
L03-1MIT 6.5900 Fall 2024

Daniel Sanchez
Computer Science and Artificial Intelligence Laboratory

M.I.T.

Caches (continued)

September 11, 2024

MIT 6.5900 Fall 2024

Reminder: Inside a Cache

CACHEProcessor Main
Memory

Address Address

DataData

Address
 Tag

Data Block

Data
Byte

Data
Byte

Data
Byte

Line100

304

6848

copy of main memory
location 100

copy of main memory
location 101

416

September 11, 2024 L03-2

MIT 6.5900 Fall 2024

Reminder: Cache Algorithm (Read)

Look at Processor Address, search cache tags to find match.
Then either

Found in cache
a.k.a. HIT

Return copy
of data from
cache

Not in cache
a.k.a. MISS

Read block of data from
Main Memory

Wait …

Return data to processor
and update cache

Which line do we replace?

September 11, 2024 L03-3

MIT 6.5900 Fall 2024

Reminder: Placement Policy

Set Number

Cache

0 1 2 3 4 5 6 7 8 9

1 1 1 1 1 1 1 1 1 1
0 1 2 3 4 5 6 7 8 9

2 2 2 2 2 2 2 2 2 2
0 1 2 3 4 5 6 7 8 9

3 3
0 1

Memory

Block Number

block 12
can be placed

0 1 2 3 4 5 6 7

Direct
 Mapped
 only into
 block 4
(12 mod 8)

Fully
Associative
 anywhere

0 1 2 3

(2-way) Set
Associative
anywhere in
 set 0
(12 mod 4)

September 11, 2024 L03-4

MIT 6.5900 Fall 2024

Replacement Policy

Which block from a set should be evicted?

• Random

• Least Recently Used (LRU)
• LRU cache state must be updated on every access
• True implementation only feasible for small sets (2-4 ways)

• Pseudo-LRU binary tree was often used for 8+ ways

• First In, First Out (FIFO) a.k.a. Round-Robin
• used in highly associative caches

• Not Least Recently Used (NLRU)
• FIFO with exception for most recently used block or blocks

• One-bit LRU

• Each way represented by a bit. Set on use, replace first unused

September 11, 2024 L03-5

MIT 6.5900 Fall 2024

Multiple replacement policies

0: Policy A
 1: Policy B

Counter

+1

>0

-1

0: Policy A Missed
 1: Policy B Missed

Policy A
Policy B

S
e
ts

Cache

Miss

How do we decide
which policy to use?

Use the best replacement policy for a program

September 11, 2024 L03-6

MIT 6.5900 Fall 2024

Cache Performance

Average memory access time (AMAT) =
 Hit time + Miss rate x Miss penalty

To improve performance:
• reduce the hit time
• reduce the miss rate (e.g., larger, better policy)
• reduce the miss penalty (e.g., L2 cache)

What is the simplest design strategy?

September 11, 2024 L03-7

MIT 6.5900 Fall 2024

Causes for Cache Misses [Hill, 1989]

• Compulsory:

First reference to a block a.k.a. cold-start misses
 - misses that would occur even with infinite cache

• Capacity:

cache is too small to hold all data the program needs
 - misses that would occur even under fully-associative
 placement & perfect replacement policy

• Conflict:
misses from collisions due to block-placement strategy

- misses that would not occur with full associativity

September 11, 2024 L03-8

MIT 6.5900 Fall 2024

Effect of Cache Parameters on Performance

Larger
capacity

cache

Higher
associativity

cache

Larger block
size cache *

Compulsory misses

Capacity misses

Conflict misses

Hit latency

Miss latency

* Assume substantial spatial locality

September 11, 2024 L03-9

MIT 6.5900 Fall 2024

Block-level Optimizations

• What if tags are too large, i.e., too much overhead
– Simple solution: Larger blocks, but miss penalty could be

large

• Sub-block placement (a.k.a. sector cache)

– A valid bit added to units smaller than the full block, called
sub-blocks

– Only read a sub-block on a miss

– If a tag matches, is the sub-block in the cache?

100

300

204

1 1 1 1

1 1 0 0

0 1 0 1

September 11, 2024 L03-10

MIT 6.5900 Fall 2024

Multilevel Caches

• A memory cannot be large and fast

• Add level of cache to reduce miss penalty
– Each level can have longer latency than level above

– So, increase sizes of cache at each level

CPU L1 L2 DRAM

Metrics:

 Local miss rate = misses in cache/ accesses to cache

 Global miss rate = misses in cache / CPU memory accesses

 Misses per instruction (MPI) = misses in cache / number of instructions

September 11, 2024 L03-11

MIT 6.5900 Fall 2024

Inclusion Policy

• Inclusive multilevel cache:
– Inner cache holds copies of data in outer cache

– On miss, line inserted in inner and outer cache; replacement in
outer cache invalidates line in inner cache

– External accesses need only check outer cache

– Commonly used (e.g., Intel CPUs up to Broadwell)

