
Chapter 6

Larger and complex test cases

In this chapter, we explore two significantly larger and more complex designs than

the earlier discussed wireless decoders. These test cases comprise of a million-point

sparse Fourier transform design and a Reduced Instruction Set Computing (RISC)

processor capable of booting Linux. Through these examples, we show how our

technique scales and the benefits it provides for complex and heterogeneous hardware

designs.

6.1 Million-point SFFT design

The first complex design chosen is a high-throughput implementation of a sparse

Fourier transform that operates on a million (220) inputs that are frequency sparse, i.e.,only

a few (in this case up to 500) frequency coefficients are non-zero. We first describe

the design of the SFFT hardware and then provide various activity metrics for it.

6.1.1 Design overview

Processing million-point Fourier Transforms in real time can enable numerous ap-

plications ranging from GHz-wide spectrum sensing and radar signal processing to

high resolution computational photography and medical imaging. Currently, million-

point FFTs are not practical. Hardware implementations of such large FFTs are

73



Chapter 6. Larger and complex test cases

prohibitively expensive in terms of high energy consumption and large area require-

ments. However, for most of the above applications the Fourier transform is sparse

which means that only few of the output frequencies have energy and the rest are

noise. Recent work [34] in the field of algorithms has shown how to compute these

sparse FFTs (SFFT) in sub-linear time more efficiently than standard FFTs and

using only a sub-linear number of samples.

At a high level, the SFFT algorithm has two main steps:

1. Bucketization: In this step, the algorithm maps the million (220) frequencies

into 4096 buckets such that the value of each bucket is the sum of the values

of 256 consecutive frequencies mapped to it. This is done by multiplying the

input samples by a Gaussian filter and performing a 4096-point FFT. This

bucketization is repeated for several iterations but in each iteration a permuted

set of samples of the input is chosen. This permutation of time samples results

in a permutation of the frequencies and randomizes the mapping of frequencies

to buckets as described in [34].

2. Estimation: The algorithm then estimates the locations and values of the large

frequency coefficients. To estimate the locations, the algorithm uses a voting

based approach. At the output of the 4096-point FFT, it picks the buckets with

the largest values. These buckets vote for the frequencies that map to them.

A large frequency coefficient will get a vote in every iteration as the values of

the buckets they map to are proportional to their own large value. A negligible

frequency coefficient will not always get a vote due to the random mapping of

frequencies to buckets. Thus, the frequencies with the most votes are the large

frequency coefficients. The values of these frequencies are estimated from the

values of the buckets they map to.

The SFFT algorithm enables computing a million-point Fourier transform faster

than standard FFT if the output is sparse. However, published software implemen-

tations [33, 65] of SFFT algorithms are unable to achieve high input data rates, nor

are they efficient from the perspectives of power, energy, unit cost or form factor. We

74



Chapter 6. Larger and complex test cases

Figure 6-1: Stages of the SFFT algorithm. Core stages are highlighted in blue.

present the first hardware implementation of a million-point SFFT. We use Bluespec

SystemVerilog [10], a high-level hardware design language for the design. Our design

works in a streaming manner on 24-bit input samples to generate the locations and

values of the largest 500 frequency coefficients in 4.49 milliseconds and hence can sup-

port input data rates of 2.23× 108 samples per second. The SFFT algorithm version

implemented in this work is robust with respect to the noise-level in the input. Our

design is also reconfigurable for various sparse applications.

6.1.2 Design Architecture

The SFFT implementation consists of several modules, each implementing a dis-

tinct stage of the algorithm. Figure 6-1 shows the various stages involved in the SFFT

algorithm.

In this section, we describe the implementation of four main stages of the algo-

rithm. We have termed these stages collectively the SFFT Core, because they are

responsible for the bulk of the computation and resource usage in the algorithm.

