprising that EE majors take this course, and they may go on to deeper studies
of computer architecture, hardware synthesis, VLSI, arithmetic circuits, communication or
storage hardware, hardware systems, and so on.

For many CS majors, this may be the only course they take on hardware design, but
they go into software fields with a solid understanding of the tradeoffs between implementing
algorithms in software versus hardware, and are armed with the knowledge of how and when
to exploit hardware implementations. As argued earlier, today it is very important even for
software engineers to have this knowledge and perspective.

This book may be useful at other universities with similar curriculum goals.

This book will also be useful for those who already know or are experienced in hardware
design using some other HDL such as Verilog, SystemVerilog, VHDL, or Chisel, or even
HLS, and are curious about BSV and our approach. These readers may wish to start at
Chapter 6, skip Chapter 7, and read the remaining chapters.
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Chapter 2

Boolean Algebra

In elementary algebra, the values of the variables are numbers, and the primary operations
are addition and multiplication. In Boolean algebra, the values of the variables are 1 (true)
and 0 (false) and the main operations are conjunction (·), disjunction (+), and negation
(∼). Boolean algebra has been fundamental in the development of digital electronics and
is supported by all modern programming languages. It is also used in set theory, logic, and
statistics.

2.1 Boolean Operators

2.1.1 Basic Boolean Operators

The basic operations of Boolean algebra are:

• AND (conjunction)

• OR (disjunction)

• NOT (negation)

Multiple notations can be used to specify Boolean operations. The three primary nota-
tions are:

1. Truth tables

2. Pictorial representations, also known as gates

3. Mathematical expressions

Truth tables enumerate all input combinations and provide the resulting output for each
set of inputs. The truth tables of Table 2.1 show that the AND of two Boolean variables
returns true only when both inputs are true and false otherwise. The OR of two Boolean
variables returns true if at least one of the inputs is true and false if both inputs are false.
The NOT of a Boolean variable returns true if the input was false, and false if the input was
true.

2-1
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Operator Truth Table Pictorial Form Mathematical Expression

AND

a b s

0 0 0
0 1 0
1 0 0
1 1 1

a·b

OR

a b s

0 0 0
0 1 1
1 0 1
1 1 1

a+b

NOT

a s

0 1
1 0

∼a

Table 2.1: Definitions of AND, OR, and NOT Boolean Operators

A Mathematical, or Boolean, expression is built up from variables and the constants 0
and 1, using the operations ·, +, and ∼.

Any complex Boolean expression, also known as a Boolean function, can be described
using a truth table or pictorially, as an acyclic interconnection of Boolean operators.

2.1.2 NAND, NOR, and XOR Boolean Operators

NAND, NOR, and XOR are additional Boolean operators that are frequently used. Their corre-
sponding truth table, gate, and Boolean expressions are shown in Table 2.2.

The XOR truth table describes the behavior of the XOR operator which is that it produces
a 1 when either (a=0) and (b=1), or (a=1) and (b=0). Hence, a⊕ b =∼a·b+ a·∼b.

All complex gates, including the NAND, NOR, and XOR gates can be expressed using only
AND, OR, and NOT gates as shown in Table 2.3. The NAND and NOR are straightforward to
see. The XOR operator is defined to be true when either (a=0) and (b=1) which is covered
by the upper AND gate, or when (a=1) and (b=0) which is covered by the lower AND gate.
Taking the OR of the two AND gates thus results in the functionality of an XOR operator.

2.1.3 Universal Set of Operators/Gates

A set of operators or gates is considered universal if any boolean function can be describes
using only those gates. Some examples of universal sets are: {AND, OR, NOT}, {NAND},



©2019 Arvind; All Rights Reserved 2-3

Operator Truth Table Pictorial Form Mathematical Expression

NAND

a b s

0 0 1
0 1 1
1 0 1
1 1 0

∼(a·b)

NOR

a b s

0 0 1
0 1 0
1 0 0
1 1 0

∼(a+b)

XOR

a b s

0 0 0
0 1 1
1 0 1
1 1 0

a⊕ b

Table 2.2: Definitions of NAND, NOR, and XOR Boolean Operators

Table 2.3: NAND, NOR, and XOR using basic gates

and {NOR}. Section 2.2.1 described how to convert any truth table to a sum of products
expression. By definition, a sum of products expression consists of only the AND, OR, and
NOT operators, thus proving that the set AND, OR, NOT is universal.
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Figure 2.1 provides a pictorial proof that using only a NAND, or only a NOR, operator, one
can produce NOT, AND, and OR operators. Therefore, the sets NAND and NOR are universal as
well.

Figure 2.1: Universal Sets of Operators

2.2 Truth Tables

Truth tables can be used to define any Boolean function. For example, consider a function
of three inputs a, b, and c and single output f, as shown in Figure 2.4. The truth table of
Table 2.5 defines this function by specifying the value of the output for every possible input
combination.

Table 2.4: Function of 3 inputs

a b c f

0 0 0 1
0 0 1 0
0 1 0 0
0 1 1 0
1 0 0 1
1 0 1 1
1 1 0 0
1 1 1 0

Table 2.5: Truth table for sample func-
tion

2.2.1 Truth Table to Boolean Expression

A sum-of-products (SOP) boolean expression can be generated for any truth table by writing
a product term using only ANDs and NOTs for each row in which the output is a 1, and then
writing the sum of all such product terms.

For our sample truth table, this would lead to the Boolean expression:
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Figure 2.2: Two Output Function

f = (∼a)·(∼b)·(∼c) +a·(∼b)·(∼c) +a·(∼b)·c

An SOP expression generated this way is unique and is said to be the SOP normal form.

2.2.2 Boolean Expression to Truth Table

There is a unique truth table corresponding to every Boolean expression. To produce the
truth table, enumerate all the combinations of input values, then evaluate the expression
on each set of input values and record the answer in the output column of the truth table.

For example, the Boolean expression:

f = (∼b)·(∼c+a)

returns 1 when both (∼b) and (∼c+a) evaluate to 1. This occurs when b = 0 and either
c = 0 or a = 1. Thus, this Boolean expression produces the same truth table as the one in
Table 2.5.

2.2.3 Multi-output Truth Table

Sometimes, we specify multiple outputs for each set of input values as shown by the block
diagram of Figure 2.2.

To avoid writing a new truth table for each output, a truth table can have multiple
output columns as shown in Table 2.6. s1 and s2 are both outputs of the three inputs a, b,
and c.

a b c s1 s2

0 0 0 1 0
0 0 1 0 0
0 1 0 0 0
0 1 1 0 1
1 0 0 1 1
1 0 1 1 0
1 1 0 0 1
1 1 1 0 0

Table 2.6: Sample truth table with 3 inputs and 2 outputs



2-6 Ch 2: Boolean Algebra

2.3 Laws Of Boolean Algebra

2.3.1 Boolean Algebra Axioms

identity a·1 = a a+0 = a

null a·0 = 0 a+1 = 1

negation ∼0 = 1 ∼1 = 0

Table 2.7: Boolean Algebra Axioms

Table 2.7 lists the three basic Boolean Algebra axioms known as identity, null, and
negation. The identity axiom shows that if you AND any variable with a 1, you get back the
variable. Similarly, if you OR any variable with a 0, you get back the variable itself. On the
other hand, the null axiom shows that if you AND any variable with a 0, that will always
return 0. Similarly, if you OR any variable with a 1 that will always return a 1. Finally,
the negation axiom says that negating a 0 produces and 1 and negating a 1 produces a 0.

These axioms can be derived directly from the definitions of the AND, OR, and NOT Boolean
functions.

2.3.2 Laws of Boolean Algebra

Table 2.8 provides a full list of laws that apply to Boolean Algebra. These laws can be
derived from the definition of the AND, OR, and NOT functions and their axioms. They can
be used to simplify complex Boolean expressions into simpler ones.

identity a·1 = a a+0 = a

null a·0 = 0 a+1 = 1

negation (∼0) = 1 (∼1) = 0

commutative a·b = b·a a+b = b+a

associative a·(b·c) = (a·b)·c a+(b+c) = (a+b)+c

distributive a·(b+c) = (a·b)+(a·c) a+(b·c) = (a+b)·(a+c)

complement a·(∼a) = 0 a+(∼a) = 1

absorption a·(a+b) = a a+(a·b) = a

reduction (a·b)+(a·(∼b)) = a (a+b)·(a+(∼b)) = a

DeMorgan’s Law ∼(a·b) = (∼a)+(∼b) ∼(a+b) = (∼a)·(∼b)

Table 2.8: Laws of Boolean Algebra

The commutative and associative laws are straightforward and are analogous to their
mathematical counterparts. The next Boolean property states that the distributive property
holds for a·(b+c) as well as a+b·c. Note that the latter holds true for Boolean algebra but
not for integer algebra.

The complement property is very useful in simplifying complex Boolean expressions. It
states that taking the AND of a and ∼a always results in 0 or false, whereas taking the OR

of a and ∼a always results in 1 or true.

Absorption and reduction enable further simplification of complex Boolean expressions
by noting that the value of b does not affect the value of the entire expression. The
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absorption property states that a·(a+b) = a because if a = 0 the left product term (a)
is 0 which ANDed with anything returns 0, whereas if a = 1 the right product term (a+b)

is 1 making the entire expression equal to a which is 1. So the entire expression can be
simplified into a. The converse of the absorption property where AND is replaced with OR

and vice-versa can be explained in the same manner. The reduction property states that
(a·b)+(a·∼b) = a because a appears in conjunction with both b and ∼b. Once again the
same holds true for the converse of this statement.

The last law is DeMorgan’s Law which is most easily understood by considering all input
and output combinations for the left hand side and the right hand side of the expression
and noting that they are always equal. For example, if both a=1 and b=1, then the left
hand side is ∼(a·b) which is 0, and the right hand side is (∼a)+(∼b) which is also 0.

2.3.3 Principle of Duality

The dual of a Boolean expression is obtained by swapping all 0’s and 1’s as well as all
ANDs and ORs. The principle of duality states that if expressions e1 and e2 are equal, then
the dual of these expressions is also equal. In other words, (e1 = e2) implies (dual(e1) =
dual(e2)).

Thus, for example, if for all a, a·1 = a then a+0 = a as well. Similarly, if for all a,
a·(∼a) = 0 then a+(∼a) = 1. Note that the NOT operator is not replaced when producing
the dual of the expression.

The two columns in the table of Boolean algebra laws, Table 2.8, are duals of each other.
Hence, one only needs to remember one of the columns and then produce the other using
the duality principle.

2.4 Boolean Simplification

The laws of Boolean algebra can be divided into two categories: those that reduce Boolean
expressions and those that rearrange Boolean expressions. Table 2.9, indicates which rules
can be used to reduce complex Boolean expressions into simpler ones as well as which rules
can be used to rearrange the Boolean expression so that it may become easier to then apply
one of the reduction laws.

2.4.1 Minimal Sum Of Products

A minimal sum-of-products is a sum-of-products expression that has the smallest pos-
sible number of AND and OR operators. Below is an example of using the reduction law to
convert a complex sum-of-products (SOP) expression into a minimal SOP.

Unlike the normal form, a minimal SOP is not necessarily unique (i.e., a function may
have multiple minimal SOPs).
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Reduce

identity a·1 = a a+0 = a

null a·0 = 0 a+1 = 1

negation (∼0) = 1 (∼1) = 0

complement a·(∼a) = 0 a+(∼a) = 1

absorption a·(a+b) = a a+(a·b) = a

reduction (a·b)+(a·(∼b)) = a (a+b)·(a+(∼b)) = a

Rearrange

commutative a·b = b·a a+b = b+a

associative a·(b·c) = (a·b)·c a+(b+c) = (a+b)+c

distributive a·(b+c) = (a·b)+(a·c) a+(b·c) = (a+b)·(a+c)

DeMorgan’s Law ∼(a·b) = (∼a)+(∼b) ∼(a+b) = (∼a)·(∼b)

Table 2.9: Laws of Boolean Algebra

Figure 2.3: Reducing complex SOP expression to a minimal SOP

2.4.2 Common Subexpression Optimization (CSE)

We can often reduce the number of operators/gates by factoring out common subexpressions.
For example, consider the minimal SOP

F = A·C +B·C +A·D +B·D

As is, it requires 4 AND operators and 3 OR operators. It can be rewritten as the following
Boolean expression:

F = (A+B)·C +(A+B)·D

The common term (A+B) can be replaced with the variable X to produce

F = X·C +X·D where X = A +B

This new expression requires 2 AND operators and 2 OR operators. Pictorially, this new
representation of the Boolean expression F is shown in Figure 2.4. Thus by using the
common subexpression optimization the complexity of the Boolean expression has been
reduced significantly. Note that using the common subexpression optimization turns a
boolean expression from a tree into a directed acyclic graph.

2.4.3 Truth Table With Don’t Cares

Another way to reveal simplification is to rewrite the truth table using don't cares (– or X)
to indicate when the value of a particular input is irrelevant in determining the value of the
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Figure 2.4: Common subexpression optimization of Boolean expression

a b c y

0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 1
1 0 1 0
1 1 0 1
1 1 1 1

Table 2.10: Fully specified truth table

a b c y product term

0 X 0 0
1 X 0 1 → (∼C)·A
0 0 X 0
1 1 X 1 → C·B
X 0 1 0
X 1 1 1 → B·A

Table 2.11: Truth table with don’t cares

output.

For example, consider the truth table of Table 2.10. Table 2.11 is an alternate rep-
resentation for this same table using don't cares. For example, both input 000 and 010
produce a 0 output, thus both of the rows corresponding to these input combinations can
be combined into a single row that includes a don't care. From this representation, it is
more straightforward to see that the terms corresponding to inputs 100 and 110, or product
terms A·(∼B)·(∼C) and A·B·(∼C), can be reduced to the simpler product term (∼C)·A.

Note that some input combinations (e.g., 000) are matched by more than one row in the
don't care truth table. For a well-defined truth table, all matching rows must specify the
same output value!

2.5 Satisfiability

A complex Boolean expression is said to be satisfiable if there exist some input combination
that produces a true output. If no such input combination exists, then the expression is
unsatisfiable. For example, consider the expression a·(∼a). Regardless of the value of a,
this expression cannot produce a true output. So this expression is considered unsatisfiable.
On the other, the expression (a +∼b)·c ·b is satisfiable by the input 111.



2-10 Ch 2: Boolean Algebra

2.6 Take Home Problems

Take Home Problem 1

Write down a sum-of-products (SOP) boolean expression in normal form for the following
truth table.

a b c s

0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 1
1 0 1 0
1 1 0 1
1 1 1 0

Table 2.12: Take Home Problem 1

Take Home Problem 1 Solution

s = (∼a)·b·c+ a·(∼b)·(∼c) + a·b·(∼c)

Take Home Problem 2

Generate the truth table corresponding to the following boolean expression.

s = (∼a)·b·c+ a·(∼c)

Take Home Problem 2 Solution

a b c s

0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 1
1 0 1 0
1 1 0 1
1 1 1 0

Table 2.13: Take Home Problem 2 Solution

More Take Home Problems

• Boolean simplification
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• Boolean equivalence checking

• Satisfiable expressions

• Universal sets of operators
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Chapter 3

Binary Number Systems

We are all familiar with the representation of numbers in base-10 from daily life experience
and mathematics. We also learn basic arithmetic operations like addition, subtraction and
multiplication on numbers represented in base-10 notation. In the field of computer science,
numbers are represented in binary, or base-2 representation, so that they can be encoded
using only 0’s and 1’s. Basic arithmetic operations are also carried out directly in binary
without numbers ever being converted back to base-10 representation. We will describe
binary arithmetic in this chapter.

3.1 Encoding Positive Integers in Binary

To interpret the value of a decimal number, such as 132, we treat the right most bit as
the 1’s (or 100) value, the next bit to the left as the 10’s (or 101) value, and the left bit
as 100’s (or 102). This leads to the interpretation of the number as 1 hundred plus 3 tens
plus 2 ones or 132. To determine the value of a positive binary number, we use the same
methodology replacing the base 10 with the base 2. So the binary number 110 is equal to
0 ∗ (20) + 1 ∗ (21) + 1 ∗ (22) = 0 + 2 + 4 = 6 in decimal. To avoid confusion, we prepend
binary numbers with the prefix 0b to indicate that the number represents a binary number
rather than a decimal number.

More generally, in a binary representation (in right-to-left order), bit i is assigned weight

2i. The value of an N-bit number is given by the formula v =
N−1∑
i=0

2ibi. Thus, an N-bit

string of 0’s represents 0 while an N-bit string of 1’s represents 2N −1 which is the maximal
value representable as an N-bit binary number.

Often we diagram such a representation, as shown in Figure 3.1, as an array of binary
digits whose right-most bit b0 is the least significant digit. This example diagrams a 12-bit
binary representation of the (decimal) value 2000, as may be verified via the formula above.
V = 0 ∗ (211) + 1 ∗ (210) + 1 ∗ (29) + ... = 1024 + 512 + 256 + 128 + 64 + 16 = 2000.

Long strings of bits are tedious and error-prone to transcribe, so we often use a higher-
radix notation, choosing the radix so that it is simple to recover the original bit string.
A popular choice is to use base-16, called hexadecimal. Each group of 4 adjacent bits is
encoded as a single hexadecimal digit.

3-1
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Figure 3.1: Encoding Positive Integers

Table 3.1: Hexadecimal Values

Table 3.2: Converting Binary to Hex-
adecimal

Figure 3.1 shows the mapping of 4-bit binary numbers into hexadecimal characters which
range from 0-9 followed by the letters A-F in upper or lower case. Thus, the binary number
of Figure 3.1 would be encoded as 0x7D0 in hexadecimal as illustrated in Figure 3.2. Note
that in order to distinguish between binary and hexadecimal numbers in all cases, binary
numbers are prepended with 0b and hexadecimal numbers are prepended with 0x. If the
number is not prepended, then one assumes that it is using binary representation.

3.2 Binary Addition and Subtraction

Addition and subtraction in base 2 are performed just like in base 10 as illustrated by the
example in Figure 3.2. Just as in base 10 addition adding 4 to 7 results in a 1 in the sum
and a carry of 1 into the next position, similarly adding 1 to 1 in binary results in a sum of
0 and a carry of 1. When subtracting 7 from 4, we need to borrow 10 from the next column
over, and when subtracting 1 from 0, we need to borrow a 2 from the next column over. In
both cases, this results in decrementing the next column by 1 to account for this borrow.

A problem occurs when we try to subtract a larger number from a smaller number as
shown in Figure 3.3. Initially, our procedure works for the first two columns, but when we
attempt to subtract the third column, 0 minus 1 results in 1 after borrowing from the next
column over. However, in this example there is no next column over so it is unclear where
we are borrowing from. The problem occurs because presently, we don’t yet have a way of
representing negative binary numbers.

3.3 Encoding Negative Binary Numbers

3.3.1 Binary Modular Arithmetic

If we use a fixed number of bits, addition and other operations may produce results outside
the range that the output can represent (up to 1 extra bit for addition). This is known as
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Figure 3.2: Binary Addition and Subtraction

Figure 3.3: Attempt to Subtract Five from Three

overflow. A common approach for dealing with overflow is to ignore the extra bit. Doing
this gives rise to modular arithmetic where using N-bit numbers, the resulting value is
equivalent to the operation followed by mod 2N . Visually, one can think of this as wrapping
the numbers around as shown in Figure 3.3 where addition is performed by moving clockwise
around the circle and subtraction is performed by moving counter-clockwise. Thus, if you
have a 3-bit positive binary number, the smallest number is 0b000 (0) and the largest is
0b111 (7). Adding 1 to 7 results in wrapping back around to 0b000 because (1 + 7) mod

2N = 0.

Table 3.3: Binary Modular Arithmetic Table 3.4: Modular Arithmetic Example
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3.3.2 Sign-Magnitude Representation

We use sign-magnitude representation for decimal numbers, encoding the number’s sign
(using “+” and “-”) separately from its magnitude (using decimal digits). If we consider
using this same approach for binary numbers, we could encode positive numbers using a
0 in the most significant position and negative numbers using a 1 in the most significant
position, as shown in Figure 3.4.

Figure 3.4: Sign Magnitude Representation of Binary Numbers

The problem with this representation is that first of all it results in two representations
for the value 0 (+0 and -0). The other issue is that circuits for addition and subtraction
are different and more complex than with unsigned numbers.

Instead, we can derive a better encoding known as two’s complement encoding. This
encoding simply relabels some of the digits to represent negative numbers while retaining
the nice properties of modular arithmetic, as shown in Figure 3.5.

Figure 3.5: Two’s Complement Encoding of Binary Numbers

More precisely, in two’s complement encoding, the high-order bit of the N-bit represen-
tation has negative weight while all other bits have a positive weight so the value of a 2’s

complement number is v = −2N−1bN−1 +
N−2∑
i=0

2ibi as illustrated in Figure 3.6.

Figure 3.6: Two’s Complement Encoding Formula
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Using this formula, one can derive the most negative number that can be represented
using N bits to be 10...0000 = −2N−1, and the most positive number 01...1111 = +2N−1−1.
A couple of properties worth noting are that all negative two’s complement numbers have
a “1” in the high-order bit. Also, regardless of the width of your representation, if the bits
are all 1, then the value of the number is -1.

3.3.3 Two’s Complement Arithmetic

To negate a number (i.e., compute -A given A) in two’s complement, we invert all the
bits and add one. Figure 3.7 illustrates a proof for why this is the case. It begins with
a mathematically correct equation which states that −A + A = 0 = −1 + 1. A is then
subtracted from both sides of the equation to arrive at the equation that states that −A =
(−1 − A) + 1. Next, we evaluate the expression (−1 − A) by converting the values to
binary where −1 = 0b11...11 and A = An−1An−2...A1A0. We then subtract the A from -1
beginning with the right most bit. If A0 = 0, then 1−A0 = 1. If A0 = 1, then 1−A0 = 0.
In both cases 1 − A0 =∼A0. The remaining bits can be subtracted in the same manner
arriving at the fact that (−1− A) =∼An−1∼An−2...∼A1∼A0. Plugging this back into our
equation for -A, we find that -A is equivalent to flipping all of the bits of A and adding 1.

Figure 3.7: Negating Two’s Complement Proof

In order to compute A − B, we can simply use addition and compute A + (−B). This
implies that we can use the same circuit to both add and subtract!

Let’s consider a few two’s complement arithmetic examples. Consider computing 3− 6
using 4-bit 2’s complement addition. The number 3 in 4-bit two’s complement is 0011 and
6 is 0110. Using our negating formula, we can easily derive -6 in 4-bit 2’s complement as
1010 by taking the representation for 6 (0110), flipping all the bits (1001) and adding 1
(1010).

Figure 3.8 shows the computation resulting from adding 0011 to 1010, which results in
1101. To convince ourselves that this is in fact equal to -3 as we would expect, we can flip
the bits and add 1 to get 0011 which is equal to 3, thus 1101 is in fact equal to -3.

Now consider a second example using 3-bit 2’s complement addition where we want to
compute the result of 3− 2. The number 3 in 3-bit 2’s complement is 011, the number 2 is
010, and -2 is 110. When we add 011 to 110 we end up with a fourth sum bit. The correct
answer comes from only the bottom 3 bits which are 001. The reason that we get this
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Figure 3.8: Two’s Complement Example 1

extra one which should be ignored can be understood by examining Figure 3.9. It shows
that adding 011 to 110 using modular arithmetic is equivalent to computing (3 + 6) mod
8. Doing this is equivalent to working our way around the binary circle from 3 by moving
6 positions in the clockwise direction which crosses the zero value and results in 001. The
fact that we crossed the zero is the reason for the extra 1 in the fourth position which we
ignore.

Figure 3.9: Two’s Complement Example 2

There are a few interesting things to note about this example. First of all, we were
trying to subtract 2 by adding -2 in 2’s complement representation. Note that the 3-bit 2’s
complement encoding of -2 is equal to the 3-bit unsigned encoding of +6. This is because
3-2 in modular arithmetic is equivalent to (3 + 6) mod 8. The second thing to note is that
pictorially, subtracting 2 from 3 can be seen as moving two positions around the circle in a
counter-clockwise direction. This too arrives at the same result of 001.

3.4 How Boolean Algebra Relates to Binary Arithmetic

Boolean algebra can be used to describe binary arithmetic operations. For example, suppose
that you want to describe the behavior of a 1-bit adder shown in Figure 3.10. A 1-bit adder,
also known as a full adder (FA) has three inputs, the two 1-bit inputs that you are adding
(A and B) plus any carry in from a less significant bit (Cin). The 1-bit adder has two
outputs: a sum bit (S) and a carry out bit (Cout).

The truth table in Table 3.5 shows the relationship between the adder’s three inputs
and its outputs. Specifically, the sum output is one whenever either exactly one of the three
inputs is one, or when all three inputs are one. The carry out is one when at least two of the
inputs are one. The behavior of the 1-bit adder can be described using Boolean algebraic
expressions that relate these inputs and outputs. The Sum-Of-Products representation of
the sum output is:
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Figure 3.10: 1-bit Adder

A B Cin S Cout

0 0 0 0 0
0 0 1 1 0
0 1 0 1 0
0 1 1 0 1
1 0 0 1 0
1 0 1 0 1
1 1 0 0 1
1 1 1 1 1

Table 3.5: 1-bit Adder Truth Table

S =(∼A)(∼B)Cin +(∼A)B(∼Cin) +A(∼B)(∼Cin) +ABCin.

Note that for simplicity the AND (·) operator is implied and thus ommitted from each
product term of the SOP.

The Sum-Of-Products representation of the carry out is:

Cout =(∼A)BCin +A(∼B)Cin +AB(∼Cin) +ABCin.

Figure 3.11: 2-bit Adder

One can describe the 2-bit adder of Figure 3.11 in a similar manner by concatenating two
1-bit adders back to back. Thus, the carry out of the least significant bit (Cout0) becomes
the carry in of the next bit, and the carry out of the next bit (Cout1) becomes the carry
out of the 2-bit adder. The rightmost full adder produces the least significant bit of the
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2-bit sum, S0, by adding inputs A0, B0, and the original carry in, Cin. The left full adder
produces S1 by adding inputs A1, B1, and Cout0.

Generalizing Fig. 3.11, we can create an w-bit adder for any width w by cascading
more full adders, connecting the carry-out signal of one to the carry-in signal of the next.
These are also called ripple carry adders, because of the way carry bits cascade from the
lowest-order bit to the highest-order bit.1

3.5 Take Home Problems

Take Home Problem 1

1. Provide a truth table for a full adder (FA).

2. Specify a Sum of Products (SOP) representation for each of the full adder outputs.

Take Home Problem 1 Solution

Take Home Problem 2

1. Provide a truth table for a 2-bit adder.

2. Specify a Sum of Products (SOP) representation for each of 2-bit adder outputs.

Take Home Problem 2 Solution

1A consequence of this linear “ripple” is that the signals have to propagate through a sequence of gates
and wires whose length is proportional to w. This may limit the clock frequency at which the adder can
operate. We will address this question in later chapters with an improved carry lookahead adder.



Chapter 4

Digital Abstraction

In this chapter we will describe how we transform an inherently continuous signal into a
digital signal and why it is a good idea to do so. It is because of this digital abstraction
that we are able to build larger and larger systems without the loss of any fidelity even in
the presence of electrical noise. This chapter will deepen our understanding of digital logic
but is not necessary to understand the rest of this book.

4.1 Analog Versus Digital Systems

Analog systems represent and process information using continuous signals that represent
real physical phenomena such as voltage, current, temperature, or pressure. Digital systems
represent and process information using discrete symbols. Typically, the binary symbols 0
or 1, are encoded using ranges of a physical quantity such as voltage. Sample analog and
digital signals are shown in Figure 4.1.

(a) Analog Signal (b) Digital Signal

Figure 4.1: Analog versus Digital Signals

4.1.1 Example: Analog Audio Equalizer

Consider the analog audio equalizer shown in Figure 4.2. Its goal is to convert a voltage
signal representing pressure into a frequency-equalized voltage signal. To do this it applies
multiple filters and then merges the signals together as shown in Figure 4.3. However, the
resulting output does not exactly match the expected output. There are multiple reasons for
this including electrical noise, manufacturing variations, and the degradation of components
over time.

4-1
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Figure 4.2: Analog versus Digital Signals

Figure 4.3: Analog versus Digital Signals

The significant advantage of digital signals over analog signals is that analog signals
degrade due to electrical noise whereas digital signal can tolerate electrical noise without
signal degradation.

However, the world is not digital, we would simply like to engineer it to behave that way.
In the end, we must use real physical phenomena to implement digital designs. Specifically,
we usage voltage to model digital signals.

4.2 Using Voltages Digitally

As a first attempt of modeling digital signals using voltages, consider a threshold voltage
Vth that evenly divides the range of acceptable voltages in two, as shown in Figure 4.4. One
can assign all voltage values V < Vth to 0, and all voltages V ≥ Vth to 1. At first glance
this seems like a reasonable approach, but consider what happens when V is close to Vth.
The closer one gets to the threshold voltage, the harder it becomes to distinguish between
a low and high value.

Figure 4.4: Single threshold voltage



©2019 Arvind; All Rights Reserved 4-3

For this reason, it is better to use two separate thresholds, one for low voltages where any
V ≤ VL is considered a valid 0, and one for high voltages where any V ≥ VH is considered
a valid 1 as shown in Figure 4.5. Note that for all voltages VL < V < VH the value of the
signal is undefined.

Figure 4.5: Low and high threshold voltages

A two threshold system will avoid confusing low and high values that are close to the
threshold. However, consider the system shown in Figure 4.6. The desired behavior is that
if one digital system produces a valid 0, or low output, and the output is then used as an
input to another digital system, that the second system also consider its input to be a valid
0. However, if some electrical noise is introduced on the wire that carries the signal from the
output of the first system to the input of the second, then if the signal was just under the
VL threshold, it’s possible that it will be seen as slightly over VL at the input to the second
system which would be treated as an invalid input. To address this issue, it is desirable to
have stricter constraints on digital outputs than on digital inputs so an output that has a
small amount of noise introduced to it, can still be a valid input to the downstream system.

Thus, four threshold are defined as shown in Figure 4.7. An input is considered valid
if Vin ≤ VIL or Vin ≥ VIH . Analogously, an output is considered valid if Vout ≤ VOL or
Vout ≥ VOH .

Figure 4.6: Electrical noise can make a valid signal become invalid

4.2.1 Noise Margins

The amount of noise that a system can tolerate is known as the systems noise margin. The
low noise margin is defined as VIL−VOL, and the high noise margin is defined as VOH−VIH .
The noise immunity of the system is the minimum of the two noise margins. In order to
make our digital systems reliable, one would like to provide as large of a noise immunity as
possible.
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Figure 4.7: Noise margins

4.2.2 Static Discipline

The static discipline states that all digital systems must produce a valid output for every
valid input. Thus, for all Vin ≤ VIL or ≥ VIH , a digital system will produce an output
where Vout ≤ VOL or ≥ VOH .