• Non-inclusive multilevel caches:
– Inner cache may hold data not in outer cache

– Replacement in outer cache doesn’t invalidate line in inner cache

– Used in Intel Skylake, ARM

• Exclusive multilevel caches:
– Inner cache and outer cache hold different data

– Swap lines between inner/outer caches on miss

– Used in AMD processors

Why choose one type or the other?
September 11, 2024 L03-12

MIT 6.5900 Fall 2024

Victim Caches (HP 7200)

Victim cache is a small associative back up cache, added to a direct
mapped cache, which holds recently evicted lines
• First look up in direct mapped cache
• If miss, look in victim cache
• If hit in victim cache, swap hit line with line now evicted from L1

• If miss in victim cache, L1 victim -> VC, VC victim->?

Fast hit time of direct mapped but with reduced conflict misses

L1 Data
Cache

Unified L2
CacheRF

CPU

Evicted data from L1

Evicted data from VC
where ?

Hit data (miss in L1)
Victim Cache
FA, 4 blocks

September 11, 2024 L03-13

MIT 6.5900 Fall 2024

Typical memory hierarchies

September 11, 2024 L03-14

L03-15MIT 6.5900 Fall 2024

Daniel Sanchez
Computer Science and Artificial Intelligence Laboratory

M.I.T.

Memory Management:
From Absolute Addresses

to Demand Paging

September 11, 2024

MIT 6.5900 Fall 2024

Memory Management

• The Fifties

- Absolute Addresses

- Dynamic address translation

• The Sixties

- Atlas and Demand Paging

- Paged memory systems and TLBs

• Modern Virtual Memory Systems

September 11, 2024 L03-16

MIT 6.5900 Fall 2024

Names for Memory Locations

• Machine language address
– as specified in machine code

• Virtual address

– ISA specifies translation of machine code address into
virtual address of program variable (sometimes called
effective address)

• Physical address
- Operating system specifies mapping of virtual address into

name for a physical memory location

physical
address

virtual
address

machine
language
address

Address
Mapping

ISA
Physical
Memory
(DRAM)

September 11, 2024 L03-17

MIT 6.5900 Fall 2024

Absolute Addresses

• Only one program ran at a time, with unrestricted
access to entire machine (RAM + I/O devices)

• Addresses in a program depended upon where the
program was to be loaded in memory

• But it was more convenient for programmers to
write location-independent subroutines

virtual address = physical memory address

EDSAC, early 50’s

How could location independence be achieved?

September 11, 2024 L03-18

MIT 6.5900 Fall 2024

Multiprogramming

Motivation
In the early machines, I/O operations were slow
and each word transferred involved the CPU

Higher throughput if CPU and I/O of 2 or more
programs were overlapped. How?
 Þ multiprogramming

Location-independent programs
Programming and storage management ease

 Þ need for a base register

Protection
Independent programs should not affect
each other inadvertently

 Þ need for a bound register

prog1

prog2 P
h
y
s
ic

a
l
M

e
m

o
ry

September 11, 2024 L03-19

MIT 6.5900 Fall 2024

Simple Base and Bound Translation

Base and bounds registers are visible/accessible only
when processor is running in supervisor mode

Load X

Program
Address

Space

Bound
Register £

Bounds
Violation?

M
a
in

 M
e
m

o
ry

current
segment

Base
Register

+

Physical
AddressEffective

Address

Base Physical Address

Segment Length

September 11, 2024 L03-20

MIT 6.5900 Fall 2024

Separate Areas for Code and Data

What is an advantage of this separation?
(Scheme used on all Cray vector supercomputers prior to X1, 2002)

Load X

Program
Address
Space

M
a
in

 M
e
m

o
ry

data
segment

Data Bound
Register

Effective Addr
Register

Data Base
Register

£

+

Bounds
Violation?

Code Bound
Register

Program
Counter

Code Base
Register

£

+

Bounds
Violation?

code
segment

September 11, 2024 L03-21

MIT 6.5900 Fall 2024

Memory Fragmentation

As users come and go, the storage is “fragmented”.

 Therefore, at some stage programs have to be moved
 around to compact the storage.

OS
Space

16K

24K

24K

32K

24K

user 1

user 2

user 3

OS
Space

16K

24K

16K

32K

24K

user 1

user 2

user 3

user 5

user 4

8K

Users 4 & 5
arrive

Users 2 & 5
leave

OS
Space

16K

24K

16K

32K

24K

user 1

user 4

8K

user 3

free

September 11, 2024 L03-22

MIT 6.5900 Fall 2024

Paged Memory Systems

• Manage the virtual address space of each process
in small fixed-size blocks called pages (e.g., 4KB)

• Let the OS store the pages of each process non-
contiguously in physical memory

L03-23September 11, 2024

Page 0

Page 1

Page 2

Page 3

Virtual Address Space
of User-1

Page 1

Page 0

Page 2

Page 3

Physical
Address

Space

MIT 6.5900 Fall 2024

Paged Memory Systems

• Processor-generated address can be interpreted as
a pair <page number, offset>

• A page table contains the physical address of the
base of each page

Page tables make it possible to store the
pages of a process non-contiguously.