Figure 6-2 shows the main modules used in our implementation of the SFFT Core

and their input-output semantics. Our design has been parameterized to allow de-

sign exploration and to generate optimized results for the desired specifications. The

75



Chapter 6. Larger and complex test cases

Figure 6-2: Modules implementing the SFFT Core

Table 6.1: Parameters for SFFT Core implementation

Parameter Value
Input data type Complex fixed-point
Fractional bits for fixed-point data 24
Total number of input data values 220

Maximum non-zero input frequency 500
Number of iterations in algorithm 8
Size of FFT in each iteration 4096

parameters chosen for the discussed implementation are given in Table 6.1.We chose

the input data type to be complex fixed-point with 24 fractional bits for each of the

real and imaginary components. The high number of fractional bits ensures that we

have sufficient accuracy for various applications. The number of input samples is 220,

thus each input sample has a 20-bit location index and a 64-bit value (accounting

for real and imaginary sign bit, integral bit and six overflow bits). The input data

is constrained to have a maximum of 500 non-zero frequency coefficients. Increasing

the number of iterations and size of FFT in each iteration, increases the accuracy

of the probabilistic SFFT algorithm. But it also increases the resource usage and

time required for completion. We chose 8 iterations with a 4096-point FFT in each

iteration, as this choice gave sufficient accuracy while still providing an achievable

hardware target. Each module was targeted to achieve a minimum operating fre-

quency of 100 MHz. We next describe the architecture of the SFFT Core modules in

detail.

76



Chapter 6. Larger and complex test cases

4096-point FFT

The SFFT algorithm requires taking a standard FFT of filtered input data slices,

which we refer to as dense FFT. Our design of the dense FFT module was required to

have a high throughput, low area and maximum size of the FFT possible. The larger

the size of the FFT, the lower is the chance of collisions occurring due to non-zero

frequency components being mapped to the same bucket. Initial attempts to use

folded in-place FFT designs [25] failed, as they did not scale to a size beyond 512

points for the 24-bit input data. Instead, this implementation uses a fully pipelined

streaming FFT architecture [35], utilizing a Radix-22 Single Delay Feedback. Each

internal block of the FFT architecture is designed as shown in Figure 6-3, where N

is a parameter that varies from 1 to 1024. The definition of the butterfly structures

is shown in Figure 6-4.

Figure 6-5 shows how the internal blocks are instantiated with appropriate pa-

rameter values to generate the pipelined 4096-point dense FFT implementation. The

use of pipelined multipliers for complex fixed-point input, and adequate buffering in

FIFO queues between blocks allows the design to continuously stream data across

iterations without any stalls. The twiddle factors Wi used in the computation were

generated as a look-up table that each block can independently query for values.

The indices for the twiddle factors are determined by the collective value of the 2-bit

counters present in each block. Each block has two shift registers that map directly

to FPGA shift registers. Absence of large multiplexers, which are usually present

in folded in-place FFT designs, allows this implementation to be highly efficient in

FPGA resource usage. The design is parameterized for the input data type, FFT size

and amount of pipelining in the complex multipliers.

Max Selector

In the previous stage, by performing the 4096-point FFT on the input data we

have mapped the 220 input frequencies into 4096 buckets. This stage of the sparse

FFT algorithm requires determining which of these buckets have a large magnitude,

77



Chapter 6. Larger and complex test cases

Figure 6-3: Single parameterized block of streaming FFT

if S1 == 1

X2 = X1 + Y1

Y2 = X1 − Y1

else

X2 = Y1

Y2 = X1

(a) BFA

if S0 == 1

if S1 == 1

X3 = X2 + Z2

Y3 = X2 − Z2

else

X3 = X2 − jZ2

Y3 = X2 + jZ2

else

X3 = Z2

Y3 = X2

(b) BFB

Figure 6-4: Definition of butterfly structures in R22SDF design

indicating that one or more of the frequencies mapped are non-zero. Selecting buckets

by setting a threshold would have been sensitive to noise levels in input and hence,

not robust. Sorting all the FFT outputs to generate the ordered magnitudes was

observed to be highly resource intensive and time consuming, as well as overkill since

the algorithm does not require them to be ordered. Instead, we implement this step

by selecting the largest (but unordered) 511 magnitudes of the 4096-point FFT output

for each iteration. The chosen selector architecture operates on 2n − 1 entries, hence

the number of entries being 511. Since the input data has a maximum of 500 non-zero

frequency coefficients, selecting top 511 buckets by magnitude was sufficient to collect

78