4.2.3 Restorative Systems

One of the greatest advantages of digital systems over analog systems is their ability to
cancel out noise as a result of their static discipline. Figure 4.8 shows that as a valid input
traverses multiple analog systems, any noise it encounters is transmitted in a cumulative
manner to the following analog system. Whereas Figure 4.9 shows that a digital system
can tolerate noise because even if noise is introduced at the input to system f, the output
of f is equal to what the output would have been if no noise was introduced (provided that
the noise is smaller than the noise margin). In the analog system, the output of system g

is degraded by the cumulative noise introduced at the inputs to both f and g. The digital
system, however, behaves as if no noise had been introduced into the system at all.

Figure 4.8: Noise in analog systems accumulates

Figure 4.9: Digital systems cancel noise
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4.3 Voltage Transfer Characteristic

The relationship between the input voltage and the output voltage of a digital system is
specified using a voltage transfer characteristic curve which identifies possible valid Vout for
all valid Vin.

The blocks in red are known as the forbidden regions because they correspond to portions
of the graph where inputs are valid but if the plot went through those regions then the system
would be producing an invalid output which would break the static discipline.

In order to provide non-zero noise margins, it must be the case that VOL < VIL < VIH <
VOH . This implies that VOH − VOL > VIH − VIL. Thus the slope of the curve is > 1 for
VIL < Vin < VIH . This means that the system must have gain which implies that it must be
built from active components like transistors rather than passive components like resistors.

Note that for VIL < Vin < VIH , the transfer curve may do anything as shown in the
valid transfer characteristic of Figure 4.10b.

(a) Digital voltage transfer characteristic (b) An alternate valid digital voltage transfer
characteristic

Figure 4.10: Valid Voltage Transfer Characteristics (VTCs)

4.4 Take Home Problems

Take Home Problem 1 - VTC

Suppose that you measured the voltage transfer curve of a device, shown in Fig. 4.11. Can
we find a signaling specification (VIL, VIH , VOL, VOH) that would allow this device to be a
digital inverter? If so, give the specification that maximizes noise margin.

Take Home Problem 1 Solution
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Figure 4.11: Voltage Transfer Curve of a device



Chapter 5

Combinational Circuits

We will begin by describing what is a combinational circuit and how we can compose com-
binational circuits to build larger combinational circuits with predictable functionality. We
rely heavily on Boolean algebra to describe the functionality of combinational circuits and
maintain one-to-one correspondence between combinational circuits and Boolean expres-
sions. In addition to the functionality of a Boolean circuit, we have to pay attention to
their physical properties, like area, propagation delay, and power consumption to design an
optimal or even a good circuit.

The dominant technology today for building digital circuits is the CMOS (Comple-
mentary Metal Oxide Semiconductor) technology. How combinational circuits are built in
CMOS is beyond the scope of this book. Typically, the manufacturer provides a standard
cell library of primitive building blocks, i.e., gates, along with their physical properties, and
the task of a digital designer is to implement the desired combinational circuit using the
library elements. The standard cell library not only differs from manufacturer to manufac-
turer but it also changes by periodic improvement in the underlying CMOS technology. As
we consider this problem in greater detail throughout this chapter, it will become clear that
we need automated tools to implement a combinational circuit in a specific standard cell
library.

We will begin by defining combinational circuits and their physical properties, and show
by example the optimization problem in implementing the circuit using a standard gate
library.

5.1 The Static Discipline

A combinational device is a circuit element that has:

• one or more digital inputs

• one or more digital outputs

• a functional specification that details the value of each output for every possible
combination of valid input values

5-1



5-2 Ch 5: Combinational Circuits

Figure 5.1: Combinational Device Specification

• a timing specification consisting (at a minimum) of a propagation delay (tPD): an
upper bound on the required time to produce valid, stable output values from an
arbitrary set of valid, stable input values

• an area specification that specifies the actual physical size of the circuit

As stated in Section 4.2.2, the static discipline states that all digital systems must
produce a valid output for every valid input. A valid digital input is defined as Vin ≤ VIL
or ≥ VIH . A valid digital output is defined as Vout ≤ VOL or ≥ VOH .

In addition, every combinational device has a functional specification that specifies the
value of each output for every possible combination of valid inputs. Figure 5.1 describes a
combinational device whose functional specification is that it produces a 1 if at least two
out of its three inputs are 1, and it produces 0 otherwise.

In order to specify the exact behavior of a combinational device, it must also include a
timing specification which specifies the propagation delay, tPD, which is an upper bound on
the time required to produce valid, stable outputs given valid inputs. Figure 5.1 describes
a digital device whose tPD is 2 minutes.

Another important property of combinational devices is their size, or area specifica-
tion. Section 5.2 will more fully describe how size constraints are taken into consideration
when designing combinational circuits. Typically, one trades off propagation delay and area
depending on the requirements of your circuit.

Note that combinational circuits have no memory or state, thus given the same set of in-
puts, they always produces the same outputs. In addition, since combinational devices must
satisfy the digital abstraction, combinational circuits can tolerate noise and are restorative
in that errors do not accumulate as explained in Section 4.2.3.

5.1.1 Boolean Gates

The Boolean operators that were introduced in Chapter 2 are examples of primitive com-
binational circuits which are also known as gates. Figure 5.2 illustrates the pictorial form
of each of the basic gates together with its name and boolean algebraic description. These
gates perform the operations of the NOT, AND, OR, NAND, NOR, and XOR Boolean operators.

5.1.2 Composing Combinational Devices

A set of interconnected elements is itself a combinational device if each circuit element is
combinational and every input is connected to exactly one output or to a constant (0 or 1),
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Figure 5.2: Basic Gates

and the circuit contains no directed cycles. Thus, the basic gates can be connected to form
more complex combinational devices, and these complex devices can be further combined
with any other combinational device to perform any Boolean function.

Figure 5.3 provides an example of combining three simpler combinational devices: A,
B, and C into one larger combinational device. To convince ourselves that the composed
circuit is also a combinational device, one must verify the five properties that define a
combinational device.

1. The composed device has digital inputs - Since we know that devices A, B, and C
are combinational devices, then their inputs must be digital inputs. The inputs to
the composed device are made up of a combination of inputs to A, B, and C thus the
inputs of the composed device are also digital.

2. The composed device has digital outputs - The output of the composed device is the
output of device C which is known to have a digital output thus the composed device
must also have digital outputs.

3. There exists a functional description of the composed device - Devices A, B, and C
are digital thus there exists a functional description fA, fB, and fC . The functional
description of the composed device is fC(fA(X,Y ), fB(fA(X,Y ), Z).

4. One can derive the propagation delay, tPD of the composed device - If the basic gates
A, B, and C have propagation delay tPD,A, tPD,B, and tPD,C respectively, then we
can derive the propagation delay of the composed device as the sum of these three
propagation delays since an input may need to traverse all three devices to arrive at
the output. Thus, tPD = tPD,A + tPD,B + tPD,C .

Arvind: This is a conservative estimate of propagation delay unless devices A, B and
C are primitive

5. One can derive a rough estimate for the area of the composed device by summing the
areas of the individual devices A, B, and C. Thus the area ≈ areaA +areaB +areaC .
In reality, this may underestimate the area since additional physical space may be
required for the wires connecting the three individual devices.

Since the five properties of a combinational device are satisfied by the composed device,
then it too is a combinational device.
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Figure 5.3: Composing Basic Combinational Devices into Larger Combinational Devices

5.1.3 Functional Specifications

There are many ways to specify the function of a combinational device.

So far, we have presented two systematic approaches as illustrated in Figure 5.4:

1. Truth tables enumerate the output values for all possible combinations of input values.

2. Boolean expressions are equations containing binary (0/1) variables and three opera-
tions: AND (·), OR (+), and NOT (∼).

(a) Textual Description

A B C Y

0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 1
1 0 1 0
1 1 0 1
1 1 1 1

(b) Truth Table

Y = ((∼C)·A)+(C·B)

(c) Boolean Expression

Figure 5.4: Functional Specifications

In addition to truth tables and Boolean expressions, a functional specification can be
provided by drawing an acyclic interconnection of Boolean gates whose composition result
in the desired functionality. A more modern approach is to use a hardware description
language where the description of the circuit functionality can be translated or compiled
into a combinational circuit made up of primitive gates that are connected in an acyclic
manner.

5.1.4 Propagation Delay

*********************************

5.2 Combinational Circuit Properties

In addition to their functionality, combinational circuits have two important physical prop-
erties: propagation delay (tPD) and area. The propagation delay is the time it takes for the
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Gate Delay (psec) Area (µ2)

Inverter 20 10

AND2 50 25
NAND2 30 15
OR2 55 26
NOR2 35 16

AND4 90 40
NAND4 70 30
OR4 100 42
NOR4 80 32

Table 5.1: Sample Standard Cell Library

output to stabilize after stable inputs are available. Area is the physical size of the circuit
that implements the desired functionality. Both of these properties are derived from the
properties of the gates used to build the circuit.

5.2.1 Standard Cell Library

Most circuits are built from some standard cell library implemented in a specific CMOS
(Complementary Metal Oxide Semiconductor) technology. Table 5.1 provides an example
of the information provided in a standard cell library. Specifically, it lists all of the available
gates and their physical characteristics. Note that standard cell libraries typically include
basic gates (i.e., inverter, 2-input AND (AND2), 2-input OR (OR2)) as well as gates with more
inputs (e.g., AND4 is a 4-input AND gate).

There are a couple of interesting properties to note from the standard cell library data.
The first is that in current CMOS technology inverting gates (e.g., NAND2) are faster and
smaller than non-inverting gates (e.g., AND2). The second is that delay and area grow with
the number of inputs. Thus a 4-input AND gate is both slower and larger than a 2-input AND
gate.

5.2.2 Design Tradeoffs: Delay vs Size

The delay and size properties of gates lead to design tradeoffs in implementing most com-
binational functions. For example, consider a circuit that takes the logical AND of 4 inputs.
This could be implemented using a single AND4 gate from our sample standard library. This
gate has a propagation delay, tPD = 90psec, and area = 40µ2. Alternatively, the same
functionality could be achieved by using a 4-input NAND gate followed by an inverter. This
would result in a tPD = 70 + 20 = 90psec, and an area = 30 + 10 = 40µ2. These are both
equivalent to the properties of a single AND4 gate. A third way of implementing a 4-input
AND gate is using two NAND2 and one NOR2 as shown in Figure 5.5. The propagation delay
of this implementation is tPD = tPD,NAND2 + tPD,NOR2 = 30 + 35 = 65psec. Note that
although this implementation includes two NAND2 gates, only one of the gates is on the path
from any input to output and thus only one of them can affect the propagation delay. The
area of this alternative implementation, however, is estimated by summing the area of the
three constituent gates. Thus, area = 2areaNAND2 + areaNOR2 = 2(15) + 16 = 46µ2. This
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Figure 5.5: Alternate AND4 Implementa-
tion

Figure 5.6: Alternate NOR2 Implementa-
tion

implementation demonstrates that depending on how the circuit is implemented, one will
end up with different values for propagation delay and area. One must generally trade off
one for the other. Thus to get a smaller propagation delay, one often has to accept a larger
area and vice-versa. Which implementation you pick depends on the design criteria which
dictates whether you need to optimize for size of speed.

Using DeMorgan’s Laws to Interpret Circuit Functionality

It may not be directly obvious that the functionality of Figure 5.5 is in fact equivalent to
the functionality of a 4-input AND gate. DeMorgan’s Laws state that (∼A)·(∼B) = ∼(A+B)
and (∼A)+(∼B) = ∼(A·B). Pictorially the former can be visualized as a NOR gate being
equivalent to an AND gate with its two inputs inverted as shown in Figure 5.6. If you replace
the rightmost NOR2 with this version of the gate, then you have two wires that have two
inversions (shown as bubbles or small circles) in a row. The two inversions cancel each
other out, thus the circuit is equivalent to two AND2 gates feeding a third AND2 gate which
is logically equivalent to a 4-input AND gate.

5.2.3 Multi-Level Circuits

Suppose we are restricted to using only 2-input AND and OR gates, then a sum-of product
(SOP) circuit cannot always to be realized using two levels of logic. For example, consider
the function F = A·C +B·C +A·D +B·D. In order to implement this function using only
2-input gates, one would need to first compute two subfunctions X1 = A·C +B·C and X2
= A·D +B·D. The function could then be rewritten as F = X1+X2. The implementation
of this circuit using only 2-input gates is shown in Figure 5.7.

Fast microprocessors typically use 8 levels of logic, while slower processors use as many
as 14-18 levels of logic!

5.3 Logic Synthesis: Mapping a Circuit to a Standard Cell
Library

5.3.1 An Example

Consider the simple standard cell library shown in Figure 5.8. Suppose that you wanted to
map the circuit of Figure 5.9 to this standard cell library with the goal of optimizing your
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Figure 5.7: Multi-Level Circuit Implementation

Figure 5.8: Simple Cell Library

Figure 5.9: Sample Circuit
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(a) Example 1 (b) Example 2

Figure 5.10: Various Mappings of Circuit to Standard Cell Library

circuit for minimum area. Mapping a circuit to a standard cell library with a particular
goal in mind is known as synthesizing the circuit.

There is an analogy here to compiling a software programming language to machine
code. Machine code is based on a standard set of instructions (the “instruction set”) for a
particular architecture, such as x86, ARM, POWER, Sparc, MIPS and so on. A compiler
has to select suitable instructions from the given repertoire in order to map the behavior of
the high-level language. Similarly, in hardware synthesis, the tool has to select gates from
a standard repertoire in order to map the desired circuit behavior.

Figure 5.10 illustrates two possible implementations of our sample circuit using the
standard cell library provided. Example 1 consists of seven 2-input NAND gates of area 3
and five inverters of area 2 for a total area = 7(3) + 5(2) = 31. Example 2 implements the
circuit using one 4-input NAND gate of area 5, 1 3-input NAND gate of area 4, two 2-input
NAND gates of area 3, and two inverters of area 2 for a total area = 5 + 4 + 2(3) + 2(2) =
19. Given the optimization goal of minimal area, one would prefer the implementation of
Example 2 over that of Example 1.

5.3.2 Logic Synthesis Tools

As you may imagine, synthesizing an optimized circuit is a very complex problem. It
involves:

• Boolean simplification

• Mapping to cell libraries with many gates

• Multi-dimensional tradeoffs (e.g., minimize are-delay-power product)

Doing this for all but the smallest circuits is infeasible to do by hand. Instead, hardware
designers write circuits in a hardware description language, and use a synthesis tool
to derive optimized implementations.

In practice, tools use Boolean simplification and other techniques to synthesize a circuit
that meets certain area, delay, and power goals. Figure 5.11 illustrates the various pieces
of information that feed a logic synthesis tool so that it can identify an optimized circuit
implementation. Note that even for automated tools, it is not always feasible to find the
absolute optimal circuit.
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Figure 5.11: Logic Synthesis Tool

5.4 Take Home Problem

Take Home Problem 1

Find a minimal Sum-Of-Products (SOP) expression for the following Boolean (SOP) ex-
pression: A·(∼B)·(∼C) +A·(∼B)·C +(∼A)·(∼B)·C +(∼A)·B·C.

Then using the standard cell library of Table 5.1, find an implementation of this minimal
SOP that minimizes area.

Take Home Problem 1 Solution
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Chapter 6

Describing Combinational Circuits
in BSV

In the preceding chapters, we approached the subject of combinational logic from several
different perspectives, ranging from Boolean algebra formalism to logic circuit realizations.
The motivation in this book for studying combinational logic—and sequential logic in later
chapters—is to design interesting digital circuits with useful functionalities. For example,
we already saw how to represent whole numbers in binary-valued digits and then how to
design a ripple-carry adder to add two binary-represented values.

Until now, we made do with formal logic equations and informal logic circuit diagrams
to express the combinational logic we had in mind (e.g., the adder). As we get into dis-
cussing more interesting and elaborate designs, we need a more clear and less clumsy way
to express them. All the better if the description also can lead directly to implementation.
In this chapter, we will learn how to describe combinational logic using the BSV hardware
description language. The reader should find it much easier and faster to specify the de-
sired combinational logic in BSV than drawing logic diagrams. At the same time, the BSV
description is as precise as Boolean logic equations. With the help of design automation
tools, we can simulate a BSV description to observe its operations, and we can synthesize
a BSV description to ultimately produce physical implementations.

Just as we have so far focused on only combinational logic and circuits, this chapter will
present only a basic subset of BSV directly relevant to the specification of combinational
circuits. The features of BSV that truly set it part from contemporary digital design tools
and practices will become apparent after we study sequential logic design. We will see in
Chapter 7 the distinguishing features that shaped the new digital design thinking in this
book.

6.1 A First Example: Ripple Carry Adder

We discussed in Section 3.4 how to cascade w full adders into a ripple-carry adder (Fig-
ure 6.1) to add two w-bit binary-value inputs and produce their w-bit binary-value sum as
output. As a first example in describing combinational circuits in BSV, we will revisit the
same ripple-carry adder construction. In this exercise, it is not sufficient we capture the

6-1
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Figure 6.1: w-bit Ripple Carry Adder circuit, first seen in Figure 3.11

correct combinational logic function of an adder in the truth-table sense. The BSV descrip-
tion must also capture the exact circuit organization of the ripple-carry adder so that when
synthesized the resulting implementation also has the intended implementation properties
such as cost and delay.

6.1.1 Full Adder

Figure 6.2: Full adder circuit, first seen in Figure 3.10

We begin by describing the full adder circuits in Figure 6.2 using the function construct
in BSV.

A Description of the Full Adder in Figure 6.2
1 function Bit#(2) fa (Bit#(1) a, Bit#(1) b, Bit#(1) c_in);

2 Bit#(1) temp;

3 Bit#(1) s;

4 Bit#(1) c_out;

5 Bit#(2) result;

6 temp = (a ^ b);

7 s = temp ^ c_in;

8 c_out = (a & b) | (c_in & temp);

9 result[0] = s;

10 result[1] = c_out;

11 return result;

12 endfunction

The keyword function in Line 1 starts the declaration of a BSV function named fa,
and the declaration ends on line 11 with the keyword endfunction. The function has three
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input arguments named a, b, and c_in. The other notations on Line 1 indicate the data
types of the arguments and the result. The inputs and output of a BSV function used in
this way correspond to input and output wires of the combinational circuits under design.

An input or output of a BSV function is not restricted to a single wire. An input or
output can bundle multiple conceptually related wires (e.g., those together convey a binary-
value input or output). Thus a BSV function declaration must also specify the type of each
input and the output. We will initially work with only the type Bit#(w)—think of a bundle
of w wires (also sometimes called a w-bit bus). In Line 1, we see the inputs a, b, and c_in

are each a single wire, as indicated by the type specifier Bit#(1) preceding each input.
Between the function keyword and the function name fa is the type specifier Bit#(2)

representing the data type of the output, which thus has 2 wires.

Line 2 declares the variable temp of the type Bit#(1). Later in Line 6, the expression
(a ^ b) is assigned to temp. In BSV, as in C, the &, | and ^ symbols stand for the bit-wise
AND, OR, and XOR (exclusive OR) operators. Unlike C, where these bitwise operators
only apply to operands or size 8, 16, 32 or 64 bits, in BSV they can be applied to any
same-size type Bit#(w) operands to yield a type Bit#(w) result. In the current case, the
expression (a ^ b) corresponds to the upper-left-most XOR gate in Figure 6.2. After the
assignment, the variable temp can be used to refer to the output wire of that gate.

Similarly, Lines 3-5 declare variables s, c_out and result, and subsequent lines assign
values to them. The right-hand-side expressions of the assignments correspond to the re-
maining combination circuits in Figure 6.2. A complex expression like (a & b) | (c_in & temp)

corresponds to a commensurately complex multi-gate circuits. Notice in both the BSV func-
tion code and the corresponding circuit diagram, the combinational logic producing s and
c_out use temp in their input.

In Line 11, the keyword return indicates the output of function fa (which was declared
to have type Bit#(2) in Line 1) is result (which indeed has type Bit#(2)). The zero’th
and first bit of result are assigned individually using the selection notation—result[0]

for the zero’th bit and result[1] for the first bit. In general, the notation x[j] represents
a selection of the jth bit of x, with the common convention that j = 0 is the least significant
bit. The two 1-bit output wires in Figure 6.2 are combined into a single 2-bit output in
the BSV description to conform to the restriction that a BSV function has only one output
(although the output could be of an arbitrarily elaborate type).

BSV is a strongly typed language: every variable and expression in a BSV description
must have a type, which is either declared explicitly or inferrable unambiguously from usage
by the BSV compiler. Assignments can only be made with matching types, and operators
can only be applied to meaningfully typed operands. BSV compilation will report an error
when there are type inconsistencies, and terminate the compilation. We will return to
discuss the type system in BSV in Section 6.3.

The previous BSV description of fa was written in a purposely verbose style to make
obvious the one-to-one correspondence with the logic diagram in Figure 6.2. There are
many features in BSV to make a circuit description more succinct without losing details.
The following is an equivalent description of the logic circuit in Figure 6.2 that would be
more typically written by a practiced BSV user.

A Compact Description of the Full Adder in Figure 6.2
1 function Bit#(2) fa (Bit#(1) a, Bit#(1) b, Bit#(1) c_in);

2 let s = (a ^ b) ^ c_in;
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3 let c_out = (a & b) | (c_in & (a ^ b));

4 return {c_out,s};

5 endfunction

The type and interface declarations of fa in Line 1 above matches the first version we saw
earlier. Instead of declaring s and c_out variables with explicit types, this version uses
the let notation to introduce s and c_out without stipulating their types. The burden is
on the BSV compiler to figure out their types based on how they are used and what are
assigned to them. This version of the code is also more compact by omitting intermediate
variables temp and result—the corresponding wires still exist even if they are not named
explicitly. Interestingly, instead of temp, the expression (a ^ b) appears twice. The BSV
compiler is sophisticated enough to recognize the repeated use of the same expression and
would produce only one instance of the XOR gate. Chapter 10 will provide additional
useful details—important to an effective BSV user—on how BSV descriptions are mapped
into logic circuits. Lastly, Line 4 sets the expression {c_out, s} as the output of fa. The
expression {c_out, s} represents a bit-concatenation of s and c_out and thus has the
expected type Bit#(2).

6.1.2 Two-bit Ripple Carry Adder

Figure 6.3: 2-bit Ripple Carry Adder circuit, first seen in Figure 6.3

Specifying combinational logic as a function in BSV creates a reusable design block that
can be used in an enclosing design. We will now make use of fa as a black-box building block
in the BSV function for a 2-bit ripple-carry adder. The BSV function below corresponds to
the 2-bit ripple-carry adder circuit in Fig. 6.3.

2-bit Ripple Carry Adder
1 function Bit#(3) add2(Bit#(2) x, Bit#(2) y);

2 Bit#(2) s;

3 Bit#(2) c_out;

4

5 Bit#(2) cs0 = fa(x[0], y[0], 0);

6 c_out[0] = cs0[1]; s[0] = cs0[0];

7

8 Bit#(2) cs1 = fa(x[1], y[1], c_out[0]);

9 c_out[1] = cs1[1]; s[1] = cs1[0];

10
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11 return {c_out[1],s};

12 endfunction

Based on what we already learned about BSV, we can see the function declaration in
Line 1 stipulates that the function add2 has two Bit#(2) inputs, x and y, and produces a
Bit#(3) output. Functionally, we expect add2 should compute the 3-bit sum of the two
inputs, treating x and y as 2-bit binary values. In general, adding two w-bit values produces
a w + 1-bit sum, accounting for the possible final “carry”.

Besides instantiating two instances of the full adder fa, the body of add2 does not contain
any additional logic operators; it simply describes the wire connections in Figure 6.3. Lines
2 and 3 declare intermediate variables s and c_out. s[j] and c_out[j] will be used for
the sum and carry outputs of the fa instance in bit position j.

Line 5 feeds the least-significant bit of x and y as the inputs to the first fa instance,
with a default carry-in of 0. The Bit#(2) output of this fa instance is assigned to the
variable cs0. In Line 6, s[0] and c_out[0] get assigned the corresponding wires selected
from the compound output of fa. The same thing is repeated for the second fa instance at
the second bit position. The carry-out c_out[0] of the first fa instance is the carry-in input
of the second fa instance, forming a link of the ripple carry chain. Finally, Line 11 sets the
Bit#(3) output of add2 to {c_out[1],s}; the expression {c_out[1],s} is equivalent to
{c_out[1],s[1],s[0]}.

Based on the 2-bit example, we should have confidence that we can, by extension, specify
a ripple-carry adder (as in Figure 6.1) of any desired specific width w = 2, 3, 4 etc. Of course,
this will require quite quite a lot tedious (almost) replicated code when w is large. Later
we will show in Section 6.2.5 how to make use of the loop construct in BSV to simplify
the description of combinational logic with regular, repetitive structure (such as in a ripple-
carry adder). Moreover we will show in Section 6.4 how to describe a reusable adder design
in a parameterized way so a single, compact description is all that is needed for ripple-carry
adder of any width. Presently, we digress briefly to point out some important ideas to keep
in mind when using BSV functions for combinational logic description.

6.2 More Combinational Examples in BSV

Besides adders, there are other combinational logic circuits that are used so commonly
in digital design such that they are given special names. In this section, we will discuss
a number of them with the help of BSV descriptions. The examples will also showcase
additional BSV language features.

6.2.1 Selection

When discussing the full-adder in Section 6.1.1, we saw an example where we wanted to
select one wire from a bundle of wires. The notation for selection is that given x of type
Bit#(w), x[j] represents a selection of the jth bit of x, with the common convention that
j = 0 is the least significant bit. It is invalid if j > (w − 1) or j < 0.
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Similarly, the notation x[j:i] represents a selection a bundle/bus of bits x[j] through
x[i]. This notation is valid for 0 ≤ i ≤ j < w, and the result has type Bit#(j − i+ 1)

In general, one can also declare vectors of any type, similar to arrays in programming
languages. For example, we could have replaced the independently declared cs0 and cs1 in
the 2-bit ripple-carry adder code (Section 6.1.2) by a single variable declaration cs of the
type Vector#(2,Bit#(2)), i.e., a vector of two Bit#(2) elements. We can replace the use
of cs0 and cs1 in the code by cs[0] and cs[1]. Correspondingly, c_out[0] = cs[0][1]

and s[0] = cs[0][0].

In the cases so far, the selections have been made with fixed indices that can be known
at compile time—as opposed to values determined dynamically during execution of the
resulting hardware. When selection is static, the resulting “circuit” is trivial: the compiler
just connects the specified wire. Fig. 6.4 (left) shows a logic block for selecting one of the

Figure 6.4: Bit-select circuit, static index

four inputs to present as the output. For simplicity, assume inputs x0, x1, x2, and x3

are simply Bit#(1). Fig. 6.4 (right) shows, to make a static section, e.g., [2], the selected
input x2 is connected to the output; the remaining inputs are ignored. No logic gates are
necessary. The circuits to allow dynamic selection at runtime is, however, more interesting.

6.2.2 Multiplexer

Fig. 6.5 (left) shows a logic block for selecting one of the four inputs to present as the output.

Figure 6.5: Bit-select circuit, dynamic index

This time, there is an additional input i to select which input should be connected to the
output. The output should follow changes to the input, whether x’s or i, combinationally.
This functionality is used so frequently it not only has a name, multiplexer or simply mux,
but it is also drawn with the special symbol shown on the right of Fig. 6.5.

Fig. 6.6 (left) shows the symbol for a 2-way multiplexer that takes two inputs, A and B,
and forwards one of them to the output. The choice is made with a Boolean control input
s. If A and B are single-bit, Fig. 6.6 (right) provides a gate-level implementation using AND
and OR—as shown, the value of A is passed to the output if s is asserted. If A and B are
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Figure 6.6: 2-way multiplexer

w-bit wide, we just replicate the 1-bit wide multiplexer w times with all of their s control
inputs tied together.

Wider muxes to select from more inputs can in principle be created by cascading 2-way
muxes. For example, Fig. 6.7 shows a 4-way mux created using three 2-way muxes in 2

Figure 6.7: 4-way multiplexer

tiers. It now requires s of type Bit#(2) to select one of the four inputs. In general, for
a n-way mux, we need a Bit#(dlg2ne) control input s to identify one of the n inputs to
forward. In general, n could be any number, not necessarily a power of two.

In BSV code muxes are usually expressed using classical programming language notation
for alternatives: conditional expressions, “if-then-else” constructs, or “case” constructs, as
shown in the following examples:

2-way Multiplexer using Conditional Expression
1 result = ( s ? a : b );

2-Way Multiplexer using If-Then-Else
1 if (s)

2 result = a;

3 else

4 result = b;

4-way Multiplexer using Case
1 case (s2)

2 0: result = a;

3 1: result = b;

4 2: result = c;

5 3: result = d;

6 endcase
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The differences in style in the above are mostly a matter of readability and personal
preference, since the compiler will produce the same hardware circuits anyway. Both bsc
and downstream tools perform a lot of optimization on muxes, so there is generally no
hardware advantage to writing it one way or another.

6.2.3 Shifter

We will build up in steps to a general circuit for shifting a w-bit value right by n places.

Logical Shift Right by a Fixed Amount

Fig. 6.8 shows a circuit for shifting a 4-bit value right by 2 positions1, filling in zeroes in the

Figure 6.8: Logical shift right by 2

just-vacated most-significant bits.2 When the shift amount is a constant known at compile
time, you can see no logic gates are needed; it’s just wiring. The same can be expressed
in BSV using its built-in operators for shifting, which are the same as in C, Verilog and
SystemVerilog:

Shift operators
1 abcd >> 2 // right shift by 2

2 abcd << 2 // left shift by 2

Even if shift operators were not built-in, it is very easy to write a BSV function for the
same effect. Suppose we want to right-shift a 4-bit value right by 2 positions:

Shift function
1 function Bit #(4) logical_shift_right_by_2 (Bit#(4) arg);

2 Bit #(4) result = { 0, arg[3], arg[2] }; // alternatively: {0, arg[3:2]}

3 return result;

4 endfunction

Above, note that the “0” must be a two-bit value so that the result is of type Bit#(4).
The BSV compiler will automatically size it in this way. Alternatively, we can specify the
width of constants explicitly like this: 2’b0 or 2’h0. The “2” indicates the desired bit-
width. The “b” and “h” indicate that the digits that follow are in binary or hexadecimal,
respectively. Finally, the digits represent the value of the constant. The BSV compiler will
complain if the value is too large to fit into the available size.

1 What do “left” and “right” mean here? By convention, they mean “towards the most-significant bit”
and “towards the least-significant bit”, respectively.

2For arithmetic right shift, the vacated most-significant bits are filled by replicating the most-significant
bit of the original input value in a procedure called sign-extending.
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Logical Shift Right by n, a Dynamic Amount: Barrel Shifters

As mentioned before, the logic to support varying shift amounts controlled by a control
input is more interesting.