0

1

2

3

0

1

2

3

Virtual Address Space
of User-1

Page Table
of User-1

1

0

2

3

page number offset

Physical
Address

Space

September 11, 2024 L03-24

MIT 6.5900 Fall 2024

Private Address Space per User

• Each user has a page table
• Page table contains an entry for each user page

VA1User 1

Page Table

VA1User 2

Page Table

VA1User 3

Page Table

P
h
y
s
ic

a
l

M
e
m

o
ry

free

OS
pages

September 11, 2024 L03-25

MIT 6.5900 Fall 2024

Where Should Page Tables Reside?

• Space required by the page tables (PT) is
proportional to the address space, number of
users, ...

 Þ Space requirement is large

 Þ Too expensive to keep in registers

• Idea: Keep PT of the current user in special
registers
– may not be feasible for large page tables

– Increases the cost of context swap

• Idea: Keep PTs in the main memory
– needs one reference to retrieve the page base address and

another to access the data word

 Þ doubles the number of memory references!

September 11, 2024 L03-26

MIT 6.5900 Fall 2024

Page Tables in Physical Memory

VA1

User 1

PT User 1

PT User 2

VA1

User 2

September 11, 2024 L03-27

MIT 6.5900 Fall 2024

A Problem in Early Sixties

• There were many applications whose data could not
fit in the main memory, e.g., payroll

Paged memory system reduced fragmentation but
still required the whole program to be resident in
the main memory

• Programmers moved the data back and forth from
the secondary store by overlaying it repeatedly on
the primary store

 tricky programming!

September 11, 2024 L03-28

MIT 6.5900 Fall 2024

Manual Overlays

• Assume an instruction can address all the
storage on the drum

• Method 1: programmer keeps track of
addresses in the main memory and
initiates an I/O transfer when required

• Method 2: automatic initiation of I/O
transfers by software address translation

 Brooker’s interpretive coding, 1960 Ferranti Mercury
1956

40k bits
main

640k bits
drum

Central Store

Problems? Method1: Difficult, error prone
Method2: Inefficient

September 11, 2024 L03-29

MIT 6.5900 Fall 2024

Demand Paging in Atlas (1962)

Secondary
(Drum)

32x6 pages

Primary
32 Pages

512 words/page

Central
MemoryUser sees the storage size of the

secondary storage, since data
transfer happens automatically

“A page from secondary
storage is brought into the
primary storage whenever
it is (implicitly) demanded
by the processor.”
 Tom Kilburn

Primary memory as a cache
for secondary memory

September 11, 2024 L03-30

MIT 6.5900 Fall 2024

Hardware Organization of Atlas

Initial
Address
Decode

16 ROM pages
0.4 ~1 µsec

2 subsidiary pages
 1.4 µsec

Main
 32 pages
 1.4 µsec

Drum (4)
 192 pages

8 Tape decks
88 sec/word

48-bit words
512-word pages

1 Page Address

Register (PAR)
per page frame

in main memory

Compare the effective page address against all 32 PARs
 match Þ normal access
 no match Þ page fault
 save the state of the partially executed instruction

Effective
Address

system code
(not swapped)

system data
(not swapped)

0

31

PARs

<effective PN , status>

September 11, 2024 L03-31

MIT 6.5900 Fall 2024

Atlas Demand Paging Scheme

• On a page fault:
– Input transfer into a free page is initiated

– The Page Address Register (PAR) is updated

– If no free page is left, a page is selected to be replaced
(based on usage)

– The replaced page is written on the drum

• to minimize the drum latency effect, the first empty page on

the drum was selected

– The page table is updated to point to the new location of the

page on the drum

September 11, 2024 L03-32

MIT 6.5900 Fall 2024

Caching vs. Demand Paging

CPU cache
primary
memory

secondary
memory

Caching Demand paging
cache entry page frame
cache block (~32 bytes) page (~4K bytes)
cache miss rate (1% to 20%) page miss rate (<0.001%)
cache hit (~1 cycle) page hit (~100 cycles)
cache miss (~100 cycles) page miss (~5M cycles)
a miss is handled a miss is handled
 in hardware mostly in software

primary
memory

CPU

September 11, 2024 L03-33

MIT 6.5900 Fall 2024

Modern Virtual Memory Systems
 Illusion of a large, private, uniform store

Protection & Privacy
several users, each with their private
address space and one or more
shared address spaces

 page table º name space

Demand Paging
Provides the ability to run programs
larger than the primary memory

Hides differences in machine
configurations

The price is address translation on
each memory reference

OS

useri

Primary
Memory

Swapping
Store

VA PAmapping

TLB

September 11, 2024 L03-34

L03-35MIT 6.5900 Fall 2024

Next lecture:

Modern Virtual Memory Systems