There is an expensive way to do it, relying on only what we have seen so far. We
could make a logic block to support varying shift amounts between 0 to n− 1 positions by
instantiating all n possible constant-shifts of the input, each one similar to Fig. 6.8. We
then select one of them using an n-way multiplexer similar to Fig. 6.7, controlled by a “shift
amount” input sa. The constant-shifts incur no gate cost (just wires), but the multiplexer
does. See if you can figure out how the cost and critical path scale with n if the (n + 1)-
way multiplexers were to be constructed using 1-bit 2-way multiplexers. Ans: O(n2) and
O(lg(n)). While this would be functionally correct, there is a much more clever structure
for this, relying on the binary-number interpretation of the shift-amount.

The shift-amount control input sa is given as a dlg2ne-bit binary value. We saw in
Chapter 3 a binary value can be interpreted as a summation of 2-power values 2j whenever
the jth digit of the value is 1. Analogously, we can shift an input by sa positions by
conditionally applying a series of shifts by 2j positions if the jth digit of sa is 1. As such,
any shift amount between 0 and 31 can be achieved by applying conditionally five 2-power
shifts—by 1, by 2, by 4, by 8 and by 16—as needed. If sa = 5 or 00101 in binary, the
shift could be accomplished by first shifting by 1 position and then shifting the result by 4
positions. If s = 31 or 11111 in binary, all 5 shifts are needed.

A hardware interpretation of the above scheme is commonly referred to as a barrel-
shifter. Generally, if the control input sa is of type Bit#(n), we cascade n stages as follows:

• Stage 0: if s[0] is 0, pass through, else shift by 1 (20)
• Stage 1: if s[1] is 0, pass through, else shift by 2 (21)
• Stage 2: if s[2] is 0, pass through, else shift by 4 (22)
• ...
• Stage j: if s[j] is 0, pass through, else shift by 2j

• ...

Each stage is a simple application of constant shifting and multiplexing controlled by
one bit of sa. The jth stage mux either passes the value through unchanged or shift it by 2j

positions as controlled by s[j]. Fig. 6.9 illustrates a 4-bit shifter where sa of type Bit#(2)

Figure 6.9: Shift by s = 0,1,2,3

can be between 0 and 3. The corresponding BSV function is as follows. (Note: the notation



6-10 Ch 6: Describing Combinational Circuits in BSV

x[j:k] selects a (j − k + 1)-bit field between the ith and jth positions inclusive.)

Shift by Variable Amounts
1 function Bit #(4) logical_shift_right_by_n (Bit #(2) s, Bit#(4) arg);

2 Bit #(4) temp = (s[0]==1) ? {1’b0,arg[3:1]} : arg ;

3 Bit #(4) result = (s[1]==1) ? {2’b00,temp[3:2]} : temp

4 return result;

5 endfunction

Other kinds of shifts: arithmetic and rotation

In the discussion so far, we have focus on so-called logical shifts, where the vacated bits—
most-significant, for right-shifts and least-significant, for left-shifts—are replaced by zeroes.

In a so-called arithmetic right-shift, the vacated bits (most-significant) are replaced by
copies of the sign bit. When the Bit#(w)argument is interpreted as signed number, then
bit [w − 1], the sign bit, is 0 for positive numbers and 1 for negative numbers. For an
arithmetic right-shift, this bit is replicated into the vacated bits.

We do not give any special name to arithmetic left-shifts, since the vacated bits are filled
with zeroes, and so this is the same as a logical left-shift.

A rotate left operation is like a left-shift, except that the most-significant bits that are
shifted out are wrapped around and shifted in at the least-significant end. Symmetrically,
A rotate right operation is like a right-shift, except that the least-significant bits that are
shifted out are wrapped around and shifted in at the most-significant end.

6.2.4 For-loops in BSV to express n-wide repetitive structures

In Sec. 6.2.3 we discussed barrel shifters (shifting by a dynamically-specified amount). We
gave an example of a function that performs this shift on a 32-bit value, taking a Bit#(2)

shift-amount argument; we repeat that code here:

Shift by Variable Amounts
1 function Bit #(4) logical_shift_right_by_n (Bit #(2) sa, Bit#(4) arg);

2 Bit #(4) temp = (sa[0]==1) ? {1’b0,arg[3:1]} : arg ;

3 Bit #(4) result = (sa[1]==1) ? {2’b00,temp[3:2]} : temp

4 return result;

5 endfunction

What if arg were wider, say 64 bits? In general sa may need to be 6 bits wide, to represent
any shift-amount in the range 0..63. Our example could be written as follows:

1 function Bit #(64) logical_shift_right_by_n (Bit #(6) sa, Bit#(64) arg);

2 Bit #(64) temp0 = (sa[0]==1) ? (arg >> 1) : arg;

3 Bit #(64) temp1 = (sa[1]==1) ? (temp0 >> 2) : temp0;

4 Bit #(64) temp2 = (sa[2]==1) ? (temp1 >> 4) : temp1;

5 Bit #(64) temp3 = (sa[3]==1) ? (temp2 >> 8) : temp2;
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6 Bit #(64) temp4 = (sa[4]==1) ? (temp3 >> 16) : temp3;

7 Bit #(64) result = (sa[5]==1) ? (temp4 >> 32) : temp4;

8 return result;

9 endfunction

where, note, each line only performs a shift by a constant amount. Actually, it’s not
necessary to define new names (tempj) for every intermediate result. We could equivalently
have written this code:

1 function Bit #(64) logical_shift_right_by_n (Bit #(6) sa, Bit#(64) arg);

2 Bit #(64) result = arg ;

3 result = (sa[0]==1) ? (result >> 1) : result;

4 result = (sa[1]==1) ? (result >> 2) : result;

5 result = (sa[2]==1) ? (result >> 4) : result;

6 result = (sa[3]==1) ? (result >> 8) : result;

7 result = (sa[4]==1) ? (result >> 16) : result;

8 result = (sa[5]==1) ? (result >> 32) : result;

9 return result;

10 endfunction

In BSV an assignment like this:

result = expression;

merely says, “from this point onwards, result names the wires representing the output
of the combinational circuit represented by the right-hand side expression.” This is unlike
most software programming languages where a variable names a memory location, and
an assignment means storing the value of the right-hand side expression into the memory
location named by the left-hand side variable. The last two examples of BSV code represent
exactly the same ciruit.

Not only is the above code rather tedious, but we’d have write another function for shift-
amounts of, say, 8 bits, and it would mostly be a copy of this one. The solution is to use a
BSV for-loop. We start by just simplifying the previous example, staying with a 6-bit shift
amount:

1 function Bit #(64) logical_shift_right_by_n (Bit #(6) sa, Bit#(64) arg);

2 Bit #(64) result = arg;

3 for (Integer j = 0; j < 6; j = j + 1)

4 result = (sa [j]==1) ? (result >> (2**j)) : result;

5 return result;

6 endfunction

In BSV, such for-loops are unrolled completely by the compiler in a step called static elabo-
ration, so that this function is exactly equivalent to the previous one, where each shift was
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written separately. We still get exactly the same combinational circuit. In particular, the
variable j does not exist at all in the final circuit, not even as a wire carrying a value—it is
purely a notational device to express the unrolled version succinctly. In other words, there
is zero hardware or performance cost to writing it with a for-loop.3

Next, let us generalize it to n-bit shift-amounts:

1 function Bit #(64) logical_shift_right_by_n (Bit #(n) sa, Bit#(64) arg);

2 Bit #(64) result = arg;

3 for (Integer j = 0; j < valueOf (n); j = j + 1)

4 result = (sa [j]==1) ? { 0, result [63:2**j]} : result;

5 return result;

6 endfunction

In the function argument list, we have replaced Bit#(6) by Bit#(n). In the for-loop, we
have replaced “6” by valueOf(n). The reason is that n here is a type, not a value. The
notation valueOf(n) can be read as saying: “interpret the type as a value”.

Because for-loops are unrolled completely by the compiler, the loop initial value, loop-
termination condition, and loop-increment must all be known at compile-time. Here, even
though the shift-amount sa is dynamic, its width n is known statically, and this is what
controls the unrolling. We have a few more remarks on static elaboration in Sec. 6.6 at the
end of this chapter.

6.2.5 32-bit Ripple-Carry Adder (RCA)

In Sec. 6.1.2 we saw how to describe a 2-bit ripple-carry adder. We repeat it here for
convenience.

2-bit Ripple Carry Adder
1 function Bit#(3) add2(Bit#(2) x, Bit#(2) y);

2 Bit#(2) s;

3 Bit#(2) c_out;

4

5 Bit#(2) cs0 = fa(x[0], y[0], 0);

6 c_out[0] = cs0[1]; s[0] = cs0[0];

7

8 Bit#(2) cs1 = fa(x[1], y[1], c_out[0]);

9 c_out[1] = cs1[1]; s[1] = cs1[0];

10

11 return {c_out[1],s};

12 endfunction

This example also has a repetitive structure, and so we can apply the idea of for-loops to
specify a 32-bit ripple-carry adder in a more compact and easy to understand description.

3In software programming languages, a for-loop like this is typically executed dynamically, during program
execution, so there can be a performance cost, although some compilers may also try to unroll the loop
statically for optimization purposes.
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32-bit Ripple Carry Adder
1 function Bit#(33) add32 (Bit#(32) x, Bit#(32) y);

2 Bit #(32) s;

3 Bit #(32) c_out;

4 Bit #(2) cs;

5 Bit #(1) c_in=0;

6 for (Bit #(6) i=0; i<32; i=i+1) begin

7 cs = fa (x[i],y[i],c_in);

8 c_out[i] = cs[1]; s[i] = cs[0];

9 c_in=c_out[i];

10 end

11 return {c_out[31],s};

12 endfunction

The first thing to notice is that when written with a for-loop, the adder code for 32-bit—or
any other width for that matter—is not more lengthy than the code for the 2-bit adder.
Moreover, with less redundancy, the version using a for-loop is easier to understand and it is
arguably harder to make a mistake. As mentioned earlier, during compilation, the for-loop
will be statically elaborated by the compiler. The end effect is the same as if the for-loop
is unrolled 32 times.

32-bit Ripple Carry Adder with Unrolled Loop Body
1 function Bit#(33) add32 (Bit#(32) x, Bit#(32) y);

2 Bit #(32) s;

3 Bit #(32) c_out;

4 Bit #(2) cs;

5 Bit #(1) c_in=0;

6

7 // i=0

8 cs = fa (x[0],y[0],c_in);

9 c_out[0] = cs[1]; s[0] = cs[0];

10 c_in=c_out[0];

11 // i=1

12 cs = fa (x[1],y[1],c_in);

13 c_out[1] = cs[1]; s[1] = cs[0];

14 c_in=c_out[1];

15 . . . .

16 // i=31

17 cs = fa (x[31],y[31],c_in);

18 c_out[31] = cs[1]; s[31] = cs[0];

19

20 return {c_out[31],s};

21 endfunction

Notice in both versions, cs and c_in are assigned repeatedly. As explained in Sec. 6.2.4,
when reading the function as a circuit diagram description, each use of fa corresponds to a
different instantiation of the combinational logic it represents. (If we liked, we could have
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explicitly “inline” the fa code into the unrolled code as would be done in static elaboration.)
Furthermore, a variable when assigned serves as a reference for the wire at the output of the
combinational logic on the right-hand side of the assignment. When a variable is reassigned,
subsequent use of the variable refers to the new wire. Convince yourself both versions of
the code above describe thirty-two fa’s connected by a ripple carry chain as depicted in
Figure 6.1.

6.2.6 Multiplier

Multiplication is not much harder to describe than addition, though it will turn out to
be much more expensive in hardware. First let’s begin by reviewing how to multiply.
Suppose we are multiplying two 4-bit values 1101 and 1011. Our grade-school multiplication
algorithm (translated from decimal to binary) looks like this:

Multiplication by repeated addition
1 1 1 0 1 // Multiplicand, b

2 1 0 1 1 // Multiplier, a

3 -------

4 1 1 0 1 // b x a[0] (== b), shifted left by 0

5 1 1 0 1 // b x a[1] (== b), shifted left by 1

6 0 0 0 0 // b x a[2] (== 0), shifted left by 2

7 1 1 0 1 // b x a[3] (== b), shifted left by 3

8 ---------------

9 1 0 0 0 1 1 1 1

Thus, the jth partial sum is (a[j]==0 ? 0 : b) << j, and the overall sum is just a for-
loop to add these sums. The outcome of the multiplication is 8 bits (= 4 + 4, the sum of
the widths of the arguments). Fig. 6.10 illustrates the above scheme in combinational logic

Figure 6.10: A combinational multiplier

circuits. The BSV code to express the circuit in shown below:
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BSV code for combinational multiplication
1 function Bit#(8) mul4(Bit#(4) a, Bit#(4) b);

2 Bit#(4) prod = 0;

3 Bit#(4) tp = 0;

4 for (Bit#(3) i=0; i<4; i=i+1) begin

5 Bit#(4) m = (a[i]==0)? 0 : b;

6 Bit#(5) sum = add4(m,tp,0);

7 prod[i] = sum[0];

8 tp = sum[5:1];

9 end

10 return {tp,prod};

11 endfunction

Take a moment to double check that the mul4 function above indeed describes the circuit
in Fig. 6.10. As in the 32-bit adder example, we can adjust the 4-bit multiplier to any desired
width n by trivial substitutions. The result will lead to n2 fa being instantiated. You need
to be aware of what you are describing in circuits terms. A little bit of code can result in
a lot of logic! Another interesting aside is to ask what is the critical input-to-output path
delay of an n-by-n multiplication. In a literal reading of the BSV code, we would see that
we are doing O(n) additions which each takes O(n) time using ripple carry. However, if we
remember we are actually describing a combinational logic circuit where the operations of
the adders are not serialized completely. Each fa begins its final evaluation as soon as its
inputs are stable. The least significant fa of the last adder begins after the output is stable
on the least significant fa of the second-to-last adder; this is about the same time as when
the ripple-carry-chain of first adder is fully finished. All in all, no input-to-output paths
involve traversing more than 2n fa’s.

6.2.7 ALU (Arithmetic-Logic Unit)

Datapath designs, particularly in computer CPUs, sometime call for a single Arithmetic and
Logical Unit (ALU) that performs all the additions, subtractions, multiplications, ANDs,
ORs, comparisons, shifts, and so on. Fig. 6.11 shows the symbol commonly used to represent

Figure 6.11: ALU schematic symbol

ALUs in circuit schematics. It has data inputs A and B, and an Op input by which we
select the function (Add, subtract, logical AND/OR/NOT, comparisons, ...) performed by
the ALU. It has a Result data output (and sometimes a separate output Comp? for results
of comparisons).
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BSV has built-in support for the operations we discussed above. In practical use, it
often best to make use of BSV’s built-in operators. We could have just as easily have said
s=x+y or s=x*y. The compiler and synthesis tools will produce a working design. We do not
know how the addition is actually done; we are then relying on the compiler and synthesis
tools to make a good choice among the many different adder circuits with wide varying
trade-offs. We see how to describe an ALU using BSV built-in operators below.

ALU for Arith, Logic, Shift ops
1 function Bit#(32) alu (Bit#(32) a, Bit#(32) b, Bit#(4) func);

2 Bit#(32) res = case(func)

3 0 : (a + b);

4 1 : (a - b);

5 2 : (a & b);

6 3 : (a | b);

7 4 : (a ^ b);

8 5 : ~(a | b);

9 6 : (a << b[4:0]);

10 7 : (a >> b[4:0]);

11 8 : signedShiftRight(a, b[4:0]);

12 endcase;

13 return res;

14 endfunction

Above, the output of the alu is a function of the inputs a and b. The 4-bit control in-
put func selects one of the 9 functions; encodings 10 to 15 are unused. In the example,
(a+b) could be replaced by add32(a,b) to instantiate our own adder design. Notice >>

on Bit#(m) signifies a logical-right-shift. Arithmetic right shift is performed through the
function signedShiftRight() left unspecified.

6.3 Types and Type-checking in BSV

BSV is a strongly typed language, following modern practice for robust, scalable program-
ming. All expressions (including variables, functions, modules and interfaces) have unique
types, and the compiler does extensive type checking to ensure that all operations have
meaningful types. Type-checking in BSV is much stronger than in languages like C and
C++. For example, in C or C++ one can write an assignment statement that adds a char,
a short, a long and a long long and assign the result to a short variable; the compiler
silently “casts” each right-hand side expression’s result to a different (typically wider) type,
performs the operation, and then silently casts the result value to the type required by the
left-hand side (typically narrower). This kind of silent type “casting” (with no visible type
checking error) is the source of many subtle bugs. In hardware, where we use values of
many different bit-widths (not just 8, 16, 32, 64), these buts can be even more deadly. In
BSV, type casting is never silent, it must be explicitly stated by the user in the code.

The central purpose of a strong static type system, whether in software programming
languages or in BSV is to keep us (fallible humans) verifiably honest, so that we do not acci-
dentally misinterpret bits, which ultimately are used to represent everything. For example
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if a certain 64 bits is used to represent an “employee record”, it makes no sense to apply the
“square root” function to those bits, i.e., to misinterpret those bits as if they represented a
number.

A full treatment of the BSV type system is not appropriate in this book. Below, we will
introduce the most important basics to make use of types productively in combinational
logic descriptions. Additional topics will be introduced with sequential logic descriptions.

6.3.1 Types

As motivated in Section 6.1.1, instead of working with individual wires or bits, it is conve-
nient to group multiple conceptually related wires (e.g., those that together convey a binary
value) to handle them as one entity. So far we have limited ourselves to working with the
type Bit#(w), quite literally a ordered-bundle—a vector—of wires. Already, there is a lot
more to it.

Associated with a type are the supported operations on them. We have been manipu-
lating variables and expressions of type Bit#(w) with logic operators (&, |, ^, etc.), shifts
(>> and <<), and concatenation ({...}). Toward the end of Section 6.2.5 we revealed the
fact that you can actually perform arithmetic on Bit#(w) with built-in operators (+, -, *,
etc.), interpreting the variables and expressions as unsigned binary values of width w.

As you become more advanced, you can learn on your own to use Int#(w) and UInt#(w)
in BSV. They represent signed and unsigned integers, respectively, that can be represented
in w bits. In addition to the normal arithmetic operators, you can also apply negate to a
signed integer to invert its sign.

There is a Boolean type Bool which can take on 2 values (True or False). It has the
expected built-in logic operators, && (“AND”) and || (“OR”), as well as unary negation
using either ! or not. In the BSV type system, Bool is not synonymous with Bit#(1); you
cannot operate on Bool variables and Bit#(1) variables together.

In Sec. 6.1 we were introduced to general vector types. For example, Vector#(16,Bit#(8))
is a vector of size 16 containing Bit#(8)’s, and this is distinct from the type Vector#(16,Bool),
even though the underlying representation may occupy the same number of bits. Similarly,
Vector#(16,Bit#(8)) and Vector#(8,Bit#(16)) represent distinct types, even though
the underlying representation may occupy the same number of bits.

Certain types, such as Bool or String are straightforward. A type such a Bit#(w) has
more structure. The symbol # indicates that Bit is parameterized. We need to specify a
width to make a variable of this type concrete for synthesis, e.g., Bit#(8), Bit#(32), etc.

Vector is another example of a parameterized type, in this case taking two parameter
types, one specifying the vector size, and the other specifying the type of the contents
of each vector element. For example, Vector#(16,Bit#(8)) is the type of vectors of 16
elements, each of which is a Bit#(8) value. As this example shows, types can be nested;
thus Vector#(16,Vector#(8,Bit#(2))) represents:

A vector of 16 elements, each of which is
a vector of 8 elements, each of which is

a 2-bit value
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Another useful example to learn is Tuple2#(t1,t2) which allows bundling of two arbi-
trary types into a new type, e.g., Tuple2#(Bit#(8), Bool). These are useful for functions
that return multiple results, to bundle them up in to a conceptually single entity. For
those familiar with “struct” types in C or C++, a tuple is simply kind of struct where the
fields/members are not explicitly named. BSV provides tuples of width 2,3,4,...

6.3.2 Type Synonyms

For types that are used frequently, we can create type synonyms as nicknames for them. We
often do this to improve the readability of BSV code. As a rule, in BSV, a type name always
begins with a capital letter, while a variable identifier begins with a lower-case letter.

Type Synonym Examples
1 typedef Bit#(8) Byte;

2

3 typedef Bit#(32) Word;

4

5 typedef 32 DataSize;

6

7 typedef Bit#(DataSize) Data;

8

9 typedef Tuple2#(a,a) Pair#(a);

10

11 typedef Pair#(Word) Cartesian;

Types and type synonyms can be parameterized by type variables. In the example, the
type synonym Pair#(a) is parameterized by a type variable a to be specified only when
it is used. A subtle issue to note is that, in BSV, the type language (which describes the
“shape” of values) is completely separate from the language for hardware description, which
describes values (carried on wires). In the above examples, the “8” and “32” are called
numeric types because they are used as type parameters, even though they use the same
notation as numeric values. We will say more about this shortly.

6.3.3 Enumerated Types

Enumerated Types are a very useful typing concept. Suppose we want a variable c to
represent three different colors: Red, Green, Blue. With only what we know, we could
declare the type of c to be Bit#(2) and impose a convention that 00 represents Red, 01
Blue, and 10 Green. The problem is that these two-bit values could be accidentally mixed
in expressions with other two-bit values that have nothing to do with color, such as a hotel
rating of Good, Better and Best. Further, operations like AND, OR, NOT, shift, etc. make
no sense for this type.

Alternatively, we can create a new enumerated type just for this:

typedef enum {Red, Blue, Green} Color;
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With this, we can declare a variable of type Color and assign the values Red, Green, Blue
to it. One cannot perform logical or arithmetic operations on it, nor mix it with other
enumerated types that may happen to be represented in 2 bits. Further, it makes our
code more readable because we use the symbolic constants Red, Green, Blue for the values,
instead of 2-bit constants 2’b00, 2’b01, 2’b10.

6.3.4 Deriving Eq, Bits and FShow

Whenever we define a new type like Color, we almost always append this common “mantra”
to the declaration:

typedef enum {Red, Blue, Green} Color

deriving (Eq, Bits, FShow);

The first element in the parentheses, Eq, tells the BSV compiler please to define the equality
and inequality operators for this type automatically. Now we can write things like this:

1 Color c1, c2, c3;

2 c1 = Red;

3 c2 = Blue;

4 ...

5 c3 = c2;

6 ...

7 if (c1 == c2)

8 ...

9 else if (c2 != c3) ...

10 ...

In the first few lines, we declare variables c1, c2 and c3 of type Color, and perform some
assignments on these using the symbolic constants Red and Blue. In the conditional state-
ments, we are using the equality (==) and inequality (!=) operators on these variables, which
are meaningful because of the deriving(Eq) clause.

The second element in parentheses, Bits, tells the BSV compiler please to choose the
bit representations of the symbolic constants in the obvious way, namely, please use the
minimum necessary bits to encode these values (in this case, 2 bits) and, further, encode
them sequentially in the natural way: Red as 00, Blue as 01, and Green as 10.

The third element in parentheses, FShow, tells the BSV compiler please to define auto-
matically a function that produces a natural string representation of the values to be used
in $display statements. For example, if we were to write:

$display (c1, ",", c2, ",", c3);

$display (fshow (c1), ",", fshow (c2), ",", fshow (c3));

then, when we execute the code in a simulator, this would print the following two lines on
the terminal:
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0, 1, 1
Red, Blue, Blue

The reason that the compiler requires the BSV programmer to write the mantra:

deriving (Eq, Bits, FShow);

instead of just assuming it exists is that actually BSV provides complete flexibility in how
one defines equality on a new type, on how one represents it in bits, and on how it is
printed. This mantra is just a shorthand convenience to tell the compiler please to define
these facilities for me in the obvious way.

In some other situation, the programmer may decide to use a so-called “one-hot” encod-
ing for Color values, using 3 bits and encoding the values as 001, 010 and 100, respectively.
BSV provides this power, but that is an advanced topic not relevant for this book.

Another example: we could declare an enumerated type to designate the functions
performed by an ALU.

Enumerated types for ALU opcodes
1

2 typedef enum {Add, Sub, And, Or, Xor, Nor, LShift, RShift, Sra} AluFunc

3 deriving (Bits, Eq);

Compared with our first ALU example, using AluFunc instead of Bit#(4) for the control
input func eliminates the error when a designer uses the ALU with the wrong encoding and
makes it easier to add or remove operations later on.

ALU for Arith, Logic, Shift ops
1 function Bit#(32) alu (Bit#(32) a, Bit#(32) b, AluFunc func);

2 Bit#(32) res = case(func)

3 Add : (a + b);

4 Sub : (a - b);

5 And : (a & b);

6 Or : (a | b);

7 Xor : (a ^ b);

8 Nor : ~(a | b);

9 LShift: (a << b[4:0]);

10 RShift: (a >> b[4:0]);

11 Sra : signedShiftRight(a, b[4:0]);

12 endcase;

13 return res;

14 endfunction

6.4 Parameterized Description (Advanced)

We will wrap up this chapter by generalizing the 32-bit ripple-carry adder to a w-bit ripple-
carry adder. We begin with a not quite correct attempt by replacing the value ”32” by the
type variable ”w” in the 32-bit ripple carry adder code from Section 6.2.5. We assume there
is another type variable lg2w that is dlg2we.
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w-bit Ripple Carry Adder (not quite right)
1 function Bit#(w+1) addN (Bit#(w) x, Bit#(w) y);

2 Bit#(w) s;

3 Bit#(w) c_out;

4 Bit#(2) cs;

5 Bit#(1) c_in=0;

6 for(Bit#(lg2w+1) i=0; i<w; i=i+1) begin

7 cs = fa (x[i],y[i],c_in);

8 c_out[i] = cs[1]; s[i] = cs[0];

9 c_in=c_out[i];

10 end

11 return {c_out[w-1],s};

12 endfunction

Mentally, we should see that by replacing w with a specific value, e.g., 32 or 2, the above
function would describe an ripple carry adder of that width. Concretely, we can instantiate
adders of specific sizes as follows.

w-bit Ripple Carry Adder ()
1 function Bit#(33) add32 (Bit#(32) x, Bit#(32) y)

2 = addN (x,y);

3

4 function Bit#(3) add2 (Bit#(2) x, Bit#(2) y)

5 = addN (x,y);

This defines add32 and add2 on 32-bit and 2-bit values, respectively. In each case the
specific function just calls addN, but the compiler’s type deduction will fix the value of w
for that instance, and type checking will verify that the output width is 1 more than the
input width. Alas, we have what we wanted, except for a small notational issue with the
addN function given above.

The BSV compiler, like most compilers, is composed of several distinct phases such as
parsing, type checking, static elaboration, analysis and optimization, and code generation.
Type checking must analyze, verify and deduce numerical relationships, such as the bit
widths in the example above. However, we cannot have arbitrary arithmetic in this activity
since we want type-checking to be feasible and efficient and decidable at compile-time (ar-
bitrary arithmetic would make it undecidable). Thus, the numeric calculations performed
by the type checker are in a separate, limited universe, and should not be confused with
ordinary arithmetic on values.

In the type expressions Bit#(1), Bit#(2), Bit#(33), the literals 1, 2, 33, are in the type
universe, not the ordinary value universe, even though we use the same syntax as ordinary
numeric values. The context will always make this distinction clear—numeric literal types
only occur in type expressions, and numeric literal values only occur in ordinary value
expressions. Similarly, it should be clear that a type variable like w in a type expression
Bit#(w) can only stand for a numeric type, and never a numeric value.

Since type checking (including type deduction) occurs before anything else, type values
are known to the compiler before it analyses any piece of code. Thus, it is possible to take
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numeric type values from the types universe into the ordinary value universe, and use them
there (but not vice versa). The bridge is a built-in pseudo-function called valueOf(n).
Here, n is a numeric type expression, and the value of the function is an ordinary Integer

value equivalent to the number represented by that type.

Numeric type expressions can also be manipulated by numeric type operators like
TAdd#(t1,t2) and TMul#(t1,t2), corresponding to addition and subtraction, respectively
(other available operators include min, max, exponentiation, base-2 log, and so on).

With this in mind, we can fix up our w-bit ripple carry adder code:

w-bit Ripple Carry Adder (corrected)
1 function Bit#(TAdd#(w,1)) addN (Bit#(w) x, Bit#(w) y);

2 Bit#(w) s;

3 Bit#(w) c_out;

4 Bit#(2) cs;

5 Bit#(1) c_in=0;

6 for(Integer i=0; i<valueOf(w); i=i+1) begin

7 cs = fa (x[i],y[i],c_in);

8 c_out[i] = cs[1]; s[i] = cs[0];

9 c_in=c_out[i];

10 end

11 return {c_out[valueof(w)-1],s};

12 endfunction

The differences from the earlier, almost correct version is that we have used TAdd#(w,1)

instead of w+1 in the type specification in lines 1, and we have used valueOf(w) in line 6
and line 11 to the type variable w in the circuit description. In the corrected version, we
also made use of the special value type Integer for the loop counter i in line 6. Integer

is only available as a static type for static variables that are used at compile time. (Recall,
for-loop used in this way is evaluated by the compiler during static elaboration; no notion
of i or ”looping” remain in the combinational logic that results afterwards.) Semantically,
Integer variables are true mathematical unbounded integers, not limited to any arbitrary
bit width like 32, 64, or 64K (of course, they’re ultimately limited by the memory of the
system your compiler runs on). For dynamic integer values that maps to hardware, they
must be typed with a certain definite bit width.

6.5 Takeaways

We have only seen the tip of the BSV iceberg. There is more to come in association with the
design and description of sequential logic. There is also much sophistication in BSV beyond
the scope of this book. Nevertheless, we have seen enough of the basics to accomplish many
useful, even powerful, designs. At this point, there is no combinational logic circuits you can
conceive in your mind that you cannot put down in BSV code to simulate and to synthesize.

To review, we learned how to use modern high-level programming constructs to describe
combinational circuits in a special usage of BSV functions. As in software engineering, these
functions enable a modular design methodology where we can reuse a design and we can
hierarchically build-up to complex designs. The piece de resistance is the final parameterized
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ripple-carry adder circuit description. As an exercise, you should create parameterized
versions of the other examples we visited in this chapter.

We learned how to make use of types and type checking to prevent us from connecting
functions and gates in illegal ways. Many users of BSV have found this especially helpful in
flagging out subtle errors that only manifest in rare corner cases (e.g., inadvertent overflow
or wraparound of values with mismatched bit width). When starting out, you are likely to
find the type system unwieldy. The best way to learn about types is to try writing a few
expressions and feeding them to the compiler.

It is important to appreciate the true nature of what we are describing, especially keeping
in mind that all loops are unfolded and functions are in-lined during compilation. We will
see much more of this later in Chapter 10.

6.6 Incredibly powerful static elaboration (Advanced)

(This section can be safely skipped without loss of continuity.)

6.6.1 Recursion

The for-loops introduced in Sec 6.2.4 are an example of using a high-level programming ab-
straction (loops) to specify certain repetitive hardware structures in a succinct and readable
manner.

For example, consider this function to add all elements of a vector of n elements, each
being a w-bit number (this function does not take care of overflow beyond w bits):

1 function Bit #(w) add_all (Vector #(n, Bit #(w)) vec);

2 Bit #(w) result = 0;

3 for (Integer j = 0; j < valueOf (n); j = j + 1)

4 result = result + vec [j];

5 return result;

6 endfunction

This would be unfolded into a linear array of w-bit adders, with the j’th adder adding
vec[j] to the output of the previous adder. The 0’th adder’s “previous output” is 0, and
the (n− 1)’th adder’s result is the final output of the function.

Here is a different implementation of this function, using recursion instead of loops, in a
binary divide-and-conquer fashion:

1 function Bit #(w) add_all (Vector #(n, Bit #(w)) vec);

2 return add_all_in_range (vec, 0, valueOf (n-1));

3 endfunction

4

5 function Bit #(w) add_all_in_range (Vector #(n, Bit #(w)) vec,

6 Integer i,
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7 Integer j);

8 Bit #(w) result;

9 if (i == j)

10 result = vec [j];

11 else begin

12 Integer k = (i + j) / 2;

13 result = add_all_in_range (i, k) + add_all_in_range (k+1, j);

14 end

15 return result;

16 endfunction

The auxiliary function add_all_in_range returns the sum of all elements vec[i], vec[i+1],
... vec[j]. Suppose n was 8. The initial call to add_all_in_range has arguments
(vec, 0, 7). This performs two recursive calls:

add_all_in_range (vec, 0, 3)

+ add_all_in_range (vec, 4, 7)

which, in turn, results in the calls:

(add_all_in_range (vec, 0, 1)

+ add_all_in_range (vec, 2, 3))

+ (add_all_in_range (vec, 4, 5)

+ add_all_in_range (vec, 5, 7))

which, in turn, results in the calls:

((add_all_in_range (vec, 0, 0)

+ add_all_in_range (vec, 1, 1))

+ (add_all_in_range (vec, 2, 2)

+ add_all_in_range (vec, 3, 3)))

+ ((add_all_in_range (vec, 4, 4)

+ add_all_in_range (vec, 5, 5))

+ (add_all_in_range (vec, 6, 6)

+ add_all_in_range (vec, 7, 7)))

Each of these, finally, hit the (i==j) condition and so there are no more recursive calls, so
this produces:

((vec [0]

+ vec [1])

+ (vec [2]

+ vec [3]))

+ ((vec [4]

+ vec [5])

+ (vec [6]

+ vec [7]))
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Notice that, while the previous function unfolded into a linear chain of adders, this
function unfolds into a tree-like arrangements of adders. While the longest-path delay in
the previous function was proportional to n, in this case it is proportional to log n.

6.6.2 Higher-order functions

Suppose we wanted to compute the “AND” of all Bit#(w) elements in a vector. Or the
“OR”, maximum, minimum, etc. Each of these functions would look very similar to the
add_all function in the previous section, the only difference being the 2-input operator we
applied inside the function (+, &, | ...).

In BSV, we can write a single parameterized function to capture this “design pattern”:

1 typedef

2 function Bit #(w) op_all (Vector #(n, Bit #(w)) vec,

3 function Bit #(w) op (Bit #(w) x, Bit #(w) y),

4 Bit #(w) init);

5 Bit #(w) result = init;

6 for (Integer j = 0; j < valueOf (n); j = j + 1)

7 result = op (result, vec [j]);

8 return result;

9 endfunction

This is just a generalization of the add_all function (the version using a loop; we could also
have done it with the recursive version). We’ve changed the name of the function to op_all

and added two more arguments. The first argument of op_all is the vector of values, as
before. The new second argument, called op, is declared like this:

function Bit #(w) op (Bit #(w) x, Bit #(w) y)

indicating that it is itself a function, taking two Bit#(w) arguments and returning a Bit#(w)

result. The third argument of op_all is a Bit#(w) value called init, representing the initial
value of the accumulated result. For example, if op were the addition function, then init

should be 0, and op_all will add all the elements. If op were the multiplication function,
then init should be 1, and the function will multiply all the elements. If op were the“AND”
function (&), then init should be all 1s, and the function will AND all the elements. If op
were the “OR” function (|), then init should be all 0s, and the function will OR all the
elements.

Our add_all function can then be defined succinctly as follows. We also show the other
functions mentioned in the previous paragraph, using even more succinct notation:

1 function Bit #(w) add_all (Vector #(n, Bit #(w)) vec);

2 return op_all (vec, \+ , 0);

3 endfunction

4
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5 function Bit#(w) mult_all(Vector#(n, Bit#(w)) vec) = op_all (vec, \* , 1);

6 function Bit#(w) and_all (Vector#(n, Bit#(w)) vec) = op_all (vec, \& , ’1);

7 function Bit#(w) or_all (Vector#(n, Bit#(w)) vec) = op_all (vec, \| , 0);

The notation “\+ ” (note the trailing space) allows us to disable the normal syntactic
role of + as an infix operator expecting argument expressions on either side, and to treat it
just as a 2-argument function. Similarly, “\* ”, “\& ” and “\| ” allows us to treat *, &, |
as 2-argument multiplication, AND and OR functions, respectively.

Also, in the latter three definitions, instead of enclosing the function body with usual
endfunction, we use the alternative form “= expression” (we normally use this alternative
form only for very short function definitions).

The bottom line is, we are parameterizing one combinational circuit structure with an-
other combinational circuit ! The function op_all describes a combinational circuit struc-
ture that is common to the problem of adding, multiplying, ANDing or ORing a vector
of elements. Into this common structure, wherever op is used, we plug in another specific
combinational circuit, for addition, multiplication, ANDing or ORing. In programming
language theory, a function whose argument (or result) can itself be a function is called
a higher-order function. This capability can be found in many modern programming lan-
guages such as Python, Haskell, OCaml, Scala, etc. and, in a less disciplined way, even in
C (function pointers).

6.6.3 Summary

In the full adder fa and 2-bit adder add2 examples at the beginning of this chapter, we saw
how combinational circuits can be described using BSV functions with full specificity and
literal correspondence to a circuit diagram. Those simple functions are almost just a direct
textual rendering of wiring diagrams, directly describing how primitive gates are connected
with wires. A variable like s or c_out when assigned is just a name for the wires that are
the output of the combinational circuit represented by the expression in the right-hand side
of the assignment.

In this section we showed much more powerful uses of functions, where we rely on the
compiler to “unfold” functions in sophisticated and intricate ways (loops, recursion, higher-
order functions). However, we reach the same endpoint: a combinational circuit, which
is just an acyclic interconnection of primitive gates. BSV functions can be seen as just a
very powerful abstraction mechanism to describe combinational circuits. This can be put
to powerful uses in the hands of an advanced BSV user.

The above notwithstanding, readers with programming background should have also
realized that all the the functions we have described have perfectly sensible readings in
the normal programming sense, where a function computes a return value based on the
input arguments. This dual interpretation holds for all uses of BSV functions to describe
combinational circuits. Indeed, when BSV is executed in a simulator, it is executed using the
traditional computation interpretation, not in terms of AND and OR gates. The abstract
perspective associated with a computational reading can be beneficial when working with
more elaborate designs. As you become experienced with logic design and with BSV, you
will find it useful to be able to move between the programming and circuits interpretations
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as convenient. Initially though, you should first work to become practiced in thinking in
terms of circuit description as this awareness is essential to producing high-quality circuits
(in terms of size, speed, energy, etc.) over and above one that is merely functionally correct.
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Chapter 7

Sequential (Stateful) Circuits

7.1 Introduction

So far, we have described combinational circuits which, in the end, are just acyclic inter-
connections of basic gates such as AND, OR or NOT gates. Quite complex structures can
be created this way, and there is some common symbology used to depict such structures.
Fig 7.1 shows some well-known combinational structures. At the top left is an n-input mul-

Figure 7.1: Common combinational circuits

tiplexer, or “Mux” for short. It takes n inputs A0, ..., An−1 of a common width w, and one
more input Sel of width log2w. When Sel carries the value j, the output O of the circuit,
also of width w, is equal to Aj .

At the top right we have a comparator that takes two inputs A and B of equal width
w, and returns a 2-bit output result indicating whether A < B, A = B or A > B. Some
comparators interpret A and B as unsigned quantities, while some interpret them as signed
(e.g., 2’s complement) quantities.

7-1
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At the bottom left we have a Shifter that takes an input A of width w and another input
B of width log2w. The Sel input indicates the type of shift (left, right, logical, arithmetic).
When B carries value j, the output result is the the value of A shifted by j bits.

The bottom right structure is the most complex. It is an ALU, or “Arithmetic and
Logic Unit“, and is the heart of any computer processor’s CPU. It takes two inputs A and
B, usually of some common width w, and another input OpSelect which is a code indicating
which computation is desired: Addition, Subtraction, And, Or, Xor, Not, comparison, and
so on. The Result output carries the result of the desired computation on A and B. Some
ALUs have a separate Comp? output for the results of comparison operations. You can
think of an ALU as a collection of circuits, one each to do addition, subtraction, And, Or,
Not, comparison, etc. followed by a Mux driven by OpSelect to choose one of the results.

7.1.1 Sequential circuits

In this chapter we extend our notion of circuits from combinational circuits to sequential
circuits. A combinational circuit has no “memory” of past inputs (we also say that it has
no state). Each output wire, and indeed each internal wire, is a direct (boolean) function
of the current inputs of the circuit (not counting any brief transitory period after inputs
change, when changed signals may still be propagating through the circuit). Sequential
circuits contain a second class of building blocks which we call state elements, i.e., elements
with “memory”. The values carried by wires in such a ciruit depend on the past history of
signals, because each state element “remembers” some past input. We thus call such circuits
sequential circuits—their behavior is defined temporally, i.e., relative to the sequence of
signals in time.

7.2 The Edge-Triggered D Flip-Flop with Enable: a Funda-
mental State Element

The most commonly used state element is the “Edge-Triggered D Flip Flop with Enable”.
In the next few subsections we build up to this gradually from combinational circuits.

7.2.1 Combinational circuits with feedback: the D Latch

What happens if we deliberately break the rules of combinational circuits and introduce
a cycle, i.e., we add a connection so that the output of a gate feeds back to an input of
the same gate, either directly or indirectly via other gates? Fig 7.2 shows two examples,
using inverters (NOT gates). The first one (and in fact any cycle with an even number of
inverters), is “stable” in one of two possible states. If you follow either the green or the red
0s and 1s around the cycles, each inverter seems to be doing the right thing, i.e., inverting
its input.

If it was in the state indicated by the green labels and we wanted to flip it to the state
indicated by the red labels, how would we do it? If we could do that at will, we essentially
would have a circuit that “remembers” the last flip (or flop) indefinitely. We also say that
it has “memory” or “state”.
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Figure 7.2: Circuits with cycles (not combinational)

In the second circuit, (and in fact any cycle with an odd number of inverters), we can
find no stable state where every gate is inverting correctly, like the green and red labels
of the first circuit. To explain what this circuit does we have to drop below the digital
abstraction level and appeal to reasoning about the underlying analog circuits. Once we
do that, and take into account the fact that the circuits have a propagation delay, we will
conclude that this circuit will oscillate forever. Suppose we momentarily somehow forced
the input of the left-most gate to zero. After three gate delays, it emerges on the right as
1. But this drives the input of the left-most gate so, after a gate delay, its output which
was 1 becomes 0. A gate delay later, the middle gate’s output, which was a 0, becomes 1.
A gate delay later, the right-most gate’s output which was a 1, becomes a 0, And this cycle
repeats forever. The frequency of this oscillation of course depends on the gate delays and
the number of gates in the odd-sized cycle.

Fig 7.3 shows a useful structure, well-known as the D Latch. It is based on a 2-input

Figure 7.3: The D Latch

mux (multiplexer); the mux input is selected using the signal C. When C is 0, the input D
is selected and passed through to the Q output, and there is no cycle. When C transitions
to 1, it selects the other input of the mux, which is the current value of Q, and this is a
stable cycle. As long as C remains 1, Q will remain at that value, even if D changes!. In
effect, the D Latch “remembers“ what was the value of D when C transitions from 0 to 1 no
matter how long ago that transition occurred! The D Latch gives us a usable memory cell!
The D input is the value we remember, and the C input allows us to control when we want
to “sample” D.

7.2.2 Cascaded D Latches give us an Edge-Triggered D Flip-Flop

Fig 7.4 shows two D latches cascaded in a certain way: they have the same C input, but
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Figure 7.4: Two cascaded D Latches

the Q output of the first one feeds the D input of the second one. When C is 0, both latches
pass-through their input signals, so D on the far left is passed all the way through to the
Q on the far right. When C is 1, both latches hold their values, which is the just the most
recent value of the leftmost D when C went from 0 to 1. Thus, they just behave like a single
D latch.

Exercise 7.1: What happens if C oscillates with a time period comparable to the propa-
gation delay of a single D latch? 2

Fig 7.5 shows a slight variation: the C input of the second D latch is inverted from the C

Figure 7.5: Two cascaded D Latches with inverted C inputs

input of the first one. When C is 0, the first latch is passing, so Qint (for “internal”) follows D,
and the second latch is holding. When C is 1, the first latch is holding Qint, and the second
latch is passing, so Q is equal to Qint. In short, Q will not change when C is 0 or 1, but it
can change only when C transitions from 0 to 1 (the so-called rising edge of C).

This structure is usually packaged as a basic building block, called a “D Flip-Flop”, and has
its own symbol, shown in Fig7.6. In pictures, the input with the little triangle always refers

Figure 7.6: Symbol for an Edge-Triggered D-Flip Flop

to a clock input—it is the signal that controls (by its transitions) when data is “clocked in”
to the D flip-flop. Fig7.7 describes the behavior of a D flip flop by showing waveforms for
the input and output, and for the clock. At the first rising edge of the clock C, the current
value of D (1, in the figure) is sampled and held, i.e., appears at Q after a small propagation
delay. At the second rising edge of C, the current value of D (0, in the figure) is sampled
and held, i.e., appears at Q after a small propagation delay.

What happens if D is changing at or around the rising edge of the clock, as suggested in
the third rising edge of C in the figure? In this case we are violating the digital abstraction,
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Figure 7.7: Behavior of an Edge-Triggered D-Flip Flop

where signals are supposed to be classifiable definitively as either a “0” or a “1”. We are
back in to analog circuit analysis territory, and in fact the flip-flop can go into a so-called
meta-stable state, wandering at a voltage somewhere between our definitions of 0 and 1, for
an indefinite period before it settles into a definitive 0 or 1. Every digital designer works to
eliminate this indeterminate situation—we must ensure that the output of one state element
(e.g., a D flip flop) can propagate through all combinational circuits en route to an input
of another state element well before the latter’s next rising clock edge, so that it is stable
when it is sampled there.

7.2.3 Controlling the Loading of a D Flip Flop with an Enable Signal

An edge-triggerd D flip flop samples its input on every rising edge of its clock. Suppose
we want to sample a signal only on some condition, for example when a button is being
pressed. One dangerous way to do this is to interpose an AND gate before the C input,
fed by the clock and the button-press condition. This is extremely dangerous because we
have disturbed the time at which the clock edge arrives at the flip flop, delaying it by the
propagation delay of the AND gate. Further, if the button-press occurs coincident with a
clock transition, the output of the AND gate can be unpredictable and can even “glitch”
back and forth a couple of times. All this will lead to unpredictable and undesirable behavior
of the flip flop.

A better way to do it, without messing with the clock, is shown in Fig7.8. When the

Figure 7.8: Implementation of an Edge-Triggered D-Flip Flop with an ENABLE signal

“enable” signal EN is 1, it behaves just like our original edge-triggered D flip flop. When EN

is 0, it holds its value indefinitely, ignoring any subsequent changes in D. Fig 7.9 augments
the symbol for the edge-triggered D flip flop to include an EN input signal, shown in red.
Fig7.10 illustrates the behavior of the state element. Although D is 1 at both the first and
second rising clock edge, it is sampled only at the second clock edge when EN is 1. Similarly,
although D is 0 at the third clock edge, it is not sampled since EN is 0. Thus, the enable
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Figure 7.9: Symbol for an Edge-Triggered D-Flip Flop with ENABLE

Figure 7.10: Behavior of an Edge-Triggered D-Flip Flop with an ENABLE signal

signal gives us precise control over exactly when we want to sample and input signal and
remember it until the next sampling.

From now on, the edge-triggered D flip-flop with enable will be our basic state element.
We often use the word “register”, or phrase “1-bit register” synonymously. Some D flip-flops
also have a “Reset” signal which re-initializes the flip-flop to a fixed value, say 0. Reset
signals may be synchronous (they take effect on the next rising clock edge) or asynchronous
(they take effect immediately, irrespective of clock edges).

7.2.4 A Register: a bank of D Flip-Flops

In the circuits we design, our state elements will typically hold n-bit values, for various
values of n. This is achieved by simplifying banking several individual D flip flops together
with common clock and enable signals, as depicted in Fig 7.11.

Figure 7.11: An n-bit Register: just a bank of D flip flops

7.2.5 Clocked Sequential Circuits in this book

In this book we restrict ourselves to pure clocked sequential circuits with a single global
clock, that is, all state elements will be connected to the same clock, and they all sample
their inputs on the rising edge of the clock. Because of this simplification, we will not even
draw clock signals in our diagrams, in order to reduce clutter (we will just show the little
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triangles on each state element to remind us that it is clocked). Further, we do not even
mention clocks in BSV code.

Just for perspective: more advanced circuits can have multiple clocks; they are usually
partitioned into so-called clock domains, where every state element in each domain has a
common clock. Signals that cross clock domain boundaries have to be treated very care-
fully to avoid undesirable behaviors (metastability, unintended loss, duplication or random
generation of data, etc.). State elements may be latched or clocked, and may also vary in
whether they sample on rising or falling edges, etc.. BSV has notations and constructs to
express such designs, but we do not cover those topics in this book.

7.3 Example: a Modulo-4 Counter and Finite State Ma-
chines (FSMs)

A Modulo-4 counter is a 2-bit counter that “wraps round” from the maximum value (3)
back to the minimum value (0): 0, 1, 2, 3, 0, 1, 2, 3, ... Let us also assume an input inc

by which we control whether the counter is actually counting or just holding steady at its
most recent count. The behavior is specified in the following state transition table, where
q1 and q0 are the two bits of the counter:

Current State Next State
q1 q0 inc = 0 inc = 1

00 00 01
01 01 10
10 10 11
11 11 00

A Modulo-4 counter is an example of a Finite State Machine, or “FSM” for short. It
sequences through four states, 00, 01, 10 and 11. A second and equivalent way to specify
an FSM is with a more pictorial notation called “bubble diagrams” or “state transition
diagrams”. The diagram specifying our Modulo-4 counter is shown in Fig 7.12. Each

Figure 7.12: An FSM specifying the Modulo-4 counter

bubble represents one state, and each arrow depicts a transition between states. Each
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arrow is labeled with the input(s) that trigger that transition. The loopback arrows show
where the FSM remains in its current state.

A third and also equivalent way to specify and FSM is show boolean equations for the
“next state” based on the current state and current inputs. Here are the equations for our
Modulo-4 counter (the t and t+ 1 superscripts indicate values in the current state and next
state, respectively).

q0t+1 = ∼ inc · q0t + inc · ∼ q0t

= inc ⊕ q0t

q1t+1 = ∼ inc · q1t + inc · ∼ q1t · q0t + inc · q1t · ∼ q0t

= ∼ inc · q1t + inc · (q1t ⊕ q0t)

7.3.1 Implementing a Modulo-4 Counter using D flip-flops with enables

Fig 7.13

Figure 7.13: A circuit for the Modulo-4 counter

shows an implementation of a Modulo-4 counter. We use two D flip-flops with enables
to hold the q0 and q1 bits. The inc input is connected to the flip-flop enables, and thus they
change only when inc= 1. The remaining combinational logic is a direct transliteration of
the boolean equations shown earlier:

q0t+1 = inc ⊕ q0t

q1t+1 = ∼ inc · q1t + inc · (q1t ⊕ q0t)

which we can further simplify to the situation where “inc” is 1:

q0t+1 = q0t

q1t+1 = (q1t ⊕ q0t)

7.3.2 Abstracted view of all synchronous sequential circuits using regis-
ters (FSMs)

If we just redraw Fig 7.13 a bit and step back, its general structure follows the pattern
of Fig 7.14. We have a bank of state elements (registers) holding current state, and they
are all clocked by a common clock. We have some combinational logic whose inputs come
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Figure 7.14: Abstract structure of sequential circuits

from the outputs of the state elements and from external inputs. The outputs of the
combinational logic are connected to the inputs of the state elements and also provide the
external outputs. The combinational circuits implement the next-state and output functions
of the FSM. Fig 7.15 shows an even more abstract view of the same thing.

Figure 7.15: Even more abstract structure of sequential circuits

Synchronous sequential circuits are a way to implement FSMs in hardware. FSMs are a
much studied topic in mathematics, just like Boolean Algebra. FSMs are used in software as
well, particularly in network communication protocols such as socket connection, TCP/IP,
UDP/IP and so on. In theory, all digital artifacts are FSMs, even your laptop and your
mobile phone, since the number of bits of state (registers, memory, etc.) is large (in the
gigabit or terabit range nowadays), but finite, although this is not a very tractable or
practical characterization!

All our FSM notations—the state transition table, bubble diagrams and boolean next-
state functions—are only practical for small FSMs. For a sequential circuit with n bits, the
size of the specification (number of rows in the state transition table, number of bubbles in
the bubble diagram, or right-hand sides of boolean equations) grows exponentially (2n) and
very quickly becomes unmanageable. Imagine trying to draw an FSM that characterizes
your laptop that has, say, four gigabytes of memory (state elements)! There are many ways
to abbreviate state transition tables and bubble diagrams, but they go only so far.

Instead, for large systems, the tried-and-true principle of “divide and conquer” is the
best way to specify and comprehend them. Our systems will be specified/described/designed
hierarchically (recursively). At every layer, we have a simple compositions of simpler FSMs.
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BSV is used both to describe FSMs and their composition into more complex FSMs. Thus,
real systems are more practically characterized as communicating FSMs, rather than as a
single FSM.

7.4 Other commonly used stateful primitives

7.4.1 A Register File: a bank of individually selectable registers

A register file (such as the set of integer registers in a CPU), illustrated in Fig 7.16, is an

Figure 7.16: A Register File with four 8-bit registers

array of registers, with a way to selectively read and write an individual register identified
by an index. The ReadSel signal is an index that identifies one of the n registers in the
register file. The data in that register is presented on the ReadData output. This is usually
a combinational function, just like reading a single register. The WriteSel signal identifies
one of the registers, and if the WE enable signal is true, then WriteData is stored into that
selected register.

Fig. 7.17 illustrates how a register file can be implemented. The read and write circuits

Figure 7.17: Register File implementation

are entirely separate. The read circuit is just a mux choosing the Q outputs of one of the
registers. In the write circuit, Write Data is fed to the D inputs of all the registers. The
Write Enable signal is fed to only one selected register, which captures the Write Data.

The read and write interfaces of the register file are called “ports”. Many register files
have more than one read and/or write port. Fig. 7.18 illustrates a register file with two read
ports and one write port. It is easy to see how to extend the implementation of Fig. 7.17
for this—simply replicate the mux that implements the read circuit. When implementing
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Figure 7.18: Multi-port Register File

multiple write ports, one has to define what it means if both Write Selects are the same,
i.e., both ports want to write to the same register, possibly with different values. We may
declare this illegal, or a no-op, or fix a priority so that one of them is ignored. All these
schemes are easy to implement.

Why are multi-port register files interesting? In a CPU, the architectural register set
may be implemented directly as a register file. Many instructions (such as ADD) read two
registers, perform an op, and write the result to a register. If we wish to execute one such
instruction on every clock cycle, then clearly we need a 2-read port, 1-write port register
file. If we wish to execute two such instructions in every clock (as happens is modern
“superscalar” designs), we’ll need a 4-read port, 2-write port register file.

7.4.2 Memories

A register file is essentially a small “memory”. The Read Select or Write Select input is an
address identifying one location in the memory, and that location is read and/or written.
However, building large memories out of register files is expensive in silicon area and power
consumption. It is rare to see register files with more than a few dozen locations.

Typically, larger memories are built with special primitives that have been carefully
engineered to be very dense (low area) and requiring much less power. The next step up in
size from register files are on-chip SRAMs (Static RAMs), typically holding kilobytes to a
few megabytes. They typically do not have more than one or two ports.

For even larger memories, we typically have to go to off-chip SRAMs (multi-megabytes)
and DRAMs (Dynamic RAMs) in the megabyte to gigabyte range. On chip, you will
typically have a “memory interface” circuit that communicates with the off-chip memories.

Unlike register files, SRAMs and DRAMs usually do not have combinational reads, i.e.,
data is only available 1 or more clock cycles after the address has been presented. And they
typically do not have multiple ports for reading or writing.

Most modern computer systems have a memory hierarchy, with a few fast and expensive
state elements at one end, and many slow and cheap elements at the other end. By “fast”
and “slow” we are referring to clock speeds at which they run and latency of access. By
“expensive” and “cheap” we are referring to silicon area and power consumption. D flip-
flops are fast and expensive; SRAMS are slower and cheaper; and DRAMs are slowest and
cheapest. And if we extend our notion of “state” to include FLASH memories and magnetic
disk drives, we get elements that are even slower and cheaper, and usually even bigger.
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Exercise 7.2: Design a circuit for a counter that will increment, decrement or preserve its
value, depending on an input control signal. Does your circuit need a “busy” signal? 2



Chapter 8

Sequential Circuits in BSV:
Modules with Guarded Interfaces

8.1 Introduction

In the last chapter we introduced sequential circuits, base on the edge-triggered D flip-flop
with an enable signal. Circuits on real chips contain thousands to millions of D flip-flops, so
we need a way to impose a hierarchical structure on circuits so that we can comprehend and
manage such complexity. In BSV, the fundamental construct for this is the module with its
well-defined interface. All our circuits have a recursive modular structure—complex designs
are written as a top-level module that is a composition of smaller modules that communi-
cate with each other using their interfaces. These modules, in turn, may be composed of
smaller modules, also communicating via interfaces. At the bottom of the hierarchy we have
primitive modules that are pre-defined in the BSV language or supplied in BSV libraries.

To manage complexity, we aim for each module to have a specific, manageable function
that we can easily articulate and comprehend. A module’s interface consists of methods
(similar to what we see in object-oriented languages such as C++, Java or Python) that
are invoked from other modules. Most module interfaces also require a protocol about
how methods are invoked, for correct operation. In BSV, these protocols are enforced by
the language’s type system and concurrent semantics, and so we also call them guarded
interfaces.

8.2 Registers in BSV

The n-bit register depicted in Fig. 7.11 is created in BSV code using statements like this:

Declaring and Instantiating Registers
1 Reg #(Bit #(32)) x <- mkRegU;

2 Reg #(Bit #(32)) y <- mkReg (0);

In each line, the phrase Reg #(Bit #(32)) specifies that we are instantiating a register
that will hold 32-bit values, i.e., that it will be a collection of thirty-two D flip-flops that

8-1
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we treat as a single unit (they all have the same clock and same enable). The variables x

and y are the local names by which we will refer to these registers in subsequent code. On
the right-hand side of the instantiation symbol <-, in line 1 we use the register constructor
mkRegU to create a register where we do not care about the initial contents (at “reset”, or
“the start of time”). In line 2 we use the register constructor mkReg () with argument 0 to
create a register that will contain the initial value 0. We also say that mkReg() instantiates a
register with a particular reset value. The “U” in mkRegU name is mnemonic for “unspecified
reset value”.

We read registers in combinational expressions, and we assign new values into registers
using register-assignment statements. Examples:

Register-assignment statements
1 y <= 42;

2 x <= x - y;

In each line, the left-hand side refers to a register, and the right-hand side is an arbitrary
expression whose value specifies the new value to be assigned into the register. In the first
line, we assign the constant 42 into register y. In the second line, we read registers x and
y, perform the subtraction and assign the difference back into register x. The values of
registers in any right-hand side expression refer to the old, or pre-assignment contents of
registers.1

8.3 Example 1: The Modulo-4 counter in BSV

In Sec 7.3 we discussed a Modulo-4 counter, starting with an FSM (Finite State Machine)
specification in Fig. 7.12, and then a circuit implementation in Fig 7.13. The inputs and
outputs of the circuit were just left dangling. We will now encapsulate the circuit inside a
module, and bring the inputs and outputs to the surface in well-defined interfaces.

In system design, whether in software or hardware, whenever we design a module, it is
generally a good idea first to specify its interface, i.e., the mechanisms and the semantics
by which users or clients of the module are expected to use the module. This is, after
all, the “contract” between the users of a module and the implementer of a module. Once
this contract is clear, we can go about implementing the inner workings of the module.
An interface specification describes what a module does, while the internals of a module
describe how it does it.

Fig 8.1 represents the external view of a module that encapsulates our sequential circuit
for a Modulo-4 counter. Every module has an internal state and an interface. The interface
consists of methods. The internal state of the module can only be accessed or updated using
its interface methods. Interfaces in BSV are declared using notation like the following for
our Modulo-4 counter:

1 interface Counter;

2 method Action inc;

1More accurately, the pre-Action contents, which becomes important when an Action can contain multiple
statements, but more about that later.
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Figure 8.1: A Modulo-4 counter module

3 method Bit #(2) read;

4 endinterface

It contains two methods, an action method called inc and a value method called read.
Action methods are used to update the internal state of the module and, when converted
to hardware, will always have an enable wire by which the external environment tells the
module when to perform the update (in this case, to increment the counter). Value methods
are used for pure reads (side-effect free, i.e., without updating the internal state) of internal
state (in this case, to read the value of the counter).

An interface declaration just specifies the external view of a module—it says nothing
at all about how the functionality is implemented inside the module. Indeed, one can have
many modules that offer the same interface: one implementation may choose to optimize
circuit area, another implementation may choose to optimize speed, and another may choose
to optimize power consumption.

An interface in BSV is in fact a certain kind of type (just like scalar types, structs, or
enums). Thus, a function can have interface arguments and return interface results; but
more about that later.

Here is one possible implementation of our Modulo-4 Counter module:

1 module mkCounter (Counter);

2 Reg #(Bit #(2)) cnt <- mkReg (0);

3

4 method Action inc;

5 cnt <= { cnt [1] ^ cnt [0], ~ cnt [0] };

6 endmethod

7

8 method Bit #(2) read;

9 return cnt;

10 endmethod

11 endmodule

In line 1, we declare the name of the module, mkCounter. Our style is to use the prefix “mk”
in module names, pronounced “make”, to emphasize that this is a module constructor—it
can be instantiated many times to produce multiple module instances.

Following the module name, in parentheses, is the module’s interface type, which we
declared earlier. In line 2, the “<-”, invokes the mkReg constructor to instantiate a register,
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which we refer to using cnt. The inc method has one statement, a register assignment to
register cnt with a value described by the combinational expression on the right-hand side.
The read method merely returns the value of the register.

Fig 8.2 shows the circuit generated by the BSV compiler for the mkCounter module, which
is just an encapsulation of the circuit of Fig. 7.13. Every time we assert the input wire of

Figure 8.2: The circuit for the Modulo-4 counter module

the inc method, it enables the two registers cnt0 and cnt1 to update their contents based
on the combinational circuit connecting their outputs to their inputs. The read method
becomes a 2-bit wide output bus on which we read the register values.

8.3.1 Atomicity of methods

When invoked, an action method may update many state elements (such as registers) inside
the module and, recursively, inside nested modules. A very important feature of BSV
methods is that this collection of updates is done atomically. This means two things:

• Either all the specified state elements are modified, nor none of them are modified. It
is never the case that some of them are modified and some remain unmodified.
• If two methods of a module are invoked concurrently, it is as if the methods were in-

voked in some particular order (we will discuss method ordering in more detail later),
i.e., neither method observes any “intermediate state” during the updates by the other
method.

8.4 Example 2: A module implementing GCD using Euclid’s
algorithm

Euclid devised an algorithm to compute the GCD (Greatest Common Divisor) of two num-
bers a and b:

Repeatedly subtract b from a as long a b is less than or equal to a, or swap them
if b is greater than a, until a is zero; then, b contains the GCD.

Here is an example, computing the GCD of 15 and 6:
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a b operation

15 6 subtract
9 6 subtract
3 6 subtract
6 3 swap
3 3 subtract
0 3 halt

We might write this in Python as:

1 def gcd (a, b):

2 if a == 0: return b

3 elif a >= b: return gcd (a-b, b)

4 else: return gcd (b, a)

The interface contains four methods, defined using this type: Fig 8.3 shows a GCD module,
its interface methods, and some interface wires in the generated hardware.

Figure 8.3: A GCD module

1 interface GCD;

2 method Action start (Bit #(32) a, Bit #(32) b);

3 method ActionValue #(Bit #(32)) getResult;

4 method Bool busy;

5 method Bool ready;

6 endinterface

The environment of this module must follow a certain protocol. In particular, the start

method, to start a GCD computation, must not be invoked while the busy method returns
True, and the result method must not be invoked while the ready method returns False
(later, we will see how we can build these protocols into the methods themselves, so that
they cannot be invoked incorrectly).

Here is the code to implement a GCD module with that interface.

1 module mkGCD (GCD);

2 Reg #(Bit #(32)) x <- mkReg (0);
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3 Reg #(Bit #(32)) y <- mkReg (0);

4 Reg #(Bool) busy_flag <- mkReg (False);

5

6 rule gcd;

7 if (x >= y) begin

8 //subtract

9 x <= x - y;

10 end

11 else if (x != 0) begin

12 //swap

13 x <= y;

14 y <= x;

15 end

16 endrule

17

18 method Action start (Bit #(32) a, Bit #(32) b);

19 x <= a;

20 y <= b;

21 busy_flag <= True;

22 endmethod

23

24 method ActionValue #(Bit #(32)) getResult;

25 busy_flag <= False;

26 return y;

27 endmethod

28

29 method Bool busy = busy_flag;

30

31 method Bool ready = (x == 0);

32 endmodule

In line 1, similar to our previous example, we give our module a name, mkGCD, and declare
that its interface will have type GCD. In lines 2-4, we instantiate two 32-bit registers x and
y, and a boolean register busy_flag that will be used to indicate that the module is busy
performing a GCD computation.

Lines 18-22 define what the start method actually does. It stores its arguments a and b

in registers x and y respectively, and sets the register busy_flag to True, thereby indicating
that the module is now “busy”. This method should only be invoked when the module is
“not busy”, which the environment can test by invoking the busy method.

Lines 6-16 define a rule called gcd. A rule is like an infinite process, executing its body
repeatedly, forever. The body of the rule specifies the “subtract”, “swap” and “halt” actions
described earlier, each controlled by the appropriate condition. Note that when the GCD
has been computed, x= 0 and y≥ 0, so neither of the if-then-else conditions will be true,
and the rule has no action.

Lines 28-30 define the getResult method. This should only be invoked when the answer
is ready, which the environment can test using the ready method. When getResult is
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invoked, it sets busy_flag to false, thus readying the module for the next invocation of
start, and returns the value of y.

The methods busy and ready in lines 29-31 have been written using short forms that
are equivalent to:

1 method Bool busy;

2 return busy_flag;

3 endmethod

4

5 method Bool ready;

6 return (x == 0);

7 endmethod

In the module code, we are doing subtraction using the operator “-” which we usually
think of as an operation on integers, whereas our operands here are of type Bit #(32).
In general we must be careful of such usage, since “-” can mean quite different things
for different types (think of signed integers, polar coordinates, and other types). In this
context it is ok because Bit #(32) can be viewed as similar to (more precisely, isomorphic
to) unsigned 32-bit integers.

8.4.1 Methods and method types

The examples above illustrate the three major types of methods:

• ActionValue methods, like getResult mkGCD.
• Action methods, like inc in mkCounter, and start in mkGCD.
• Value methods, like read in mkCounter, and busy and ready in mkGCD.

ActionValue methods are the most general. They can have arguments and results and, most
importantly, they can update the state of the module, which we also call “side-effects”.

Action methods are a special case of ActionValue methods that do not return any result.
They can have arguments and they can update the state of the module, i.e., they can have
“side-effects”.

Value methods are pure functions, i.e., they cannot have side effects. They can have
arguments and results. They can (non-destructively) read internal state, but they cannot
update any state. A value method, if invoked multiple times with the same arguments at
the same time (for example within a rule or another method), will return the same result.
Of course, if invoked multiple times at different times with the same arguments, they could
return different results if they read underlying state that has changed in the meantime.

The hardware for Action and ActionValue methods always has an enable wire, which is
how the external environment signals to the module when the method’s internal action is
to be performed.
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Commentary on Action, ActionValue and Value types

[This commentary may be of interest to readers who are familiar with type systems in other
programming languages, and can be safely skipped.]

In most languages with strong static type-checking, such as C++, Java and Go, the type of
a function or method typically does not encode the property of whether or not it contains
side-effects. An int → int function, from integers to integers, may or may not update state
inside the function body.

In a few languages, notably Haskell, this property is captured in the type of a function
or method, and strong type-checking guarantees, for example, that a side-effectful function
cannot be used where a pure function is expected.

BSV follows Haskell’s regime. Capturing side-effectfulness in types allows proper, stati-
cally checked composition of programs, guarantees the correctness of certain optimizations,
and helps in formal reasoning about correctness of programs. For example, later we will see
that execution of rules and methods can be controlled with conditions of type Bool; this
type guarantees that a scheduling decision, about whether to execute a rule/method or not,
does not itself change the state of the system.

Invoking methods: arguments and results

Arguments are provided to methods with the traditional notation, with parentheses and
separated by commas. More interesting is how we collect results of method invocations or,
to use more technical terminology, how we bind result values to variables.

Action methods (which have no results) are just written as statements:

module instance.method name ( arg expression, ..., arg expression)

Examples:

mod4counter.inc;

gcd.start (10+3, 27);

For value methods, we invoke them as usual, by applying them to arguments. We can bind
the result to a variable, or nest it in other expressions in the usual way. When we bind the
result to a name, we can either declare the the type of the name, or use the let keyword
to ask the compiler to work out the type. Examples:

Bool isGcdBusy = gcd.busy;

let r = gcd.ready

if (r && (mod4_counter.read == 0)) begin

...
end

ActionValue methods are invoked using a special notation involving “<-”. Once again, the
new variable’s type can be declared explicitly, or one can use let to ask the compiler to
work it out. Examples:
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Bit #(32) result1 <- gcd1.getResult;

let result2 <- gcd2.getResult;

There is nothing technically wrong with using “=” as a binder with an ActionValue method.
In this case, you are just binding the variable to the ActionValue method itself, rather than
invoking it and binding it to the result of the invocation. Example:

let m = gcd2.getResult; // m has type ActionValue #(Bit #(32)

let result2 <- m; // result has type Bit #(32)

In the first line, we are binding m to the ActionValue method itself, and in the second line
we’re invoking it, and binding result2 to the result of the invocation. The difference can
be observed in the types of m and result2.

8.4.2 Rules and atomicity

Rules are where the action is!

The GCD example is our first example involving a rule. We repeat the code here, for
convenience:

1 rule gcd;

2 if (x >= y) begin

3 //subtract

4 x <= x - y;

5 end

6 else if (x != 0) begin

7 //swap

8 x <= y;

9 y <= x;

10 end

11 endrule

As described earlier, a rule is a kind of infinite process, repeating forever. The body of rule
may contain zero or more actions. In our example, all actions are just register-assignments.
Later we will see that actions may be invocations of Action or ActionValue methods (in
fact, a register assignment is just a special Action method invocation).

Each rule has a name, like gcd here, which are mostly for readability and do not play
any semantic role.2

All the enabled Actions/ActionValues in a rule are performed in parallel, conceptually
all at exactly the same instant. By“enabled”we mean all actions whose governing conditions
are true, as in the conditions of the if-then-else structure in this example.

A rule’s Actions are done atomically, just as we described in Section 8.3.1 regarding
atomicity of methods. We repeat the definition here, using the more technical term Action

instead of the more informal phrase “modify state elements”:

2Rule names are also useful for readability and debugging, and for advising the compiler on how to
schedule rules; more about that later.
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• Either all the enabled Actions are performed, nor none of them are performed.
• If two separate rules execute concurrently, it is as if they are performed in some particular

order, i.e., the Actions of one before the Actions of the other, or vice versa (we will
discuss method ordering in more detail later). Neither rule observes any “intermediate
state” during the updates by the other rule.

When we say all the enabled Actions of a rule are done simultaneously, “semantically at
the same instant”, what does the following code fragment mean?

1 else ... begin

2 //swap

3 x <= y;

4 y <= x;

5 end

Here, there are two Actions, one that reads register x and writes it to register y, and the
other that performs the opposite data movement. If we think of a rule execution as a “step”,
then all observed state values are the values preceding the step, and all updates specify what
the value will be after the step. If we refer to these “before” and “after” times as t and t+ 1,
we can annotate the code fragment to clarify which values they mean:

xt+1 <= yt ;

yt+1 <= xt ;

Thus, this is a parallel-read of y and x, respectively, and a parallel-write of the two values
into x and y, respectively. Thus also, it would make no difference if we had written the
statements in the opposite order:

yt+1 <= xt ;

xt+1 <= yt ;

Since all enabled actions in a rule are performed in parallel at the same instant, it makes
no sense to compose actions in a rule that specify contradictory (inconsistent, conflicting)
actions. For example:

1 rule one;

2 y <= 3;

3 x <= 5;

4 x <= 7;

5 endrule

The latter two assignments are contradictory, and it makes no sense for them to happen
simultaneously. This “bad parallel composition of actions” is something that the BSV com-
piler will flag as an error during compilation.

Here is one subtle variation of the above example:
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1 rule two;

2 y <= 3;

3 if (b)

4 x <= 5;

5 else

6 x <= 7;

7 endrule

Even though there are two syntactic occurrences in the same rule of assignments to register
x, they are semantically mutually exclusive, and so this is fine; and the BSV compiler will
allow it. In fact, this example is equivalently written as:

1 rule two_variant;

2 y <= 3;

3 x <= (b ? 5 : 7);

4 endrule

However, consider the following rule:

1 rule three;

2 y <= 3;

3 x <= 5;

4 if (b)

5 x <= 7;

6 endrule

This is meaningless if the condition b is true, and this condition may not be statically known,
i.e., may depend on some dynamic (circuit execution-time) value. In this case, the BSV
compiler will be conservative and disallow the program because of the potential conflict.

8.5 Example 3: A First-In-First-Out queue (FIFO)

In our next example, we will look at a hardware implementation of a queue, a structure into
which we can enqueue and dequeue items. Because dequeued items emerge in the order in
which they were enqueued, in the hardware community we usually refer to this structure
as a FIFO, for ’first-in, first-out’3. Fig. 8.4 shows a commonly used symbol in diagrams to
represent a FIFO.

FIFOs are used extensively in hardware to connect components, to communicate data
from one component to another. A circuit that enqueues items into a FIFO is called a
producer, and a circuit that dequeues items from a FIFO is called a consumer. In hardware,

3In contrast to a queue, a stack has LIFO behavior, for last-in, first-out; this can also be implemented in
hardware.
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Figure 8.4: Symbol for a FIFO

FIFOs have a fixed maximum capacity, which is often as small as one. If the FIFO is
currently full and unable to accept a new item, the producer circuit usually blocks, i.e.,
waits, until a slot is freed up. Similarly, if the FIFO is currently empty, a consumer circuit
typically blocks until an item is available. Thus, there is a natural “flow control” between
producer and consumer—neither can get further ahead than the other, up to the capacity
of the FIFO. A FIFO may also provide a way to test whether it is empty of full.

A FIFO interface can be defined in BSV as follows:

1 interface FIFO #(Bit #(n));

2 // enqueue side

3 method Bool notFull;

4 method Action enq (Bit #(n) x);

5

6 // dequeue side

7 method Bool notEmpty;

8 method Action deq;

9 method Bit #(n) first;

10 endinterface

and the corresponding wires in the generated hardware are depicted in Fig. 8.5. The x and

Figure 8.5: A FIFO module

first buses are n-bits wide, carrying values of type Bit #(n).

A producer invokes the notFull method to test if the FIFO is currently full or not. If
not, it can invoke the enq method to enqueue an n-bit value into the FIFO. A consumer
invokes the notEmpty method to test if the FIFO has an item available or not. If available,
it can invoke the first method to observe the n-bit value at the head of the queue, and
it can invoke the deq method to perform the action of removing the item from the queue.
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Note: it is important that the producer should only invoke enq when notFull returns true,
and the consumer should only invoke first and deq when notEmpty returns true.

The code above defines a new type: FIFO #(Bit #(n)). This type can be used in many
contexts where a type is expected. This FIFO holds items of a specific type: Bit#(n).
Further, the interface says nothing about the capacity of the FIFO. Later, we will see how
we can parameterize the FIFO interface to specify both its capacity and a more general
type for the items it holds (not just Bit #(n)).

Here is an implementation of a FIFO with the above interface, that has a capacity of
one item:

1 module mkFIFO (FIFO #(Bit #(n)));

2 Reg #(Bit #(n)) d <- mkRegU; // Data

3 Reg #(Bool) v <- mkReg (False); // Valid?

4

5 // enqeueue side

6 method Bool notFull = (! v)

7

8 method Action enq (Bit #(n) x);

9 d <= x;

10 v <= True;

11 endmethod

12

13 // dequeue side

14 method Bool notEmpty = v;

15

16 method Action deq;

17 v <= False;

18 endmethod

19

20 method Bit #(n) first = d;

21 endmodule

The internal state of the module consists of two registers that together represent the single
“slot” in this one-element FIFO. Register d holds an item (an n-bit value) and v holds a
boolean indicating whether the data is valid or not, i.e., whether the slot is occupied or
not, i.e., whether the FIFO contains an item or not. The definitions of the methods, then,
are a straighforward interpretation of these registers.

8.5.1 Using FIFOs to “stream” a function

Before we return to improving our FIFO interface and module, we take a moment to show
how FIFOs can be used to wrap a combinational circuit so that, rather than just an input
value and producing an output value, it can take a stream of input values and produce a
stream of corresponding output values.

Fig. 8.6 is a sketch of how this is done. The following code sketches an implementation.
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Figure 8.6: Streaming a combinational function using FIFOs

1 module mk_f_stream (FIFO #(Bit #(n)));

2 FIFO #(Bit #(n)) inQ <- mkFIFO;

3 FIFO #(Bit #(n)) outQ <- mkFIFO;

4

5 rule stream;

6 if (inQ.notEmpty && outQ.notFull) begin

7 // Collect a value from inQ

8 Bit #(n) x = inQ.first;

9 inQ.deq

10

11 // Transform the value

12 // f is some combinational function from Bit #(n) to Bit #(n)

13 Bit #(n) y = f (x);

14

15 // Send the result out on outQ

16 outQ.enq (y);

17 end

18 endrule

19

20 // enqeueue side

21 method Bool notFull = inQ.notFull;

22 method Action enq (Bit #(n) x) = inQ.enq (x);

23

24 // dequeue side

25 method Bool notEmpty = outQ.notEmpty;

26 method Action deq = outQ.deq;

27 method Bit #(n) first = outQ.first;

28 endmodule

Note that this module, mk_f_stream also has the same FIFO interface. When the environ-
ment enqueues an item x it goes into the input FIFO inQ. The rule continually dequeues
items from inQ as they become available, transforms them with function f, and enqueues
the results into outQ. The environment collects results from the module by collecting it from
outQ.

This is small example of how FIFO interfaces are highly compositional. By “compo-
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sitional” we mean that we can take smaller components with a particular interface and
combine them into a larger component that has the same interface. In this case, actual
FIFOs are our smaller components, and mk_f_stream is a larger component that also has a
FIFO interface. Because of this, the technique can be applied recursively, and this is a key
to being able to build large, complex systems incrementally in manageable chunks; it is a
“divide-and-conquer” principle.

8.6 Guarded interfaces

In the previous examples, for correct operation, the environment had to follow a protocol
in invoking methods.

• In the GCD example, the environment should not invoke the start method while
busy returns true, and should not invoke the getResult method until ready returns
True.

• In the FIFO example, then environment should not invoke enq until notFull returns
true, and should not invoke first or deq until notEmpty returns true.

Not only is this tedious, but it is also a danger for correctness; what if we carelessly invoked
a method when it is not supposed to be invoked?

Exercise 8.1: In the previous codes for GCD and the FIFO, hand-simulate a scenario
when the protocol is not followed in invoking methods, and describe what happens. 2

In BSV, we can combine many of these correctness conditions into methods so that
the protocol is followed automatically, in fact guaranteeing that they will never be invoked
erroneously. As a beneficial effect, it also reduces the tedium of writing such code and
increases its clarity.

8.6.1 The FIFO again, this time with guarded interfaces

First, our interface simplifies into fewer methods:

1 interface FIFO #(Bit #(n));

2 // enqeueue side

3 method Action enq (Bit #(n) x);

4

5 // dequeue side

6 method Action deq;

7 method Bit #(n) first;

8 endinterface

Fig. 8.7 is a sketch of the corresponding interface wires in the hardware. In addition to the
previous wires, each method now has an additional output ready wire carrying a boolean
value (i.e., 1 bit) that indicates whether that method can currently be invoked or not.
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Figure 8.7: The FIFO interface again, with guards

Specifically, the ready-signal of a value method such as first can be seen as a “valid” bit
indicating whether the output value is valid or not. The ready-signals of Action methods
such as enq and deq can be seen as predicates indicating whether it is legal for the envi-
ronment to assert the corresponding enable-signals. In our diagrams, we consistently show
ready signals in green and enable signals in red.

We also refer to the ready-signals as guards, to BSV methods as guarded methods, and
BSV interfaces as guarded interfaces.4

Note: although we have removed the notFull and notEmpty methods for this example,
it is perfectly reasonable to keep those methods as well, as in the original definition, because
some producers and consumers may wish to test the fullness/emptiness of the FIFO anyway,
for example to decide whether to perform some other useful work instead of waiting.

Here is the revised code for the mkFIFO module.

1 module mkFIFO (FIFO #(Bit #(n)));

2 Reg #(Bit #(n)) d <- mkRegU; // Data

3 Reg #(Bool) v <- mkReg (False); // Valid?

4

5 // enqeueue side

6 method Action enq (Bit #(n) x) if (! v);

7 d <= x;

8 v <= True;

9 endmethod

10

11 // dequeue side

12 method Action deq () if (v);

13 v <= False;

14 endmethod

15

16 method Bit #(n) first () if (v);

17 return d;

18 endmethod

19 endmodule

4Comparing BSV methods to methods in popular object-oriented languages, guards are a fundamental
and important addition to method semantics. They are perhaps not that important in software programming
languages that are sequential, but they are of fundamental importance in a hardware language, where we
are dealing with massive, fine-grain concurrency.
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In each method, following the methods’ argument list, we have added a guard:
if (condition)

which is a boolean expression representing the condition under which it is legal to invoke
the method. In the hardware, this value directly drives the ouput ready-signal.

Some syntax notes: for methods like deq and first which take no arguments, the empty
argument list () is optional, but it can make the definition clearer for the human reader.

8.6.2 Streaming a function with guarded interfaces

We can now see how guards simplify our mk_f_stream module, which we studied in Sec. 8.5.1:

1 module mk_f_stream (FIFO #(Bit #(n));

2 FIFO #(Bit #(n) inQ <- mkFIFO;

3 FIFO #(Bit #(n) outQ <- mkFIFO;

4

5 rule stream;

6 // Collect a value from inQ

7 Bit #(n) x = inQ.first;

8 inQ.deq

9

10 // Transform the value

11 // f is some combinational function from Bit #(n) to Bit #(n)

12 Bit #(n) y = f (x);

13

14 // Send the result out on outQ

15 outQ.enq (y);

16 endrule

17

18 // enqeueue side

19 method Action enq (Bit #(n) x) = inQ.enq (x);

20

21 // dequeue side

22 method Action deq = outQ.deq;

23 method Bit #(n) first = outQ.first;

24 endmodule

The rule stream will not execute (we also say: will not “fire”) until the guards of all the
methods invoked in the rule are allowed to be invoked, i.e., until all their ready-signals are
true.

When we first introduced rules in Sec 8.4, we informally described them as a kind of
infinite process. Here we see the next nuance: rules will not execute until the methods they
invoke are allowed to be invoked.5

5There are further nuances when multiple rules compete for shared methods, which we will describe later.
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8.6.3 GCD again, this time with guarded interfaces

Let us revisit our GCD example, adding guards to the methods. Here is the revised interface
(it simply gets rid of the busy and ready methods):

1 interface GCD;

2 method Action start (Bit #(32) a, Bit #(32) b);

3 method ActionValue #(Bit #(32)) getResult;

4 endinterface

Fig. 8.8 is a sketch of the GCD interfaces in hardware. The left-hand side repeats Fig. 8.3
(without guards) and the right-hand side is the new interface with guards.

Figure 8.8: The GCD interface with and without guards

Here is the revised module implementation, moving the busy and ready conditions into
the guards of the start and getResult methods.

1 module mkGCD (GCD);

2 Reg #(Bit #(32)) x <- mkReg (0);

3 Reg #(Bit #(32)) y <- mkReg (0);

4 Reg #(Bool) busy_flag <- mkReg (False);

5

6 rule gcd;

7 if (x >= y) begin

8 //subtract

9 x <= x - y;

10 end

11 else if (x != 0) begin

12 //swap

13 x <= y;

14 y <= x;

15 end

16 endrule

17

18 method Action start (Bit #(32) a, Bit #(32) b) if (! busy_flag);

19 x <= a;
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20 y <= b;

21 busy_flag <= True;

22 endmethod

23

24 method ActionValue #(Bit #(32)) getResult () if (x == 0);

25 busy_flag <= False;

26 return y;

27 endmethod

28 endmodule

8.6.4 Rules with guards

Earlier, we discussed how a rule cannot fire if the guard on any method it invokes is false.
We call those conditions implicit conditions because they are not stated anywhere in the
rule; they are in internal detail of how the method is implemented in a particular module
implementation.

Rules can also have explicit conditions, which are additional boolean expressions that
control whether a rule fires or not (it is AND-ed with the implicit conditions). For example,
rule gcd could have been written as two rules with explicit conditions, as follows:

1 rule gcdSubtract (x >= y);

2 x <= x - y;

3 endrule

4

5 rule gcdSwap (x != 0);

6 x <= y;

7 y <= x;

8 endrule

Here, the rule name is followed by an explicit rule condition in parentheses. Omitting this,
as in the original rule, is equivalent to having a rule condition that is always true. The
first rule fires whenever x is ≥ y, and the latter rule fires whenever x 6= 0. Thus, despite
there being two rules, and thus, conceptually, two concurrent infinite processes, it remains a
sequential, one-rule-at-a-time algorithm due to the mutual exclusivity of the rules. Later we
will see examples of rules whose conditions are not mutually exclusive, allowing concurrent
execution of rules.

8.6.5 Generalizing the FIFO interface to arbitrary types and sizes

The FIFO interface described in Sec. 8.5 is for FIFOs that carry data of a particular type:
Bit #(n). This is somewhat flexible, since n may vary from one instance of a FIFO to
another. But what if the items we want to communicate are of some other type, such as
Int #(n), or an enumeration or struct type?

A more general type for FIFO interfaces is: FIFO #(t) where t is any type t. This is
in fact the standard definition for FIFO interfaces in the BSV library.
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Another important feature of a FIFO is its capacity n, or size: how many items can it
contain (our example earlier had n = 1). The higher the capacity, the more the “elasticity”,
“asynchronicity” or “decoupling” between the producer and consumer. A producer can run
ahead and produced n items before the consumer is ready to consume even one. Conversely,
if n items have been enqueued, the consumer can work on them even if the producer is
subsequently unable to make progress. The BSV library provides several alternative FIFO
modules where you can supply the desired capacity when you instantiate the module.

8.6.6 Streaming a module

In Sec. 8.5.1 we saw how we could take a combinational function and wrap it with FIFOs
into a module that consumes a stream of inputs, applies the function to each input and
produces the stream of corresponding outputs. Here we generalize the idea to wrapping an
arbitrary module into a stream processor.

We use our GCD module as an example. We want to wrap it into a module that
consumes a stream of pairs of numbers, computes the GCD of each pair, and produces a
stream of corresponding results. Fig. 8.9 shows the desired wrapping. The interface for this

Figure 8.9: Streamed GCD

module is similar to a FIFO interface, but not exactly the same because the types of input
and output data are different:

1 interface Streamed_GCD_IFC;

2 // enqeueue side

3 method Action enq (Vector #(2, Bit #(32) v2));

4

5 // dequeue side

6 method Action deq;

7 method Bit #(32) first;

8 endinterface

The incoming data is of type Vector #(2, Bit #(32)), i.e., it is an array of two 32-bit
elements. The outgoing data is of type Bit #(32).

Here is a definition for our module:

1 module mkStreamed_GCD_IFC #(Streamed_GCD_IFC);

2 FIFO #(Vector #(2, Bit #(32))) inQ <- mkFIFO;

3 FIFO #(Bit #(32)) outQ <- mkFIFO;
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4 GCD gcd <- mkGCD;

5

6 rule invokeGCD;

7 let x = inQ.first [0];

8 let y = inQ.first [1];

9 gcd.start (x, y)

10 inQ.deq;

11 endrule

12

13 rule getResult;

14 let z <- gcd.getResult;

15 outQ.enq (z);

16 endrule

17

18 // enqeueue side

19 method Action enq (Vector #(2, Bit #(32) v2)) = inQ.enq (v2)

20

21 // dequeue side

22 method Action deq = outQ.deq;

23 method Bit #(32) first = outQ.first;

24 endmodule

We are using the versions of FIFO defined in Sec. 8.6.1 and GCD defined in Sec. 8.6.3, i.e.,
the versions with guarded methods. Thus, rule invokeGCD can only fire when there is data
available in inQ and when the GCD module is ready to accept an input (pair of numbers).
The rule getResult can only fire when the GCD module has a result available, and when
outQ has room to accept another datum.

If we had not used the guarded versions, the rule invokeGCD would need an explicit rule
condition, like this:

1 rule invokeGCD (inQ.notEmpty && (! gcd.busy);

2 ...

3

4 rule getResult (gcd.ready && outQ.notFull);

5 ...

The implicit conditions get rid of all this clutter and, more importantly, avoids the situation
where we might have carelessly omitted these conditions.

8.7 A method’s type determines the corresponding hardware
wires

It is possible, just by reading an interface declaration and with no additional context, to
draw the interface wires that will be generated in the hardware. The mapping is so simple
that BSV designers effortlessly think interchangeably at these two levels of abstractions
(method types and hardware wires):
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• Each method argument becomes an input bus to the module, just as wide as the
number of bits needed to represent the data type of that argument.

• Each method result becomes an output bus from the module, just as wide as the
number of bits needed to represent the data type of the result.

• Every method has an output READY wire indicating when it is legal to invoke it (we
show these in green).

• Every Action and ActionValue method has an input ENABLE wire indicating to the
module when the method is being invoked by the external environment, i.e., telling
the module when to perform the method’s action (we show these in red).

8.8 The power of abstraction: composing modules

Separating the notion of an interface from a module that implements that interface is an
example of abstraction. External environments (“clients”) that use that interface need to
know nothing more than the properties of that interface in order to use it correctly. Module
implementations need to know nothing about clients and how they will use the interface, as
long as they correctly implement the properties of the interface. This “substitutability” and
“reusability”, where a module can be substituted by another one without touching clients,
and where a module can be instantiated in different clients, is a central requirement for the
ability to build complex, scalable systems.

As an exercise to illustrate this point, let us build a new GCD module that has double
the performance of our existing GCD module; further, we’ll just reuse our existing GCD
module as a building block.

Our existing GCD module becomes “busy” while computing a GCD; the client cannot
supply the next input until the module is no longer busy (the current result has been
consumed by the client). Our strategy to improve performance is to replicate our existing
GCD module, so that two of them can be working at the same time, taking turns to handle
successive inputs. Fig. 8.10 illustrates the structure. gcd1 and gcd2 are two instances of our

Figure 8.10: Multi-GCD

existing GCD module. The outer start method will use a boolean (1-bit) register turnI

to determine whether to feed the input to gcd1 or to gcd2, and will flip the bit each time.
Similarly, the outer getResult method will use the boolean turnO register to determine
whether to collect the result from gcd1 or from gcd2, and will flip the bit each time. Here
is the code for the module.
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1 module mkMultiGCD (GCD);

2 GCD gcd1 <- mkGCD;

3 GCD gcd2 <- mkGCD;

4 Reg #(Bool) turnI <- mkReg (False);

5 Reg #(Bool) turnO <- mkReg (False);

6

7 method Action start (Bit #(32) a, Bit #(32) b);

8 if (turnI)

9 gcd1.start (a,b);

10 else

11 gcd2.start (a,b);

12 turnI <= (! turnI);

13 endmethod

14

15 method ActionValue (Bit#(32)) getResult;

16 Bit#(32) y;

17 if (turnO)

18 y <- gcd1.getResult

19 else

20 y <- gcd2.getResult;

21 turnO <= (! turnO);

22 return y;

23 endmethod

24 endmodule

Note that mkGCD and mkMultiGCD have exactly the same interface type. Thus, one can
be substituted for the other, in any context, without changing functionality; The difference
will be in non-functional properties, such as performance (here, throughput or bandwidth)
and silicon area. These are exactly the kinds of tradeoffs that are contemplated in all
hardware designs.

Exercise 8.2: Generalize mkMultiGCD to use four instances of mkGCD. 2

Exercise 8.3: Generalize mkMultiGCD to use n instances of mkGCD, where n is a parameter.
2

Exercise 8.4: Suppose gcd1 is given an input whose computation takes a long time.
Suppose gcd2 is then given an input that completes quickly. mkMultiGCD is now stuck until
the first input’s computation completes, even if the next input is already available. This is
typical of so-called “static allocation” of tasks to servers (here, we have two servers).

Change mkMultiGCD to do dynamic allocation of tasks. In the scenario described in the
previous paragraph, the next input can be fed to any server gcdj that happens to be free.

Caveat : the overall input-output order should be maintained; one result should not be
allowed to “overtake” another result just because it was computed more quickly. Hint : use
a FIFO to remember which gcdj will produce the “next“ result, by enqueueing j in the
FIFO. 2

Exercise 8.5: Identify a scenario where your solution to the previous exercise may still get
stuck. How would you use more FIFOs to alleviate this? 2
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8.9 Summary

Modules with rules and guarded interfaces are a powerful way of expressing sequential
circuits. Rules and guarded interfaces are a fundamentally different way to think about
sequential circuits compared to other hardware design languages (HDLs), including Verilog,
VHDL, and SystemVerilog.

A module instance, like an object-class in object-oriented languages, has a well-defined
interface consisting of methods, and can be instantiated multiple times.

Unlike object-oriented languages, our methods here are guarded; they can be invoked
only if “ready”.

The compiler ensures that a method is invoked from the module’s environment only
when it is ready.

The fundamental “processes” in our computation model are rules which can fire repeat-
edly; there is no concept of a sequential thread that is found in all programming languages
and hardware design languages. Rules are atomic actions, i.e., one rule can never observe
“inconsistent intermediate state” due to concurrent execution of any other rule.

Systems are composed (glued together) structurally by modules instantiated in a hi-
erarchy, and behaviorally by rules in one module (atomically) invoking methods in other
modules.

A rule can fire only if its explicit condition, and all the conditions guarding all the
methods it invokes, are true.



Chapter 9

Iterative circuits: spatial and
temporal unfolding

The Space-Time Continuum

9.1 Introduction

Most interesting algorithms involve iteration (looping, repetition) of one kind or another.
One aspect of an iteration is control— when should the loop stop or exit? The other aspect
of a loop is the work that it performs on each iteration, which we call the loop body. Each of
these components, the loop-termination condition and the loop body, can be implemented
as a circuit, and our task then is to compose them into a circuit that performs the overall
loop.

There are typically two interesting directions we can go:

• Spatial unfolding : We create a separate instance of the loop-body-circuit for each
iteration of the loop, and connect them up so that data flows appropriately from the
output of one instance (iteration) into the input of the next one. The values “before”
the loop flow into the circuit for the first iteration, and the values “after” the loop flow
out of the circuit for the last iteration.

• Temporal unfolding : We create just one instance of the loop-body-circuit. For each
value that is updated in one iteration of the loop and used in a later iteration, we
instantiate a register to hold that value between iterations. The outputs of these
registers feed into the loop-body-circuit, and the outputs of the loop-body-circuit are
used to update the registers. This is repeated for multiple clocks (in time) for as many
iteration as are needed.

The values “before” the loop are the initial contents of the registers. The values “after”
the loop are the final contents of the registers.

Spatial unfolding likely takes more area (we are replicating the loop-body circuit), but likely
delivers the result with less latency (just the propagation delay through all the loop-body

9-1
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circuits). Temporal unfolding likely takes less area (we have one copy of the loop-body
circuit), but likely delivers the result with greater latency (as many clocks as it takes to
perform all iterations).

These are two extremes of a spectrum of design choices. An intermediate point in the
space may be to create, say, 4 copies of the loop-body circuit (spatial) and repeat that for
as many clocks as necessary (temporal).

9.1.1 Static vs. dynamic loop control

In some loops, the loop count (how many times it iterates) does not depend on input data.
For example, adding all elements of a 100-element array has a fixed loop count of 100 no
matter what data is in the array. We say the loop control is static.

In other loops, the loop count depends on input data. For example, finding the index of
the first zero byte in an array. We say the loop control is dynamic.

Loops with static control can be spatially unfolded (if the area cost is acceptable). Loops
with dynamic control cannot be fully spatially unfolded (we do not know how many copies
of the loop-body are needed); but they can of course use bounded spatial unfolding (e.g.,
four copies of the loop body which are then temporally iterated).

Note this whole discussion is independent of the question of whether the loops in the
algorithm are expressed using “for-loops”, “while-loops” or recursion; the key question is
whether the loop control is static or dynamic.

9.2 Example: A sequential multiplier

Recall the combinational “multiply” function from Sec. 6.2.6:

BSV code for combinational multiplication (not sequential!)
1 function Bit #(64) mul32 (Bit #(32) a, Bit #(32) b);

2 Bit #(32) prod = 0;

3 Bit #(32) tp = 0;

4 for (Integer i=0; i<32; i=i+1) begin

5 Bit #(32) m = (a[i]==0)? 0 : b;

6 Bit #(33) sum = add32 (m, tp, 0);

7 prod[i] = sum[0];

8 tp = truncateLSB(sum);

9 end

10 return {tp,prod};

11 endfunction

The for-loop in the code has static control—it always performs 32 iterations, no matter
what are the values of the inputs to be multiplied. When this function is processed by
the Bluespec compiler, it will perform spatial unfolding. It will unfold the loop into a
combinational circuit that contains 32 instances of the add32 circuit (and surrounding logic).
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9.2.1 Example: A sequential multiplier for n-bit multiplication

We see that the values that change during the loop are i, prod and tp; we will need to
hold these in registers when writing a sequential version of the loop: The values m and sum,
although produced in the loop body, are immediately consumed in the same iteration; they
are not carried from one iteration to the next, and therefore need not be saved in registers.

Here is an alternative, sequential implementation of the multiplier, using just one copy
of the loop-body code.

BSV code for sequential multiplication
1 Reg #(Bit#(32)) a <- mkRegU;

2 Reg #(Bit#(32)) b <- mkRegU;

3 Reg #(Bit#(32)) prod <- mkRegU;

4 Reg #(Bit#(32)) tp <- mkRegU;

5 Reg #(Bit#(6)) i <- mkReg (32);

6

7 rule mulStep (i<32);

8 Bit#(32) m = ((a[i]==0)? 0 : b);

9 Bit#(33) sum = add32(m,tp,0);

10 prod[i] <= sum[0]; // (not quite kosher BSV)

11 tp <= truncateLSB(sum);

12 i <= i + 1;

13 endrule

The register i is initialized to 32, which is the quiescent state of the circuit (no activity).
To start the computation, something has to load a and b with the values to be multiplied
and load prod, tp and i with their initial value of 0 (we will see this initialization later).
Then, the rule fires repeatedly as long as (i<32). The first four lines of the body of the
rule are identical to the body of the for-loop in the combinational function at the start of
this chapter, except that the assignments to prod[i] and tp have been changed to register
assignments.

A small nuance regarding types

Why did we declare i to have the type Bit#(6) instead of Bit#(5)? It’s because in the
expression (i<32), the literal value 32 needs 6 bits, and the comparision operator < expects
both its operands to have the same type. If we had declared i to have type Bit#(5) we
would have got a type checking error in the expression (i<32).

What happens if we try changing the condition to (i<=31), since the literal 31 only
needs 5 bits?

Types subtlety
1 ...

2 Reg#(Bit#(5)) i <- ...

3

4 rule step if (i<=31);

5 ...

6 i <= i+1;

7 endrule
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This program will type check and run, but it will never terminate! The reason is that
when i has the value 31 and we increment it to i+1, it will simply wrap around to the
value 0. Thus, the condition i<=31 is always true, and so the rule will fire forever. Note,
the same issue could occur in a C program as well, but since we usually use 32-bit or 64-bit
arithmetic in C programs, we rarely encounter it. We need to be much more sensitive to this
in hardware designs, because we usually try to use the minimum number of bits adequate
for the job.

Some optimizations of circuit area

Although functionally ok, we can improve it to a more area-efficient circuit by eliminating
dynamic indexing. Consider the expression a[i]. This is a 32-way mux: 32 1-bit input
wires connected to the bits of a, with i as the mux selector. However, since i is a simple
incrementing series, we could instead repeatedly shift a right by 1, and always look at
the least significant bit (LSB), effectively looking at a[0], a[1], a[2], ... Shifting by 1
requires no gates (it’s just wires!), and so we eliminate a mux. Similarly, when we assign to
prod[i], we need a decoder to route the value into the ith bit of prod. Instead, we could
repeatedly shift prod right by 1, and insert the new bit at the most significant bit (MSB).
This eliminates the decoder. Here is the fixed-up code:

BSV code for sequential multiplication
1 Reg #(Bit #(32)) a <- mkRegU;

2 Reg #(Bit #(32)) b <- mkRegU;

3 Reg #(Bit #(32)) prod <- mkRegU;

4 Reg #(Bit #(32)) tp <- mkRegU;

5 Reg #(Bit #(6)) i <- mkReg (32);

6

7 rule mulStep if (i<32);

8 Bit #(32) m = ((a[0]==0)? 0 : b); // only look at LSB of a

9 a <= a >> 1; // shift a by 1

10 Bit #(33) sum = add32(m,tp,0);

11 prod <= { sum[0], prod [31:1] }; // shift prod by 1, insert at MSB

12 tp <= truncateLSB (sum);

13 i <= i + 1;

14 endrule

Fig. 9.1 shows the circuit described by the BSV code. Analyzing this circuit, and comparing
it to the circuit for the combinational multiplier:

• The number of instances of the add32 operator circuit has reduced from 32 to 1, but we
have added some registers and muxes.
• The longest combinational path has been reduced from 32 cascaded add32s to one add32

plus a few muxes (and so it can likely run at a higher clock speed).
• To complete each multiplication, the combinational version has a combinational delay

corresponding to its longest path. The sequential version takes 32 clock cycles.
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Figure 9.1: Sequential multiplication circuit

9.3 Latency-insensitive modules and compositionality

When building large systems, latency-insensitivity is a very useful property. Suppose the
environment of a module gives it a request (by invoking a method); the module computes
a result and, after some latency (which could be as low as zero), delivers the result back to
the environment.

If either the module expects to receive a request on some particular cycle, or the en-
vironment expects to receive its result on some particular cycle, there is a certain built-in
fragility. We cannot easily substitute the module with a different one that accept arguments
or deliver results on different clock cycles, even though it may be better from the point of
view of area or power or clock frequency. Similarly, we cannot use the original module in
different environments that have different expectations of when arguments and results are
communicated. Environments and modules that are resilient to such changes in exactly
when arguments and results are communicated are called latency insensitive; it allows for
independent evolution of environments and modules.

Latency-insensitive modules typically have FIFO-like interfaces, where one thinks of
requests and responses like “packets” or “tokens” flowing in a pipe. We also refer to such
modules as being more “elastic”

9.3.1 Packaging the multiplication function as a latency-insensitive mod-
ule

Fig. 9.2

shows the interface of a module encapsulating the multiplication function, and here is
its BSV code:

1 interface Multiply;

2 method Action start (Bit #(32) a, Bit #(32) b);
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Figure 9.2: Interface of a multiplication module, with guards

3 method ActionValue #(Bit #(64)) getResult;

4 endinterface

The astute reader may notice that it is almost exactly the same as the GCD interface on the
right-hand side of Fig. 8.8, the only difference being in the width of the result.1 Here is a
module packaging up our sequential multiplier circuit with the required interface:

1 module mkMultiply (Multiply);

2 Reg #(Bit #(32)) a <- mkRegU;

3 Reg #(Bit #(32)) b <- mkRegU;

4 Reg #(Bit #(32)) prod <- mkRegU;

5 Reg #(Bit #(32)) tp <- mkReg (0);

6 Reg #(Bit #(6)) i <- mkReg (32);

7 Reg #(Bool) busy <- mkReg (False);

8

9 rule mulStep if (i < 32);

10 Bit #(32) m = ((a [0]==0) ? 0 : b);

11 a <= a >> 1;

12 Bit #(33) sum = add32 (m, tp, 0);

13 prod <= {sum [0], prod [31:1]};

14 tp <= sum [32:1];

15 i <= i+1;

16 endrule

17

18 method Action start (Bit#(32) x, Bit#(32) y) if (!busy);

19 a <= x; b <= y; i <= 0;

20 busy <= True;

21 endmethod

22

23 method ActionValue Bit#(64) getResult if ((i==32) && busy);

24 busy <= False;

25 return {tp, prod};

26 endmethod

1With a little more sophisticated use of types and polymorphism, BSV in fact enables us to unify the
interfaces into a single declaration.
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And Fig 9.3 shows the circuit of the module.

Figure 9.3: Module encapsulating the sequential multiplication circuit

If we encounter a different situation where we want a much lower latency multiplier and
we’re willing to pay the area cost, we could transparently substitute the above module with
the following module that packages up the combinational multiplier instead.

1 function Bit #(64) mul32 (Bit #(32) a, Bit #(32) b);

2 ... // combinational multiplier from Sec. 8.2

3 endfunction

4

5 module mkMultiply_Comb (Multiply);

6 Reg #(Bit #(64)) prod <- mkRegU

7 Reg #(Bool) busy <- mkReg (False);

8

9 method Action start (Bit#(32) x, Bit#(32) y) if (!busy);

10 prod <= mul32 (x, y);

11 busy <= True;

12 endmethod

13

14 method ActionValue Bit #(64) getResult if (busy);

15 busy <= False;

16 return prod;

17 endmethod
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Similarly, one can have many other implementations of the same multiplier interface,
with different internal algorithms that offer various efficiency tradeoffs (area, power, latency,
throughput):

Multiplier module, more alternatives
1 module mkMultiply_Block (Multiply);

2

3 module mkMultiply_Booth (Multiply);

”Block” multiplication and ”Booth” multiplication are two well-known algorithms, or circuit
structures, but we do not explore them here.

9.4 Summary

Iterative algorithms can be unfolded in a spatial manner (replicating the loop body for
distinct “iterations”) or in a temporal manner (re-using the loop body circuit repeatedly,
saving intermediate values in registers), trading off latency, area, clock frequency and power.

Iterative algorithms with dynamic termination conditions will require some form of
temporal structure, since hardware must have a fixed set of resources but can take a variable
amount of time.

Latency-insensitive designs are less fragile in that modules can be developed indepen-
dently from their environments, and can be used in many different environments, without
compromising correctness. This makes it easier to compose reusable modules into complex
systems.

9.5 Extra material: Typed registers

In BSV, the contents of registers can be of any type that has a bit representation, not just
Bit #(n). Examples:

Registers containing values of other types
1 Reg #(UInt #(32)) u <- mkReg (17);

2 Reg #(EthernetHeader) ehdr1 <- mkReg (default_header);

3 Reg #(EthernetHeader) ehdr2 <- mkRegU;

In line 1 we create a register u containing unsigned 32-bit integer values, with reset value 17.
In line 2 we create a register ehdr1 containing values that are Ethernet packet headers (which
is presumably a “struct” type declared elsewhere), initialized to hold a default Ethernet
packet header (also presumably declared elsewhere). In line 3 we create register ehdr2

containing values that are Ethernet packet headers, but with an unspecified reset value.

Registers in BSV are strongly typed, i.e., it will not be possible to store a value whose
type is Bit #(32) in register u, even though the “size is right” (32 bits). By “impossible”
we mean that this will be checked by the compiler at compilation time and rejected as a
type-error. Similarly, ehdr1 and ehdr2 will be constrained to only ever contain values of
type EthernetHeader.
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9.6 Extra material: Polymorphic multiply module

Let us now generalize our multiplier circuit so that it doesn’t just work with 32-bit argu-
ments, producing a 64-bit result, but works with n-bit arguments and produces a 2n-bit
result. Thus, we could use the same module in other environments which may require, say,
a 13-bit multiplier or a 24-bit multiplier. The interface declaration changes to the following:

Polymorphic multiplier module interface
1 interface Multiply #(numeric type tn);

2 method Action start (Bit#(tn) a, Bit#(tn) b);

3 method Bit#(TAdd#(tn,tn)) result;

4 endinterface

And the module definition changes to the following:

Polymorphic multiplier module
1 module mkMultiply (Multiply #(tn));

2 Integer n = valueOf (tn);

3

4 Reg #(Bit#(n)) a <- mkRegU;

5 Reg #(Bit#(n)) b <- mkRegU;

6 Reg #(Bit#(n)) prod <- mkRegU;

7 Reg #(Bit#(n)) tp <- mkRegU;

8 Reg #(Bit#(TAdd#(1,TLog#(tn)))) i <- mkReg (fromInteger(n));

9

10 rule mulStep if (i<32);

11 Bit#(n) m = (a[0]==0)? 0 : b;

12 a <= a >> 1;

13 Bit#(Tadd#(tn,1)) sum = addN(m,tp,0);

14 prod <= { sum[0], prod [n-1:1] };

15 tp <= truncateLSB(sum);

16 i <= i + 1;

17 endrule

18

19 method Action start(Bit#(n) aIn, Bit#(n) bIn) if (i==fromInteger(n));

20 a <= aIn;

21 b <= bIn;

22 i <= 0;

23 tp <= 0;

24 prod <= 0;

25 endmethod

26

27 method Bit#(64) result if (i==fromInteger(n));

28 return {tp,prod};

29 endmethod

30 endmodule

Note the use of the pseudo-function valueOf to convert from an integer in the type
domain to an integer in the value domain; the use of the function fromInteger to convert
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from type Integer to type Bit#(...), and the use of type-domain operators like TAdd,
TLog and so on to derive related numeric types.



Chapter 10

Hardware Synthesis: from BSV to
RTL

10.1 Introduction

In this chapter we discuss in a more detail how BSV code is synthesized into circuits (we
have already seen aspects of this in previous chapters).

“Synthesis” is just a kind of compilation. A classical compiler translates a program in
a high-level language (such as C, C++ or Python) into a lower-level language (assembly
language, machine code, or bytecode). In our case, BSV is the high-level language, and we
wish to translate the high-level constructs in BSV code (modules with guarded methods
and rules) into lower-level constructs such as wires, gates and registers. This target (wires,
gates and registers) is traditionally known as Register-Transfer Language (RTL).1

In this chapter, our lower-level language will just be diagrams (we show schematics of
circuits), but in practice a BSV compiler translates into Verilog, the “assembly language”
of hardware design. Just like, in software compilation, we have Assemblers that translate
assembly language into machine code, similarly in hardware synthesis there are lower-level
synthesis tools that will translate Verilog RTL into actual gates and wires.

10.1.1 General principles

Each BSV module in translated into a sequential circuit. For our present discussion, the only
“primitive” module is a register; in general one can have an arbitrary library of primitives.
The implementation of primitives is outside the scope of BSV.

A module instantiates registers and other modules. This results in a module instance
hierarchy, i.e., a tree of module instances below a top-level module instance, at the leaves
of which are registers.

A module’s BSV interface precisely determines a corresponding set of input and output
wires in hardware. In other words, given an interface type declaration, with no additional
information we can draw exactly the input and output wires into which it will be translated.

1Coding directly in RTL is still the predominant practice, using HDLs like Verilog, SystemVerilog and
VHDL.

10-1
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Each interface method is synthesized into a combinational circuit whose inputs include
the method arguments (if any) and whose outputs include the method results (if any).
For all methods, there is an additional output called the READY signal. For Action and
ActionValue methods, there is an additional input called the ENABLE signal.

Each rule in a module also defines a combinational circuit. Its inputs and outputs
come from results and arguments of methods it invokes, respectively. One of its outputs is a
boolean representing the value of the rule’s explicit condition as well as implicit conditions of
methods invoked in the rule; this signal is the rule’s READY signal, also called its CAN_FIRE
signal.

The combinational logic of all the rules and methods are connected to the instantiated
registers and modules using muxes (multiplexers).

10.2 Interface types precisely define input/output wires

A module’s BSV interface precisely determines a corresponding set of input and output
wires in hardware. In other words, given an interface type declaration, with no additional
information we can draw exactly the input and output wires into which it will be translated.
Consider our interface to the GCD module:

1 interface GCD;

2 method Action start (Bit #(32) a, Bit #(32) b);

3 method ActionValue #(Bit #(32)) getResult;

The corresponding input and output wires are shown in Fig 10.1.

Figure 10.1: Interface wires for the GCD interface

• Each method argument becomes an input bus (bundle of wires). Some methods may
not have arguments, in which case this bus is absent.
• Each method result becomes an output bus (bundle of wires). Value methods and

ActionValue methods can have a result. Action methods have no result, and so this bus
is absent.
• Each method has an output “ready” (RDY) wire (we will always show ready wires in

green).
• Each Action or ActionValue method has an input “enable” (EN) wire (we will always

show enable wires in red).

With a little practice, BSV programmers automatically visualize these wires when they read
a BSV interface type.



©2019 Arvind; All Rights Reserved 10-3

10.3 Registers are just primitive modules, with interfaces

While we have not emphasized this so far, we now observe that even registers are just
modules. Instantiating a register is conceptually the same as instantiating any other module.
We call them “primitive” modules in that they are taken as “given” by fiat by the language;
their internal implementation is not defined within BSV.

Like all modules, a register has an interface, shown below:

1 interface Reg #(numeric type n);

2 method Action _write (Bit #(n) x);

3 method Bit #(n) _read;

It was a _read and a _write method. When we write a statement such as this:

1 y <= x + 1;

this is just a syntactic convenience to make it look like a traditional assignment statement.
Technically, using method-invocation notation, we would write:

1 y._write (x._read + 1);

(This syntax is also acceptable, but we rarely use it.)

The input and output wires implied by the above interface type are shown in Fig. 10.2.
However, for primitive registers, the READY signals are always True—the _read and

Figure 10.2: A register is just a primitive module

_write methods can be invoked at any time. Registers are instantiated using the BSV
library modules mkReg(i) (with initial reset value i) and mkRegU (with no specified initial
reset value). The user can also define their own modules that have the same interface (and
sometimes it is indeed convenient to do so).

10.4 Schematic drawing conventions in this chapter

Drawing schematics is a useful pedagogical way to demystify what circuits we get from our
BSV codes. But they are just that; no one actually designs circuits using schematics, except
for initial rough cuts, sketches etc. At least since the 1980s people switched to text-based
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languages like Verilog and VHDL because they are easier to scale to large systems, and to
maintain.

Emphasizing the pedagogical role, we will use a few conventions to avoid clutter and to
keep our schematics simple and understandable. Consider the following interface:

1 interface GFMI;

2 method Action start (Bit #(n) a);

3 method ActionValue #(Bit #(n)) getResult;

which can be the interface for a number of modules that accept some input using start,
perform some computation F , and deliver a result using getResult. Here, “GFMI” stands
for Generalized F module interface. From its interface type, we can visualize the input and
output wires shown in Fig. 10.3. When we draw a module that implements this interface,

Figure 10.3: Input and output wires for the GFMI interface

we will often replicate the interface to separate out input and output wires, as shown in
Fig. 10.4. The input signals (arguments and ENABLE signals) will be shown on the left,

Figure 10.4: A module with a GFMI interface

and the output signals (results and READY signals) will be shown on the right.

Similarly, when we use such a module, we may replicate its methods, as shown in
Fig. 10.5. The output signals (results and READY signals) will be shown on the left, and
the input signals (arguments and ENABLE signals) will be shown on the right.
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Figure 10.5: Using a module with a GFMI interface

10.5 General principles of the READY-ENABLE interface
protocol

The READY output signal of a method in a module interface communicates from the
module to the environment whether it is currently legal for the environment to invoke that
method. The ENABLE input signal (for Action and ActionValue methods) communicates,
from the environment, whether the environment is actually currently invoking the method
or not. Thus, the ENABLE signal must depend on the READY signal; this is illustrated in
Fig. 10.6.

Figure 10.6: The ENABLE signal always depends on the READY signal

Conversely, the READY signal can never depend on the ENABLE signal; this is illus-
trated in Fig. 10.7. Otherwise, we would create a combinational cycle. The BSV compiler
guarantees these properties in the circuits that it generates.

10.6 Example: A FIFO Module

Let us analyze our FIFO module code from Sec. 8.5 in detail to see the circuits produced.
Here is its interface declaration:
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Figure 10.7: The READY signal can never depend on the ENABLE signal

1 interface FIFO #(Bit #(n));

2 // enqeueue side

3 method Action enq (Bit #(n) x);

4

5 // dequeue side

6 method Action deq;

7 method Bit #(n) first;

8 endinterface

and here is a module implementing it:

1 module mkFIFO (FIFO #(Bit #(n)));

2 Reg #(Bit #(n)) d <- mkRegU; // Data

3 Reg #(Bool) v <- mkReg (False); // Valid?

4

5 // enqeueue side

6 method Action enq (Bit #(n) x);

7 d <= x;

8 v <= True;

9 endmethod

10

11 // dequeue side

12 method Action deq;

13 v <= False;

14 endmethod

15

16 method Bit #(n) first = d;

17 endmodule

We are going to fill in the schematic for the module implementation gradually.
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10.6.1 The interface methods

First, from the interface declaration, we can immediately read off the input-output wires,
as shown in Fig. 10.8.

Figure 10.8: FIFO input and output wires

The enq method has an input argument and ENABLE (on the left) and an output
READY signal (in the replicated dotted-line box on the right). The deq method has an
input ENABLE (on the left) and an output READY signal (in the replicated dotted-line
box on the right). The first method only has outputs—its READY signal and result value,
shown only in the dotted-line box on the right; from now on we will omit the first box on
the left since it has no input wires.

10.6.2 The internal state elements

Next, let us instantiate the d nd v registers, as shown in Fig. 10.9. The registers’ _read

Figure 10.9: FIFO internal registers d and v

method signals are shown in the dotted-line boxes on the bottom left. Each register has an
output value, and a READY signal (which, for a register, is always true). The registers’
_write method signals are shown in the boxes on the top right. Each register has an input
value (to be stored in the register), and an ENABLE signal. The _write method should
also have a READY signal, but since this is always true in a register, we have not shown it
in the diagram.
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10.6.3 The circuits for the methods, individually

Next, let us look at the synthesis of each method, one at a time. We start with the enq

method in Fig. 10.10. The enq method is ready whenever v is 0, thus the output of v is

Figure 10.10: FIFO enq method

fed via an inverter into the READY signal of enq. The argument to enq goes straight into
the _write method of register d. Whenever we enqueue, i.e., the ENABLE signal of enq is
true, we enable the _write method of d, and we also write the constant True (bit 1) into v.

Fig. 10.11 shows the synthesis of the deq method, viewed on its own. The deq method

Figure 10.11: FIFO deq method

is ready whenever v is 1, thus the output of v is fed into the READY signal of deq. When
the external environment invokes deq, it asserts its ENABLE signal, which we use to invoke
the _write method of v, loading in the constant False (bit 0).

Finally, Fig. 10.12 shows the synthesis of the first method, viewed on its own. The
first method is ready whenever v is 1, thus the output of v is fed into the READY signal
of first. The value returned by first is the value in the d register, ie the output of the
_read method on d.
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Figure 10.12: FIFO first method

10.6.4 The methods, combined

We must now combine the circuits we’ve shown separately for each method. Whenever
we have an input that is fed from more than one input in the separate schematics, in the
combined circuit we must “funnel” them through a mux (multiplexer). This is depicted in
Fig. 10.13. The behavior of the mux is the following. First, we assume that at most one of

Figure 10.13: A mux (multiplexer) to combine signals

the input ENABLE signals enq.en and deq.en is true (that is indeed the case for our FIFO
circuit; later we will see how we guarantee this in general). When either enq.en or deq.en
is true, the output ENABLE signal is true (the ENABLE signal of the _write method of
v). Further, the mux passes the corresponding data through to the v (the argument of the
_read) method. Here, the data is either the constant True (1) of the constant False (0).

Fig. 10.14 shows how we could implement the mux. The signals v1 and v2 correspond

Figure 10.14: Implementation of the mux (multiplexer)

to our ENABLE signals—if either is true, the output v is true. When v1 and v2 are 0, the
output x is 0. When v1 is 1 and v2 is 0, x is equal to x1. When v1 is 0 and v2 is 1, x is
equal to x2. The outputs can also be expressed using these boolean equations:
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x = (v1 & x1) | (v2 & x2)
v = (v1 | v2)

We can also see that in the case that we disallow, ie v1 and v2 both true, the output x

will be an OR of x1 and x2 which may be a meaningless value. Also, although the mux is
shown for one signal (x1, x2, x) we can simply replicate the structure in the dotted line if
they have more bits.

In our FIFO, the only method-input that is fed by different signals in the individ-
ual method schematics is the input to the v register. Thus we can combine the method
schematics into a composite schematic by using a mux there, as shown in Fig 10.15.

Figure 10.15: Combining the FIFO methods

As discussed earlier, the two control signals of the mux, coming from the ENABLE
signals of the enq and deq signals should never be true simultaneously. We can reason
that this will indeed be the case: in our FIFO module, the READY signals of enq and
deq are mutually exclusive (only one of them can be true at a time), and by our READY-
ENABLE protocol, therefore, since ENABLE signals depend on READY signals, only one
of the ENABLE signals can be true.

Fig. 10.16 is simply a redrawing of our diagram with a more conventional layout. We can
confirm that the READY signals only depend on the module’s internal state. As indicated
in our introduction, our module is indeed a sequential circuit, since it contains state elements
(registers). However, this particular example contains no feedback into registers.

10.6.5 An impractical alternative circuit specification

As mentioned in the last chapter, the FIFO logic could have been specified as a next-state
transition table, shown here:
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Figure 10.16: The FIFO, redrawn more conventionally

inputs state next state outputs

enq enq deq enq deq first first
en data en dt vt dt+1 vt+1 rdy rdy rdy data

0 x 0 x 0 x 0 1 0 0 -
1 d 0 x 0 d 1 0 1 1 -
0 x 0 d 1 d 1 0 1 1 d
0 x 1 d 1 - 0 1 0 0 d

This can also be used to specify illegal inputs:

inputs state next state outputs Why illegal

enq enq deq enq deq first first
en data en dt vt dt+1 vt+1 rdy rdy rdy data

1 1 0 enq when not RDY
1 0 0 deq when not RDY

1 1 0 1 0 deq when not RDY,
and simul enq/deq

1 1 1 0 1 enq when not RDY,
and simul enq/deq

As you can see, not only would it be very tedious and error-prone to construct such tables,
especially for larger systems (more state elements, more inputs), but the behavior is not at
all intuitive or obvious to the reader.

10.6.6 Summary

As Fig. 10.15 graphically illustrates, the circuit for a module is just a combinational circuit.
The input of the module’s combinational circuit come from:
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• Arguments of the module’s methods (Value, Action and ActionValue);
• ENABLE signals of the module’s methods (Action and ActionValue);

• Results of sub-module methods (Value and ActionValue);
• READY signals of sub-module methods (Value, Action and ActionValue);

Conversely, the output of the module’s combinational circuit go to:

• Results of the module’s methods (Value and ActionValue);
• READY signals of the module’s methods (Value, Action and ActionValue);

• Arguments of sub-module methods (Value, Action and ActionValue);
• ENABLE signals of sub-module methods (Action and ActionValue);

10.7 Example: GCD

In this section we look at synthesis of the GCD example which, unlike the FIFO example,
also has an internal rule and feedback to internal registers. The code for GCD is recapped
below. First, the interface declaration:

1 interface GCD;

2 method Action start (Bit #(32) a, Bit #(32) b);

3 method ActionValue #(Bit #(32)) getResult;

4 endinterface

and then a module implementing that interface:

1 module mkGCD (GCD);

2 Reg #(Bit #(32)) x <- mkReg (0);

3 Reg #(Bit #(32)) y <- mkReg (0);

4 Reg #(Bool) busy <- mkReg (False);

5

6 rule gcd;

7 if (x >= y) x <= x - y;

8 else if (x != 0) begin

9 x <= y;

10 y <= x;

11 end

12 endrule

13

14 method Action start (Bit #(32) a, Bit #(32) b) if (! busy);

15 x <= a;

16 y <= b;

17 busy <= True;

18 endmethod

19

20 method ActionValue #(Bit #(32)) getResult if (busy && (x==0));
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21 busy <= False;

22 return y;

23 endmethod

24 endmodule

As before, from the interface declaration and sub-modules (modules instantiated within
the module) we can directly read off the input and output wires of the module, shown in
Fig. 10.17. On the left, we have all the input wires from the module’s interface methods

Figure 10.17: The inputs and outputs for the GCD circuit

(arguments and ENABLE signals), and all the output wires from the sub-module interface
methods (results and READY signals), specifically, the _read methods of the registers x, y
and busy.

On the right, we have all the output wires to the module’s interface methods (results and
READY signals), and all the input wires to the sub-module interface methods (arguments
and ENABLE signals), specifically, the _write methods of the registers x, y and busy).

Next, we synthesize the circuits for the methods, individually, starting with the start

method, shown in Fig. 10.18. We omit the boring nitty-gritty details of the combinational
expressions, just depicting them by little “clouds”, one representing the Actions performed
by the start method and one representing the guard on the start method.

Next, we synthesize the getResult method, shown in Fig. 10.19.

Next, we synthesize the gcd rule, shown in Fig. 10.20. It is synthesized just like a
method, except that none of its inputs come from the module’s method; all of its inputs
come only from sub-module outputs. Further, none of its outputs to the module’s method
outputs; all of its outputs go only to sub-module inputs.

Finally, we put these individual circuits together using muxes to combine multiple
sources for each input. This is shown in Fig. 10.21.
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Figure 10.18: The GCD start method.

Figure 10.19: The GCD getResult method.
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Figure 10.20: The GCD gcd rule.

Figure 10.21: GCD combined circuit.
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Once again, we can verify that, for each mux funneling data into registers, at most one
of the ENABLE signals is true. The muxes for x and y are driven from the start method
and gcd rules, whose READY signals are disjoint. For the mux driving busy, the ENABLEs
are from the start and getResult methods, which depend on their READY signals, which
are disjoint.

10.7.1 Example: Ready Signal in Multi-GCD

In Sec. 8.8 we studied a “multi-GCD” circuit where we replicated the GCD module inside a
larger module that had the same GCD interface, in order to improve the “throughput” (how
many GCDs can be computed in a fixed interval). The structure was depicted in Fig. 8.10.

In this section, we look at how the READY signal of the start method of the multi-
GCD module is synthesized using the READY signals of the internal instances of the GCD
module. The code for the outer start method is recapped below:

1 module mkMultiGCD (GCD);

2 ...

3 method Action start (Bit #(32) a, Bit #(32) b);

4 if (turnI)

5 gcd1.start (a,b);

6 else

7 gcd2.start (a,b);

8 turnI <= (! turnI);

9 endmethod

10 ...

11 endmodule

Fig. 10.22 shows the circuit for the READY signal of the start method of multi-GCD. In

Figure 10.22: READY signal for start method of multi-GCD.

words: if gcd1’s start method is ready and turnI is true, then multi-GCD’s start is ready
to accept an input (which will be passed in to gcd1. If gcd2’s start method is ready and
turnI is false, then multi-GCD’s start is ready to accept an input (which will be passed
in to gcd2.



©2019 Arvind; All Rights Reserved 10-17

10.8 Composition of sequential machines yields a sequential
machine

Here is a module that packages an arbitrary combinational circuit f (a function) so that we
can stream a sequence of inputs x0, x1, x2, ... into the module, and it yields a corresponding
stream of outputs f(x0), f(x1), f(x2), ... First, we declare its interface:

1 interface GMFI#(numeric type n);

2 method Action start (Bit #(n) a);

3 method ActionValue (Bit #(n)) getResult;

4 endinterface

A module to implement this is straightforward:

1 module mkstreamf (GMFI #(n));

2 FIFO #(Bit #(n)) fifo <- mkFIFO;

3

4 method Action start (Bit #(n) x);

5 fifo.enq (f (x));

6 endmethod

7

8 method ActionValue (Bit#(n)) getResult;

9 fifo.deq;

10 return fifo.first ();

11 endmethod

12 endmodule

When we invoke start(x) we immediately apply the function f to x and enqueue the
result in the internal fifo. The getResult method simply yields these results. Fig. 10.23
shows the synthesis of the start method. The circuits can actually be simpler: given our

Figure 10.23: Input and output wires and methods in mkstreamf.

READY-ENABLE protocol, the AND gate in the start method is actually redundant and
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Figure 10.24: Simplifying the circuit for the start method of mkstreamf.

Figure 10.25: Adding the getResult method for mkstreamf.

can be removed, as shown in Fig. 10.24. Fig.10.25 shows the simplified start synthesis and
also adds the synthesis of the getResult circuit.

Let us “inline” the FIFO module, i.e., substitute it in situ. The circuit for the FIFO
module was shown in Fig. 10.16. Fig. 10.26 shows the result, where we have also simplified

Figure 10.26: mkstreamf with the FIFO inlined.

the getResult circuit by removing a redundant AND gate just like we did for the start

circuit.

In summary: the FIFO module is a sequential machine. The mkstreamf module is a sequen-
tial machine. Composing them together (by inlining) also results in a sequential machine.
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10.9 Summary: The Module Hierarchy is a Hierarchical Se-
quential Circuit

Stepping back from the details of the examples in the last few sections, Fig. 10.27 shows

Figure 10.27: The general synthesis schema.

the general synthesis schema for a module.

A: Input wires of the module are determined from arguments of all interface methods,
and ENABLE signals of Action and ActionValue methods.

B: Output wires of the module are determined from results of interface methods, and
READY signals of all methods.

C: Inside the module, sub-modules are instantiated. For each interface method of each
sub-module, that method also has input output wires. Arguments and ENABLE
signals of those methods are inputs to the sub-module; results and READY signals of
those methods are outputs of the sub-modules.

D: We can synthesize the combinational circuit for each rule and method of the current
module individually, connecting the wires of A, Band C.

10.9.1 Synthesizing the guard of a method

Fig. 10.28 shows the general considerations in synthesizing the guard of a module’s method.

Inside the guard expression, it likely invokes methods of sub-modules. However, because
a guard expression always has type Bool, BSV’s strong-typing system guarantees that the
guard can never invoke an Action or ActionValue sub-module method, either directly or
indirectly (in a sub-module’s sub-module, for example). A guard expression can only ever
invoke sub-module value methods. Further, synthesizing a guard never produces any EN-
ABLE signals.
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Figure 10.28: Synthesis of a method guard.

The guard synthesizes into a combinational circuit where:

• Inputs come from results of invoked sub-module methods.
• Inputs come from READY signal of invoked sub-module methods.
• The single boolean output is the value of the guard expression.

Note that a method’s guard cannot involve the arguments of the method, since this can
result in combinational cycles:

• The method’s READY signal is the value of the guard;
• until this READY signal is true, the environment cannot invoke the method;
• until the method is invoked, its arguments are not valid;
• and, thus, a method’s READY signal cannot depend on the method’s arguments. It can

only depend on sub-module methods (state elements).

10.9.2 Synthesizing the body of a value method

Fig. 10.29 shows the general considerations in synthesizing the body of a value method (i.e.,

Figure 10.29: Synthesis of the body of a value method.

not and Action or ActionValue method). This is just like compiling any combinational
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expression. Inside the method body, it likely invokes methods of sub-modules (but for
course these could only be value methods of sub-modules). The method synthesizes into a
combinational circuit where:

• Inputs come from results of invoked sub-module methods.
• Inputs come from method arguments.
• Outputs include the method output.
• Outputs include arguments of invoked sub-module methods.

10.9.3 Synthesizing the body of an Action or ActionValue method

Fig. 10.30 shows the general considerations in synthesizing the body of a module’s method.

Figure 10.30: Synthesis of the body of an Action or ActionValue method.

Inside the method body, it likely invokes methods of sub-modules. The method synthesizes
into a combinational circuit where:

• Inputs come from results of invoked sub-module methods.
• Inputs come from method arguments.
• Inputs come from method ENABLE signals (if this is an Action or ActionValue method).

• Outputs include the method output.
• Outputs include arguments of invoked sub-module methods.
• Outputs include the ENABLE signals of invoked sub-module Action and ActionValue

methods.

10.9.4 Summary: synthesizing the method

Fig. 10.31 combines the components just described to provide an overview of a method’s
synthesis.

10.9.5 Synthesizing a rule in a module

A rule in a module is synthesized similarly to a method except that all its inputs and outputs
connect only to sub-module methods, and never to any of the module’s own methods.
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Figure 10.31: Synthesis of a method (summary).

A rule’s guard is synthesized similar to a method’s guard. Like a method’s guard, it’s
type is Bool and the BSV type system guarantees, therefore, that it cannot invoke a sub-
module’s Action or ActionValue method, either directly or indirectly. The boolean value of
the rule’s guard is called its CAN_FIRE signal.

A rule’s body is synthesized similar to an Action or ActionValue method’s body. It’s
outputs will include ENABLE signals for sub-module Action and ActionValue methods.

Fig. 10.32 provides and overview of rule synthesis.

Figure 10.32: Synthesis of a rule.

10.9.6 A preview of rule scheduling

In Sec. 10.6.4 and Fig 10.14 we discussed “funneling” multiple inputs into a method using a
mux (multiplexer). We further observed that, for an n input mux, either none or at most
one of its inputs should be enabled to pass-through to the output; we should never enable
two or more inputs at the same time. But how do we ensure this? Consider this made-up
example:
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1 module mkEx (...);

2

3 Reg #(Bit #(n)) x <- mkRegU;

4

5 rule foo if p(x);

6 x <= e1;

7 endrule

8

9 rule baz if q(x);

10 x <= e2;

11 endmethod

12 endmodule

When p(x) is true, rule foo wants to assign the value of e1 to register x. When q(x) is
true, rule baz wants to assign the value of e1 to register x. The circuit for this is shown in
Fig. 10.33.

Figure 10.33: Conflicting assignments.

If the synthesis tool can guarantee that p(x) and q(x) are mutually exclusive (for example
if one was x < 32 and the other was x ≥ 32), then there is no problem—our requirement
that at most one input of the mux should be enabled is met. But what if the synthesis tool
cannot guarantee it, either because the conditions p(x) and q(x) are too complex for the
tool’s analysis, or because they also depend on some other external value unknown to the
tool? In this case, the tool must produce circuitry that, in the case when both guards are
true, suppresses one of the rules. One way to do this is shown in Fig. 10.34

Here, we have re-established our requirement that at most one input of the mux should
be enabled by inverting p(x) and ANDing it with q(x) before feeding it to the mux. When
p(x) and q(x) are both true, this extra circuitry will ensure that only foo’s data gets
through. This brings up another bit of terminology. If we think of the output of q(x) as
the CAN_FIRE signal of rule baz, then the output of the AND gate is called the WILL_FIRE

signal of rule baz.

Note that, in the above circuit, we have prioritized rule foo over baz. We could equally
well have implemented the opposite priority by, instead, inverting q(x) and ANDing it with
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Figure 10.34: A resolution of conflicting assignments.

p(x). This illustrates the general point that, when multiple rules conflict in some way, there
often are many possible ways to the resolve the conflict. The different choices can affect
the performance of the overall circuit, its area and its power, and so the “right answer” may
depend on what is important for this application.

10.10 Example: An Up-Down Counter

An Up-Down counter is one where we can both increment and decrement the count. For
example, in an automated car park, we might initialize the counter to 0, increment it each
time a car enters and decrement each time a car leaves. The current counter value shows
how many cars are currently in the car park, and this could perhaps drive an informational
display showing the number of remaining (available) spaces. As usual, let’s start with the
interface declaration:

1 interface UpDownCounter;

2 method ActionValue #(Bit #(8)) up;

3 method ActionValue #(Bit #(8)) down;

4 endmodule

Here is a module implementation:

1 module mkUpDownCounter (UpDownCounter);

2

3 Reg #(Bit #(8)) ctr <- mkReg (0);

4

5 method ActionValue #(Bit #(8)) up if (ctr < 255);

6 ctr <= ctr+1;

7 return ctr;

8 endmethod

9

10 method ActionValue #(Bit #(8)) down if (ctr > 0);

11 ctr <= ctr-1;
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12 return ctr;

13 endmethod

14 endmodule

An environment that uses the counter may look like this (in outline):

1 module ...

2

3 UpDownCounter x <- mkUpDownCounter;

4

5 rule rl_producer; // car entering

6 ... x.up ...

7 endrule

8

9 rule rl_consumer; // car leaving

10 ... x.down ...

11 endrule

12 endmodule

This is illustrated in Fig. 10.35. We must be careful to disallow the rules producer and

Figure 10.35: Using an Up-Down Counter.

consumer from executing concurrently, since that would result in a double-write: they
invoke the methods up and down, respectively, and both methods write to register ctr.

Fig. 10.36 shows the internal circuit inside the module. The up method is READY when
ctr is < 255. When invoked (ENABLEd) it updates ctr with +1 of its old value. The
down method is READY when ctr is > 0. When invoked (ENABLEd) it updates ctr with
−1 of its old value.

How do we prevent a double-write error? We do this in the environment, as shown
in Fig. 10.37. We have inserted an inverter and an AND gate that allows the consumer
to assert the down method’s ENABLE signal only if the producer is not READY. In this
circuit, if both producer and consumer are ready, the producer is given priority over the
consumer. If they are ready at disjoint times, the extra logic has no effect. This extra
circuitry to prevent double-writes will be automatically inserted by BSV’s compiler.

10.10.1 Preventing double-writes and preserving atomicity

Consider this code fragment with two rules:
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Figure 10.36: Up-Down Counter internal cicuit.

Figure 10.37: Suppressing the possibility of a double-write when using the Up-Down
Counter.

1 rule ra;

2 x <= e1; y <= e2;

3 endrule

4

5 rule rb;

6 x <= e3; z <= e4;

7 endrule

Certainly, the if the rules were allowed to fire concurrently, they would double-write into
register x. Following the example of the Up-Down Counter, we may think we could fix-up
the circuit as shown in Fig.10.38. This indeed fixes the double-write on x, but it does not
preserve the atomicity of rules. Remember, “atomicity” of a rule means it either performs
all of its actions (here, register writes) or none. When both rules are ready, then this circuit
writes the value of e1 into x (because the producer is prioritized), and the value of e2 into
y; so far, so good. But the circuit also writes e4 into z. Thus, we’ve performed one of the
two actions in rule rb.

The circuit is easy to fix. By the definition of atomicity, if we suppress any action in
a rule to avoid a double-write, we must suppress all actions of that rule at the same time.
The fixed-up circuit is shown in Fig.10.39.
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Figure 10.38: Circuit fixing double-write, but not preserving atomicity.

Figure 10.39: Circuit fixing double-write and preserving atomicity.
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10.11 Generalizing the circuits that control rule-firing

We now generalize the examples of the last few sections. Note, fortunately all this work is
done for us by BSV’s compiler, but the purpose here is to develop an intuitive understanding
of the kinds of circuits produced. Since these constructions are rather tedious, intricate and
case-specific, they would also be error-prone if done manually; this gives us an appreciation
for the extra confidence in correctness due to automatic construction by the compiler.

Fig.10.40 shows a sketch of two rules invoking two methods. Recall, we show each

Figure 10.40: Two rules and two methods: the starting point.

method twice—the right-hand side shows input wires of the method going into the method’s
module and the left-hand side (dotted-line boxes) shows the same methods with output wires
of the method coming out of the method’s module. As always, READY signals are shown
in green and ENABLE signals are shown in red. We have already prepended the methods
with muxes to “funnel” in their data and ENABLE signals. The ENABLE signals have been
prepended with AND gates in anticipation of suppression, as in the examples of the last
section.

Next, in Fig.10.41 we show the “easy” connections—method outputs feeding the body
and guard of each rule; data wires from the rule guards to the methods; data and ENABLE
wires from the rule bodies to the methods.

In Fig.10.42 we introduce a new circuit which we call a “scheduler”. Its inputs are the
READY signals from all the rules, also known as the “CAN FIRE” signals. Finally, in
Fig.10.43 we connect the output of the scheduler to the AND gates controlling each of the
ENABLE signals feeding the muxes into the methods.

The scheduler, seeing all the rule CAN FIRE signals, has knowledge about which rules
are concurrently ready. By selectively asserting the WILL FIRE signals, it can ensure that
rules are executed atomically, i.e., either all or none of the actions of a rule are performed.
We can see that Fig.10.39 is just a special case of this figure, where we have not called out
the scheduler as a separately identifiable circuit.
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Figure 10.41: The “easy” connections.

Figure 10.42: Introducing a “scheduler”.



10-30 Ch 10: Hardware Synthesis

Figure 10.43: “WILL FIRE” signals from the scheduler control actions.

10.11.1 Looking inside the scheduler

The scheduler is a purely combinational circuit. It is typically custom built for each ap-
plication based on an analysis of the specific rules in the application, their potential for
double-writes and their atomicity requirements. All this is done automatically for us by
BSV’s compiler.

Fig.10.44 shows the simplest of schedulers for two rules which do not have any double-

Figure 10.44: The simplest scheduler

write issue. Each CAN FIRE is simply carried through as the corresponding WILL FIRE.

Fig.10.45 shows a scheduler for two rules that do have a double-write issue, and where

Figure 10.45: Scheduler prioritizing rule ra over rule rb

we have prioritized rule ra over rule rb. Fig.10.46 shows a scheduler with the opposite prior-
itization, rule rb over rule ra. BSV’s compiler allows the programmer to supply “scheduling
annotations” using which it can be guided to produce either of the above two schedulers.

These last few examples demonstrate that in any application, there may be many pos-
sible schedulers that prevent double-writes and preserve atomicity. Different choices of
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Figure 10.46: Scheduler prioritizing rule rb over rule ra

schedulers may produce circuits with different area, performance and power.

10.12 Summary

We have shown general principles by which one can generate a sequential machine corre-
sponding to any user-written module. Remember, this work is done for us by the BSV
compiler, but it is always useful to demystify the workings of compilers, so that we have a
good mental model of the circuits obtained.

Sequential machines are connected to each other using atomic rules and methods. Some-
times, we need to prevent the execution of a rule to avoid double-write errors. If we prevent
a double-write error from a rule, by atomicity we must also prevent all the rule’s actions.

We can design hardware schedulers (which are just combinational circuits) to intervene
and prevent the execution of any set of ready rules, whether for double-write error reasons
or any other reason. Indeed, we will make use of this facility to enforce some more desirable
properties of digital designs.

Exercise 10.1: In Sec. 10.7 we sketched the synthesis of a GCD module. Fill in the details
and draw the complete circuit. 2
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Chapter 11

Increasing concurrency: Bypasses
and EHRs

11.1 Introduction

So far we have concentrated only on the functionality of our designs (“what does it do?”)
and not so much on their performance (“how quickly does it do it?”). We now focus on the
latter question. We will find that our designs so far lack a certain degree of concurrency
(ability of multiple rules to execute in the same clock) thereby limiting performance. The
solution is to introduce a standard hardware technique called bypassing which is a way to
communicate values within a clock cycle (with just wires, and bypassing any intermediate
state).

11.2 The problem: inadequate concurrency

11.2.1 Example: The Up-Down Counter

Here, again, is the code for our Up-Down Counter. First, the interface:

1 interface UpDownCounter;

2 method ActionValue #(Bit #(8)) up;

3 method ActionValue #(Bit #(8)) down;

4 endmodule

and then the module implementation:

1 module mkUpDownCounter (UpDownCounter);

2

3 Reg #(Bit #(8)) ctr <- mkReg (0);

4

5 method ActionValue #(Bit #(8)) up if (ctr < 255);

6 ctr <= ctr+1;

11-1
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7 return ctr;

8 endmethod

9

10 method ActionValue #(Bit #(8)) down if (ctr > 0);

11 ctr <= ctr-1;

12 return ctr;

13 endmethod

14 endmodule

Since both the up and down methods write into register ctr, they cannot be invoked con-
currently. Thus, in any clock, we can either increment or decrement, but not both. In many
applications, this is not good enough.

11.2.2 Example: A pipeline connected with FIFOs

Consider the pipeline in Fig. 11.1, where the three stages transform data using the functions

Figure 11.1: A 3-stage pipeline.

f0, f1 and f2, respectively. Here is a code fragment for the pipeline:

1 rule stage1;

2 fifo1.enq (f0 (inQ.first));

3 inQ.deq;

4 endrule

5

6 rule stage2;

7 fifo2.enq (f1 (fifo1.first));

8 fifo1.deq;

9 endrule

10

11 rule stage3;

12 outQ.enq (f2 (fifo2.first));

13 fifo2.deq;

14 endrule

For this to act as a true pipeline, we would like all stages to advance concurrently (in each
clock). This implies that, in each clock, we must be allowed to invoke each FIFO’s enq,
first and deq methods. If not, we only get limited pipelining, where only alternate stages
can execute concurrently, and adjacent stages cannot. It would be a pipeline with “bubbles”
separating data.



©2019 Arvind; All Rights Reserved 11-3

Here is our code for a 1-element FIFO:

1 module mkFifo (Fifo #(1, Bit #(n)));

2

3 Reg #(Bit #(n)) d <- mkRegU;

4 Reg #(Bool) v <- mkReg (False);

5

6 method Action enq (Bit #(n) x) if (! v);

7 v <= True; d <= x;

8 endmethod

9

10 method Action deq if (v);

11 v <= False;

12 endmethod

13

14 method Bit #(n) first if (v);

15 return d;

16 endmethod

17 endmodule

Methods enq and deq cannot execute concurrently for two reasons: they both write reg-
ister v and they have mutually exclusive guards. Methods enq and first cannot execute
concurrently because they have mutually exclusive guards.

Suppose we try to fix the problem using a 2-element FIFO instead, as sketched in
Fig. 11.2, Assume that if there is only one element in the FIFO, it resides in data register

Figure 11.2: Sketch of internal state of a 2-element FIFO.

da, and the corresponding “valid” register va is true. If there are two elements in the FIFO,
the data are in va and vb (in that order) and both valid registers are true. Initially, va and
vb are set false, since the FIFO is empty.

And enq can be done as long as vb is false and it writes its value in the b registers.
A deq can be done as long as va is true, and it takes its value from (and updates) the a
registers. In this way, enq and deq do not write to any common register, and there is no
double-write issue.

We eventually have to move a freshly enqueued value from the a registers to the b
registers. This is done by an extra rule inside the module called “canonicalize”. Here is the
code:

1 module mkCFFifo (Fifo #(Bit #(n)));

2 // ... instantiate da, va, db, vb (not shown)
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3

4 rule canonicalize if (vb && (! va));

5 da <= db;

6 va <= True;

7 vb <= False;

8 endrule

9

10 method Action enq (Bit #(n) x) if (! vb);

11 db <= x;

12 vb <= True;

13 endmethod

14

15 method Action deq if (va);

16 va <= False;

17 endmethod

18

19 method Bit #(n) first if (va);

20 return da;

21 endmethod

22 endmodule

Unfortunately, although there is no longer any double-write problem or mutually exclusive
guards involving enq, deq and first, we have just pushed the problem elsewhere. The
methods still have a double-write issue and mutually exclusive guards with the rule. Thus,
even though enq and deq and first can execute concurrently when there is exactly one
element in the FIFO already in the a registers, when the rule is moving data from the b
registers to the a registers, none of the methods can execute, thereby re-introducing our
“bubble”.

11.2.3 Summary: limitations of using registers to mediate all communi-
cation

If basic register is our only primitive state element, it is the only way for a method or rule
to communicate a value to another method or rule. A method or rule writes a value into
a register, and a method or rule reads from that register, and that can only happen in
the next clock at the earliest. As seen in the above examples, this fundamentally limits
concurrency.

Bypassing provides a means by which methods and rules can communicate within the
same clock (concurrently). In effect, we are going to expand our set of basic primitives
from just ordinary registers to include bypass registers and EHRs. These new primitives
are “sufficient”, i.e., using them we can express any degree of concurrency that we wish.

11.3 Bypassing

In BSV one thinks of bypassing in terms of reducing the number of cycles it takes to execute
two rules or methods that would conflict if they used ordinary registers to communicate. For
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example: design a FIFO where, even when the FIFO is full, deq and enq can be performed
concurrently. This requires signalling from the former to the latter method since, when the
FIFO is full, an enq is only possible (is ready) if a deq happens (is enabled).

Another small example: transform the following rules:

1 rule ra;

2 x <= y+1;

3 endrule

4

5 rule rb;

6 y <= x+2;

7 endrule

such that they execute concurrently, and behave as if rule ra happened before rb, i.e., x
gets the old value of y +1, and y gets the old value of y +3. These examples are not possible
using only ordinary registers to communicate between rules.

11.3.1 New kinds of primitive registers

Fig. 11.3, shows an ordinary register, viewed as a BSV module with a Reg #(Bit #(n))

Figure 11.3: An ordinary register, seen as a BSV module with Reg interface.

interface, repeated below:

1 interface Reg #(Bit #(numeric type n))

2 method Action _write (Bit #(n) x);

3 method Bit #(n) _read;

4 endinterface

The _write method is shown on the left and the _read method on the right.
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Figure 11.4: A bypass register.

The bypass register primitive module

Fig. 11.4 shows the circuit for a bypass register. Its interface is a slight generalization of the
ordinary register interface, now having two read methods:

1 interface Reg #(Bit #(numeric type n))

2 method Action _write (Bit #(n) x);

3 method Bit #(n) _read_0; // normal

4 method Bit #(n) _read_1; // bypass

5 endinterface

Note that the data value written by the _write method is directly bypassed out to the
_read_1 method. The _read_0 method behaves like the _read method in an ordinary
register. The value returned by _read_0 is the old value (“before” the _write), and the
value returned by _read_1 is the new value (“after” the _write). We use the following
notation to express this idea formally:

_read_0 < _write

_write < _read_1

Note that if _write is not currenty being invoked, then both _read_0 and _read_1 return
the same value, the value in the D flip flops. In other words, the new behavior only occurs
when we concurrently invoke _write and _read_1.

The priority register primitive module

Fig. 11.5 shows the circuit for a priority register. Its interface is also a slight generalization
of the ordinary register interface, this time having two write methods:

1 interface Reg #(Bit #(numeric type n))

2 method Action _write_0 (Bit #(n) x); // normal

3 method Action _write_1 (Bit #(n) x); // priority

4 method Bit #(n) _read;

5 endinterface
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Figure 11.5: A priority register.

This is how we will arbitrate double writes. When _write_0 and _write_1 are invoked
concurrently, we will essentially discard the value from the former and store the value from
the latter, thus “prioritizing” the latter. The _read method’s behavior is the same as in
the ordinary register, with respect to both _write_0 and _write_1. We can describe this
formally as follows:

_read < _write_0

_read < _write_1

_write_0 < _write_1

Note that if _write_0 and _write_1 are not invoked concurrently, they each behave like
the _write of an ordinary register.

The EHR primitive module

Our last new primitive module is the EHR1 shown in Fig. 11.6. This is just a combination

Figure 11.6: An EHR (“Ephemeral History Register”.

of the bypass register and the priority register, and this is also reflected in the formalization
of the method relationships:

1Originally, “Ephemeral History Register” in [1]. Nowadays we mostly use only the abbreviation EHR.
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_write_0 < _write_1

_write_0 < _read_1

_read_0 < _write_0

_read_0 < _write_1

_read_1 < _write_1

Since EHRs subsume bypass and priority registers, we will only use EHRs from now on,
just leaving unused methods unused.

Note that the bypassing or prioritizing behaviors only occur during concurrent invo-
cations of methods. When methods are invoked individually (not concurrently), all the
_read_j and _write_j methods behave like the _read and _write methods of an ordinary
register. This is the beauty of EHRs—when analyzing a circuit for functional correctness,
we think of one rule at a time, for which an EHR is identical to an ordinary register. We
can separately analyze a circuit’s performance by studying concurrent invocation of its EHR
methods.

Note, while Fig. 11.6 shows an EHR with two read and two write methods, it can be
extended to n read methods and m write methods using the same principles, for any n
and m. In practice n and m are rarely larger than small single-digit numbers (say, 3 or 4),
because each such extra method increases the number and length of combinational paths,
thereby limiting the clock speed at which we can run the circuit.

11.4 Revisiting the Up-Down Counter, using EHRs for greater
concurrency

It is very easy to change our code for the Up-Down counter in Sec. 11.2.1 to use an EHR
instead of an ordinary register:

1 module mkUpDownCounter (UpDownCounter);

2

3 EHR #(Bit #(8)) ctr <- mkEHR (0);

4

5 method ActionValue #(Bit #(8)) up if (ctr [0] < 255);

6 ctr [0] <= ctr [0] + 1;

7 return ctr [0];

8 endmethod

9

10 method ActionValue #(Bit #(8)) down if (ctr [1] > 0);

11 ctr [1] <= ctr [1] - 1;

12 return ctr [1];

13 endmethod

14 endmodule

We have replaced the original instantiation of an ordinary registr:
Reg #(Bit #(8)) ctr <- mkReg (0);

by an instantiation of an EHR:
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EHR #(Bit #(8)) ctr <- mkEHR (0);

In the up method, we have replaced each ctr method invocation by ctr[0]. In the down

method, we have replaced each ctr method invocation by ctr[1].

When up and down are called singly (not concurrently), the behavior is exactly as before,
since an EHR behaves like an ordinary register when there is no concurrency. In fact, for
analyzing functional correctness, we can simply treat EHR and mkEHR as a synonyms for Reg
and mkReg, and erase all the square-bracket indexes. If we do that, we get the original code.

When up and down are called concurrently, the value written by up into ctr[0] is
bypassed into the read of ctr[1] in the right-hand side of the register assignment in the
down method, i.e., it sees the incremented value. This value is decremented and written
into ctr[1]. Thus, there is no net change in the value of ctr (+1− 1).

Note that the guard for down uses ctr[1]. In the original code (or in the non-concurrent
case), if ctr had the value 0, the guard would prevent down from being invoked. However,
here, if up is being invoked concurrently, then the guard for down would see the incremented
value, 1, and will thus allow deq to be invoked concurrently. However, it is still like the
original code in that up cannot be invoked if the counter value is 255.

Note, we could just as well have flipped the indexes, using ctr[1] in up and ctr[0] in
down. This only affects the conceptual ordering of the two methods, a consequence of the
conceptual ordering on the EHR methods. In the code shown above, up executes “before”
down, thus allowing concurrent invocations even when the counter value is 0. If we flip the
indexes, then conceptually down executes “before” up. In this case, a similar analysis will
show that we can do concurrent invocations when the counter value is 255, and that down

cannot execute when the counter value is 0.

Fig. 11.7 shows the circuit generated for the Up-Down counter with EHRs. There is

Figure 11.7: Circuit for Up-Down Counter with EHRs.

no longer any double-write problem, but it has introduced a longer combinational path.
Specifically, the READY signal for the down method depends on the value from ctr[1],
which depends on the value being written into ctr[0], which is the output of the +1 logic.
Similarly, in the concurrent case, the ctr[0] output goes through both the +1 and the −1
logic before being written back to the D flip flops. This tradeoff comes with the territory—
trying to do more in one clock (more concurrency) is likely to lengthen combinational paths.
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Fig. 11.8 sketches the circuitry in the environment, i.e., the surrounding circuit that

Figure 11.8: Environment ciruit for Up-Down Counter with EHRs.

instantiates and uses the Up-Down counter. This is the same as Fig. 10.37, except that we
have crossed out the AND gate suppressing the consumer from invoking the down method
concurrently with the producer invoking the up method; we no longer need it, since this
implementation of the Up-Down counter allows concurrent invocation.

This is a useful general observation: note that the original code for the Up-Down counter
using ordinary registers, and the new code using EHRs, have exactly the same BSV interface
declaration. However, they differ in the concurrency that they allow on the up and down

methods. In general, the concurrency allowed on methods of an interface depend on the
particular module implementation behind that interface.

11.5 The Conflict Matrix: a formal characterization of method
ordering

The “method ordering” ideas of the previous section can be formalized in a Conflict Matrix,
which is a square matrix with both rows and columns labeled with the methods and rules of
a module. An entry in the matrix at row ra and column rb specifies the ordering constraint
between those two methods:

ra < rb ra and rb can be executed concurrently; the net effect is as if ra is
executed before rb. (We can also write this as rb > ra.)

ra CF rb ra and rb can be executed concurrently; the net effect is the same as
ra < rb and ra > rb. (CF = “conflict free”)

ra C rb ra and rb cannot be executed concurrently; it would cause a double-
write error, or the resulting effect is neither ra < rb nor ra > rb. (C
= “conflict”)

ra ME rb The guards of ra and rb are mutually exclusive and thus ra and rb
can never be READY concurrently. (ME = “mutually exclusive”)

Here is the conflict matrix for an ordinary register:

_read _write

_read CF <
_write > C
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Method _read is conflict-free with itself (top left); it can be invoked concurrently in two
rules/methods, and it imposes no ordering on those rules. Method _write conflicts with
itself (bottom right); it can be never be invoked concurrently in two rules/methods (double-
write). Method read_ can be invoked concurrently with _write and it is as if they go in
that order; this can be seen in the top right entry (the bottom left entry is the same; the
matrix is symmetric around the diagonal).

Here is the conflict matrix for an EHR with two read and write methods:

_read_0 _write_0 _read_1 _write_1

_read_0 CF < CF <
_write_0 > C < <
_read_1 CF < CF <
_write_1 > > > C

11.5.1 The Conflict Matrix for a module written in BSV

The conflict matrices for ordinary registers, EHRs, and indeed any primitive modules, are
just “given” (although, if we look at the underlying D flip flops and logic from which they
are built, we can see the rationale for the matrix entries). Since a primitive is a black box,
the conflict matrix only involves its interface methods (there are no visible rules).

If we imagine a module instantiation hierarchy, the leaves (“height 0”) of the hierarchy
are primitive modules. Moving up one level, we get instances of modules written in BSV
that use primitives (that instantiate primitives and invoke their methods). We can generate
correct circuits for such a “height 1” module using the method relationships in the conflict
matrices of the primitives it uses.

Further, we can systematically derive the conflict matrix for such a “height 1” module,
based on the conflict matrices of the primitives it uses and the source code for the module.
This conflict matrix relates all the methods and rules of this module.

This principle can be applied at the next level up and, recursively, at every level in the
module hierarchy all the way up to the top-level module. To derive the conflict matrix for
a “height j” module, we only need the conflict matrices for the methods of “height j − 1
modules that it instantiates (we can ignore the rows and columns for the rules internal to
the module). Indeed, a compiler for BSV does this systematically when compiling a BSV
program.

For example, here is the conflict matrix for our Up-Down Counter implemented with
ordinary registers:

up down

up C C
down C C

We saw earlier that for this implementation of the module, up and down cannot be invoked
concurrently; thus the off-diagonal entries in the matrix are C (conflict). The diagonal
entries are also C because neither up nor down can be invoked concurrently with itself (each
case would result in a double-write).

Here is the conflict matrix for our Up-Down Counter implemented with EHRs:
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up down

up C <
down > C

We saw earlier that for this implementation of the module, up and down can be invoked
concurrently; thus the off-diagonal entries are <.

11.6 Designing concurrent FIFOs using EHRs

In Sec. 11.2.2 we introduced the need for FIFOs where we can invoke enq and deq concur-
rently. We will now design three such FIFOs, armed with the ability to use EHRs. All these
FIFOs have the same FIFO interface, and differ only in the concurrency supported by their
methods.

11.6.1 Pipeline FIFOs

A Pipeline FIFO allows concurrent enq and deq even if it is full. The method ordering is
deq<enq; i.e., the newly dequeued data conceptually vacates a space in the FIFO that is
immediately occupied by newly enqueued data.

Here is the code for a one-element Pipeline FIFO, modifying the implementation in
Sec. 11.2.2 by replacing the ordinary register for v by an EHR:

1 module mkPipelineFIFO (FIFO #(Bit #(n)));

2 Reg #(Bit#(n)) d <- mkRegU;

3 EHR #(Bool) v <- mkEHR (False);

4

5 method Action enq (Bit #(n) x) if (! v[1]);

6 v[1] <= True;

7 d <= x;

8 endmethod

9

10 method Action deq if (v[0]);

11 v[0] <= False;

12 endmethod

13

14 method Bit #(n) first if (v[0]);

15 return d;

16 endmethod

17 endmodule

We invite the reader to analyze the code and verify that if enq, first and deq are invoked
singly (not concurrently within the same clock), the module behaves exactly like like the
original in Sec. 11.2.2 that was implemented with ordinary registers. Remember, without
concurrency, we can treat EHRs just like ordinary registers and erase all the method indexes;
then, this code becomes identical to the original.
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When the FIFO is full, the “valid” EHR v is true, and the data is in d. The first

and deq methods are READY (v[0]) is true). If we invoke these methods, the deq method
writes false into v[0].

Therefore, the enq method is ready—its guard is true since v[1] returns the just-
assigned value of v[0]. Thus, we can invoke enq concurrently (in the same clock). The net
change in the FIFO is that the newly enqueued data lands in d, and v remains true.

Here is the conflict matrix for a Pipeline FIFO:

enq deq first

enq C > >
deq < C >
first < < CF

11.6.2 Bypass FIFOs

A Bypass FIFO allows concurrent enq and deq even if it is empty. The method ordering
is enq<deq; i.e., the newly enqueued data is immediately bypassed through as the newly
dequeued data.

Here is the code for a one-element Bypass FIFO, also modifying the implementation in
Sec. 11.2.2 by replacing the ordinary register for v by an EHR:

1 module mkBypassFIFO (FIFO #(Bit #(n)));

2 EHR #(Bit#(n)) d <- mkEHR (?); // reset value not relevant

3 EHR #(Bool) v <- mkEHR (False);

4

5 method Action enq (Bit #(n) x) if (! v[0]);

6 v[0] <= True;

7 d[0] <= x;

8 endmethod

9

10 method Action deq if (v[1]);

11 v[1] <= False;

12 endmethod

13

14 method Bit #(n) first if (v[1]);

15 return d[1];

16 endmethod

17 endmodule

Again, we invite the reader to and verify that if enq, first and deq are invoked singly (not
concurrently within the same clock), the module behaves exactly like like the original in
Sec. 11.2.2 that was implemented with ordinary registers.

When the FIFO is empty, the “valid” EHR v is false. The enq method is READY (v[0]
is false). If we invoke this method, it writes true into v[0], and writes the newly enqueued
data into d[0].
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Therefore, the first and deq methods are ready—their guards are true since v[1]

returns the just-assigned value of v[0]. Thus, we can invoke these methods concurrently
with enq (in the same clock). The value returned by first, read from d[1] is the value
just enqueued by the enq method. The net change in the FIFO is that and v remains false.

Here is the conflict matrix for a Bypass FIFO:

enq deq first

enq C < <
deq > C >
first > < CF

11.6.3 Conflict-Free FIFOs

A Conflict-Free FIFO allows concurrent enq and deq, with no ordering constraints, as long
as the FIFO is neither empty nor full. The effect of enq is not visible to deq, and vice versa,
in the current clock.

Here is the code for a two-element Conflict FIFO, modifying the 2-element FIFO in
Sec. 11.2.2, using EHRs instead of ordinary registers:

1 module mkCFFIFO (FIFO #(Bit #(n)));

2 EHR #(Bit #(n)) da <- mkEhr (?);

3 EHR #(Bool) va <- mkEhr (False);

4 EHR #(Bit #(n)) db <- mkEhr (?);

5 EHR #(Bool) vb <- mkEhr (False);

6

7 rule canonicalize (vb[1] && !va[1]);

8 da[1] <= db[1];

9 va[1] <= True;

10 vb[1] <= False;

11 endrule

12

13 method Action enq (Bit #(n) x) if (! vb[0]);

14 db[0] <= x;

15 vb[0] <= True;

16 endmethod

17

18 method Action deq if (va[0]);

19 va[0] <= False;

20 endmethod

21

22 method Bit #(n) first if (va[0]);

23 return da[0];

24 endmethod

25 endmodule

In the original code, rule canonicalize had a double-write conflict with all the methods.
In this code, it uses the newly-written values from the methods concurrently (in the same
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clock). The methods write their values into the [0] methods of the EHRs, and the rule
reads these values immediately by using the [1] methods of the EHRs, and produces the
final value in the registers by using the [1] methods. Note, if the FIFO is empty, first and
deq are not READY, and if the FIFO is full, enq is not READY, as expected. In any cycle
where the FIFO contains 1 element (neither full nor empty), enq and deq can be invoked
concurrently.

Here is the conflict matrix for this Conflict-Free FIFO:

enq deq first canonicalize

enq C CF CF <
deq CF C > <
first CF < CF <

canonicalize > > > C

11.6.4 Revisiting our 3-stage pipeline

In Sec. 11.2.2, we showed a 3-stage pipeline (Fig. 11.1) and discussed how, to act as a true
pipeline that is able to advance all stages together, we need FIFOs that allow concurrent
invocation of enq, deq and first methods.

If we replace the mkFIFO instantiations with either mkPipelineFIFO or mkCFFifo, we
achieve the desired concurrency. The latter (mkCFFifo) doubles the number of state elements
compared to the former (mkPipelineFIFO), since each FIFO is a 2-element FIFO. On the
other hand, using mkPipelineFIFO introduces a combinational path all the way through
the pipeline:

• a deq on the far right affects whether stage 3 can invoke enq on its right; which affects
whether stage3 can invoke deq on its left;
• That affects whether stage 2 can invoke enq on its right; which affects whether stage2

can invoke deq on its left;
• That affects whether stage 1 can invoke enq on its right; which affects whether stage1

can invoke deq on its left;
• That effects whether the enq on the far left can be invoked.

Note, Bypass FIFOs would not be appropriate here. If all FIFOs are empty, that would
allow an input value x on the far left to pass straight through all three stages, delivering
f2(f1(f0(x))) in a single clock to the far right which is interesting, but that is not what we
want in pipeline behavior.

11.7 Example: A Register File and a Bypassed Register File

A register file is an array of registers, selected by an index. The interface for a so-called
“two-read-port” register file containing 32 registers, each holding 32-bit data, is:

1 interface RFile;

2 method Action wr (Bit #(5) rindx, Bit#(32) data);

3 method Bit #(32) rd1 (Bit #(5) rindx);
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4 method Bit #(32) rd2 (Bit #(5) rindx);

5 endmodule

The wr method takes a register index and a data value and writes that value into the
corresponding register. The rd1 and rd2 methods have the same functionality—they take
a register index and return the contents of the corresponding register. The reason for two
read ports and one write is that this is typical in a modern CPU—most machine code
instructions read two registers, perform an operation (such as ADD) and write the result
back to a register.

Here is the code for a module implementing this, using ordinary registers:

1 module mkRFile (RFile);

2 Vector #(32, Reg #(Bit #(32)) rfile <- replicateM (mkReg (0));

3

4 method Action wr (Bit #(5) rindx, Bit#(32) data);

5 rfile[rindx] <= data;

6 endmethod

7

8 method Bit #(32) rd1 (Bit #(5) rindx) = rfile[rindx];

9

10 method Bit #(32) rd2 (Bit #(5) rindx) = rfile[rindx];

11 endmodule

The first line inside the module replicates the familiar mkReg(0) to instantiate 32 registers,
and collects the resulting register interfaces in a vector. The wr, rd1 and rd2 method
implementations are straightforward, just reading and writing the register selected by the
given index argument. Based on the conflict matrix of ordinary registers, we can infer that:

rd1 < wr

rd2 < wr

If rd1 (similarly rd2) and wr are invoked simultaneously with the same index argument,
rd1 returns the old value that is already in that register, and wr replaces it with a new
value.

Now let us see if we can design a different register file module where

wr < rd1

wr < rd2

If rd1 (similarly rd2) and wr are invoked simultaneously with the same index argument,
rd1 should returns the new value that is concurrently being written by wr.

Here is the code for this new register file implementation. The required modifications
are almost trivial, using EHRs:
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1 module mkBypassRFile (RFile);

2 Vector #(32, EHR #(Bit #(32)) rfile <- replicateM (mkEHR (0));

3

4 method Action wr (Bit #(5) rindx, Bit#(32) data);

5 rfile [rindx] [0] <= data;

6 endmethod

7

8 method Bit #(32) rd1 (Bit #(5) rindx) = rfile[rindx] [1];

9

10 method Bit #(32) rd2 (Bit #(5) rindx) = rfile[rindx] [1];

11 endmodule

11.8 Summary

EHRs can be used to design a variety of modules to reduce conflicts between methods
and thereby increase concurrency. Examples include FIFOs (Pipeline, Bypass and Conflict
Free), Register Files (bypassing), “scoreboards” for very high-performance CPUs that exe-
cute instructions in out-of-order or data-flow manner, high-performance memory systems,
and so on.

The Conflict Matrix of a module’s methods are sufficient to know what concurrency we
can obtain with it; there is no need to peek into the module to see how it might use EHRs
or other tricks; in this regard, it has the same status as primitive modules.

However, a caution is that EHRs can increase the length of combinational paths and
thus affect achievable clock frequencies. A useful design methodology is first to design using
ordinary registers and assure that our design is functionally correct, and then selectively to
replace modules with refined implementations that use EHRs instead in order to increase
performance by increasing concurrency.
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Chapter 12

Serializability of Concurrent
Execution of Rules

12.1 Introduction

Whether in software or in hardware, managing access to shared state from concurrent ac-
tivities is a central problem. In software, concurrent activities occur as multiple virtual or
physical threads in a CPU or tightly-coupled cluster of CPUs (“multi-threading”, “multi-
processing”), and from multiple computers communicating over networks (“distributed sys-
tems”). In software, people usually learn programming without any concurrency at all using
sequential programming languages like C, C++, Python and so on. After gaining expertise,
a few people may move on to concurrent programs (threads, processes, distributed systems).
Sequential programs are often the “training wheels” from which one may later graduate to
concurrent programming.

In hardware, it is next to impossible to avoid concurrency, from day one. Concurrency is
often the very raison d’Ãªtre of hardware—concurrency allows tasks to be completed much
more quickly.

In both software and hardware systems, the single most important concept known in
Computer Science for managing access to shared state from concurrent activities is the
atomic transaction. An atomic transaction is a collection of updates to shared state per-
formed by a process (concurrent activity), where the process can assume the absence of any
interference from any other process. Further, atomicity semantics imply that either all of
the updates or none are performed; the process does not leave the shared state in some
questionable intermediate state.

A simple example from real life is transferring X dollars from a checking account to a sav-
ings account. The updates involve reading the checking balance, subtracting X and writing
it back, and reading the savings balance, adding X and writing it back. Non-interference
means that, during this transaction, the process need not concern itself with other pro-
cesses trying to read and write these balances at the same time (interfering additions or
subtractions may interleave badly and write bogus values back into the balances). All-or-
none semantics implies that either the entire transfer succeeds, or none of it; we cannot
mistakenly update one balance but not the other.

12-1
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Atomicity allows us to analyze a system for correctness. For example, atomicity allows
easily to reason that a collection of transfers between a checking and savings account will
leave the total balance unchanged.

12.2 Linearizability and Serializability in BSV

In BSV, rules have the semantics of atomic transactions. This means that no other rule’s
accesses to shared state (reads and writes of share registers) appear interleaved with this
rule’s accesses. In other words, every other rule appears to execute either before or after
this rule. This is the definition of linearizability of a rule.

One way to achieve atomicity is literally to execute one rule at a time since, in this case,
the possibility of interference is moot. However, if we literally executed one rule per clock
in hardware, in most applications we would not get any reasonable performance. We would
like to execute multiple rules per clock (“concurrently”).

We could say that concurrent execution of rules or methods is allowed as long as double-
writes do not occur. Still, it is useful to preserve the one-rule-at-a-time view as the logical
semantics of rules, because it simplifies the analysis of circuits to verify correct behavior.
Thus, we impose the constraint of serializability on the concurrent execution of rules:

Serializability means that a concurrent execution of rules must match some serial
execution of rules, a.k.a. one-rule-at-a-time execution of rules.

In other words, rules can be executed concurrently provided the execution is as if they were
executed in some sequential order, i.e., functionally equivalent to a sequential execution.

Serializability is a very well-known and familiar concept to software engineers working
with concurrent processes or distributed systems. Hardware engineers are less familiar with
the concepts and vocabulary, even though the considerations are equally applicable (if not
more so) in the hardware domain.

Our use of the term “linearizable” is just a local consideration, a property that a rule
neither observes nor provides any interference with any other rule. Our use of the term
“serialiable” is more global property, that execution of a collection of rules occurs as if they
occurred in some serial order.

12.3 One-rule-at-a-time semantics of BSV

The one-rule-at-a-time logical view of BSV semantics is very simple:

Repeatedly:

• Select any rule that is ready to execute
• Compute the state updates
• Make the state updates



©2019 Arvind; All Rights Reserved 12-3

Any legal behavior of a BSV program can be explained by observing state updates obtained
by applying one rule at a time.

However, as mentioned earlier, for performance we execute multiple rules concurrently,
making sure that we do so in a manner consistent with one-rule-at-a-time semantics.

12.4 Concurrent execution of rules

To illustrate these concepts, let us look at the following three examples.

Example 1

rule ra;

x <= x + 1;

endrule

rule rb;

y <= y + 2;

endrule

Example 2:

rule ra;

x <= y + 1;

endrule

rule rb;

y <= x + 2;

endrule

Example 3:

rule ra;

x <= y + 1;

endrule

rule rb;

y <= y + 2;

endrule

Note that in each case, the rules write to different registers, and so there is no possibility of
a double-write. But can we then, therefore, just execute them willy-nilly in the same clock?

Before we analyze serializability, let us remind ourselves about “old” and “new” values
in a register assignment, by annotating the reads and writes with a time superscript:

Example 1

rule ra;

xt+1 <= xt + 1;

endrule

rule rb;

yt+1 <= yt + 2;

endrule

Example 2:

rule ra;

xt+1 <= yt + 1;

endrule

rule rb;

yt+1 <= xt + 2;

endrule

Example 3:

rule ra;

xt+1 <= yt + 1;

endrule

rule rb;

yt+1 <= yt + 2;

endrule

In any clock cycle, a register-read always reads the old value in the register (that was
sampled at a previous clock edge), and a register-write produces a new value that is not
visible until after the next clock edge. We designate these with superscripts t and t+1,
respectively. For any x, if there is no assigment defining xt+1, then xt+1 is the same as xt.

To analyze serializability of concurrent execution, let us hand-execute the three examples
in three different ways:

(1) “Blindly concurrent”: ra and rb in the same clock
(2) Serially, with ra first, then rb (e.g., in two successive clocks)
(3) Serially, with rb first, then ra (e.g., in two successive clocks)

Assume that x and y are both initialized to contain 0. The table below shows the final
values of x and y for the three examples nd for each of the above three “schedules”:
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Example 1 Example 2 Example 3

Blindly concurrent x = 1, y = 2 x = 1, y = 2 x = 1, y = 2

ra < rb x = 1, y = 2 x = 1, y = 3 x = 1, y = 2

rb < ra x = 1, y = 2 x = 3, y = 2 x = 3, y = 2

Figure 12.1: Outcomes under 3 schedules.

The “blindly concurrent” schedule is ok for example 1 because it is equivalent some serial
schedule. In fact, it is equivalent to all possible serial schedules, and for this reason we say
that the rules are Conflict Free (or CF for short).

The “blindly concurrent” schedule is not ok for example 2 because it is not equivalent to
any serial schedule (the outcomes don’t match the outcomes of any possible serial schedule).
For this reason, we say that the rules Conflict (or C for short).

The “blindly concurrent” schedule is ok for example 3 because it is equivalent to some
serial schedule, in particular the ra<rb schedule. It’s outcome does not match that of rb<ra,
but as long as it matches some serial schedule it’s ok.

The problem with blind concurrency in Example 2 is that the accesses interleave in an
order that is different from the order in which they occur in any serial schedule, producing
an outcome unrealizable in any serial schedule. Bad interleavings violate atomicity.

Serializability allows to reason about correctness of a design. Returning to our bank-
balance example, we might assert the following property:

In any collection of transfers, the net balance in the two accounts remains the
same.

We can analyze each transfer rule individually, and determine that it has this property.
Then, automatically, we can infer that for any collection of these rules, they have this
property, since it must be equivalent to a sequential execution of these rules. If we didn’t
have serializability, we would have to reason about what happens if reads and writes from
different transfer rules interfere with one another, and that reasoning would be much more
complex.

12.5 Deriving the Conflict Matrix for a module’s interface

In Sec. 11.5 we introduced the concept of a “Conflict Matrix” which formalizes the relation-
ship between the methods of a module. Recall that the Conflict Matrix is a square matrix
whose rows and columns are labelled by the methods. Thus an entry CM[gi,gj] in the conflict
matrix CM indicates the relationship between method gi and gj of the module—whether
they conflict, are conflict-free, or should be ordered by < or >. The matrix is symmet-
ric around the diagonal: if CM[gi,gj] is conflict or conflict-free, we see the same entry in
CM[gj,gi]. If CM[gi,gj] is < (respectively >), then CM[gj,gi] has the opposite ordering >
(respectively <).

The four possible relationships are naturally viewed as a “lattice”, shown in Fig. 12.2.
This ordering permits us to take intersections of ordering information. For example:
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Figure 12.2: Lattice of rule/method relationships.

{>} ∩ {<,>} = {>}
{>} ∩ {<} = {}

Intersections are also known as “meets” or “greatest-lower-bounds” (glbs) in lattices.

We derive conflict matrices in a bottom-up manner in the module hierarchy. The leaves of a
module hierarchy (height 0) are all primitive modules (registers, EHRs, and so on), for each
of which we are given a “built-in” conflict matrix. At height 1, we have module instances
that internally only instantiate primitives. Given the conflict matrix of the primitives, we
can deduce the conflict matrix of a height 1 module. From this point on, we can treat it
just like a primitive, and now do the same for an enclosing height 2 module. In this way,
recursively, we can deduce the conflict matrix for every module in the module hierarchy.

Let g1 and g2 be two methods in the interface of a module. Let us say that “mcalls(g1)”
is the set of methods called inside the definition of method g1, i.e., in its guard and in its
body:

mcalls (g1) = g11, g12, ..., g1n
mcalls (g2) = g21, g22, ..., g1m

Then, CM[g1,g2] can be calculated by computing a the following function involving all
pairwise relationships between a method in mcalls(g1) and a method in mcalls(g2), i.e.,

CM[g1,g2] = conflict (g11,g21) ∩ conflict (g11,g22) ∩ ... conflict (g1n,g2m) ∩
conflict (g12,g21) ∩ conflict (g12,g22) ∩ ... conflict (g12,g2m) ∩
...
conflict (g1n,g21) ∩ conflict (g1n,g22) ∩ ... conflict (g1n,g2m) ∩

where

conflict (x,y) = CM[x,y] if x and y are methods on the same sub-module
CF otherwise

Intuitively, CM[g1,g2] is the at or below (in the lattice) every ordering between any method
in g1 and any method in g2.

The conflict matrix for two rules is computed in exactly the same way, by examining
the methods called in the rules. For our example in Sec. 12.4, the methods they invoke are
x._read, x._write, y._read, and y._write. Performing the analysis, we get the following
conflict matrices:
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Example 1

ra rb

ra C CF
rb CF C

Example 2

ra rb

ra C C
rb C C

Example 3

ra rb

ra C <
rb > C

12.6 Example: The Two-Element FIFO

Let us derive the conflict matrix for the 2-element FIFO we introduced in Sec.11.2.2.
Fig. 11.2 is repeated here as Fig. 12.3. The code for its enq and deq methods is given

Figure 12.3: State elements in a 2-element FIFO.

below, where we have taken the canonicalize rule in the earlier version and incorporated
its actions into the methods here:

1 module mkCFFifo (Fifo #(Bit #(n)));

2 // ... instantiate da, va, db, vb (not shown)

3 ...

4 method Action enq (Bit #(n) x) if (! vb);

5 if (va) begin

6 db <= x;

7 vb <= True;

8 end

9 else begin

10 da <= x;

11 va <= True;

12 end

13 endmethod

14

15 method Action deq if (va);

16 if (vb) begin

17 da <= db;

18 vb <= false;

19 end

20 else

21 va <= False;

22 endmethod

23 ...

24 endmodule
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We can derive a conservative conflict matrix for these methods by collecting all the methods
called (ignoring the fact that some of them are called conditionally):

mcalls (enq) = { vb.r, va.r, db.w, vb.w, da.w, va.w }
mcalls (deq) = { va.r, vb.r, da.w, db.r, vb.w, va.w }

where we have abbreviated ._read and ._write as .r and .w for brevity.| From this, we can
compute the conflict matrix entry:

We can derive a conservative CM by ignoring the conditionals mcalls(enq) = vb.r, va.r,
db.w, vb.w, da.w, va.w mcalls(deq) = va.r, vb.r, da.w, db.r, vb.w, va.w

CM[enq,deq] =
CM[vb.r,va.r]∩CM[vb.r,vb.r]∩CM[vb.r,da.w]∩CM[vb.r,db.r]∩CM[vb.r,vb.w]∩CM[vb.r,va.w]
∩CM[va.r,va.r]∩CM[va.r,vb.r]∩CM[va.r,da.w]∩CM[va.r,db.r]∩CM[va.r,vb.w]∩CM[va.r,va.w]
∩CM[db.w,va.r]∩CM[db.w,vb.r]∩CM[db.w,da.w]∩CM[db.w,db.r]∩CM[db.w,vb.w]∩CM[db.w,va.w]
∩CM[vb.w,va.r]∩CM[vb.w,vb.r]∩CM[vb.w,da.w]∩CM[vb.w,db.r]∩CM[vb.w,vb.w]∩CM[vb.w,va.w]
∩CM[da.w,va.r]∩CM[da.w,vb.r]∩CM[da.w,da.w]∩CM[da.w,db.r]∩CM[da.w,vb.w]∩CM[da.w,va.w]
∩CM[va.w,va.r]∩CM[va.w,vb.r]∩CM[va.w,da.w]∩CM[va.w,db.r]∩CM[va.w,vb.w]∩CM[va.w,va.w]

= CF ∩ {<} ∩ CF ∩ {<} ∩ {>} ∩ {>} ∩ C ∩ C ∩ {>} ∩ C
= C

12.7 Concurrent execution of multiple rules

Generalizing from two rules to more rules, in order for rules r1, r2, ... and rk to execute
concurrently, there must be an ordering r1<r2<...<rk such that executing the rules in that
sequential order produces the same result as concurrent execution. The pairwise conflict
matrices must be consistent with this orderin.

It is important to recognize that the < relation is not transitive, that is r1<r2 and
r2<r3 does not imply r1<r3; the latter condition must be checked explicitly to validate the
ordering r1<r2<r3.

12.8 Using the Conflict Matrix to Enforce Serializability

Suppose we are given a preferred rule ordering based on some other considerations of func-
tionality or performance. We can use the conflict matrix to produce a “correct” execution
of rules in that order. In each clock, we consider rules for execution in the given order. At
the j’th rule, we can use the conflict matrix to check if this rule would conflict with any of
the rules already executed earlier in clock and, if so, we skip the rule (it may be executable
in some subsequent clock).
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Figure 12.4: The rule scheduler

12.8.1 The rule scheduler

Fig.12.4 shows a scheduler circuit created by the BSV compiler for a BSV design. The
guards r1.rdy ... rn.rdy of the rules in the design may be true simultaneously, and some
pairs of rules may conflict with each other, which will be apparent in the conflict matrix for
each pair of rules. The BSV compiler constructs a combinational scheduler circuit given a
linear ordering on the rules, such that:

• Rule ri.en is true if ri.rdy is true, and
• For any rule rj before ri in the linear order, rj does not conflict with rj if rj.rdy is true.

12.9 Summary

The one-rule-at-a-time semantics of rules is a conceptual, logical view, which simplifies
reasoning about the correctness of BSV designs. However, for good performance, we must
execute many rules concurrently within each clock. The job of the compiler is to produce
scheduling circuits that enable such concurrency, but in a controlled manner such that,
for any collection of rules that execute in a clock, it is as if they were executed in a
sequential order (has the same final state as they would have had were they executed in
that order). The scheduler circuits effectively suppress a rule’s execution in a clock if that
would encounter a conflict with a rule already executed in that clock. The conflict matrix
between each pair of rules and methods is a key tool used by the compiler in analyzing
rules and producing a good scheduler circuit. With experience, BSV programmers also
think about conflict matrices and use them to analyze performance for insight into how
performance can be improved.
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Exercise 12.1: Consider the pipeline in Fig.12.5. Can any pipeline stages fire concurrently

Figure 12.5: A pipeline

if the FIFOs do not permit concurrent enq and deq? 2
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