Multithreading Architectures

Mengjia Yan
Computer Science & Artificial Intelligence Lab
M.I.T.

MIT 6.5900 Fall 2023 L11-1

Pipeline Hazards

0 11 .12 .13 .t4 .15 .t6 .17 .t8 .19 t10 t11 112 113 t14

LW r1, 0(r2)

LW r5, 12(r1) :
ADDI 15, r5, #12
SW 12(r1), r5 '

e Each instruction may depend on the previous one

October 16, 2023 MIT 6.5900 Fall 2023 L11-2

Pipeline Hazards

0 11 .12 .13 .t4 .15 .t6 .17 .t8 .19 t10 t11 112 113 t14

LW r1, 0(r2)

LW r5, 12(r1) :
ADDI r5, 5, #12
SW 12(r1), r5 '

e Each instruction may depend on the previous one

What can be done to cope with this?

October 16, 2023 MIT 6.5900 Fall 2023 L11-2

Pipeline Hazards

0 11 .12 .13 .t4 .15 .t6 .17 .t8 .19 t10 t11 112 113 t14

LW r1, 0(r2)

LW r5, 12(r1) :
ADDI 15, r5, #12
SW 12(r1), r5 ’

e Each instruction may depend on the previous one

What can be done to cope with this?

e Even bypassing, speculation and finding something
else to do (via O-0-0) does not eliminate all delays

October 16, 2023 MIT 6.5900 Fall 2023 L11-2

How can we guarantee no dependencies between
instructions in a pipeline?

October 16, 2023 MIT 6.5900 Fall 2023 L11-3

Multithreading

How can we guarantee no dependencies between
instructions in a pipeline?

Take instructions from different programs

October 16, 2023 MIT 6.5900 Fall 2023 L11-3

Multithreading

How can we guarantee no dependencies between
instructions in a pipeline?

Take instructions from different programs

Interleave 4 threads, T1-T4, on non-bypassed 5-stage pipe

10 M 12 13 14 15 16 17 .8 . 19

T1: LW r1, 0(r2) F|D|X|M|W}

T2: ADD (7, r1,r4 i |E|D{X[{M|W}

T3: XORI 5, r4, #12¢ i |[E|D|X|M|W}
T4:SWO(r7), r5 i i i |F|D|X|M|W :
T1: LW r5, 12(r1) . |F|D|[X|M|[WE
October 16, 2023 MIT 6.5900 Fall 2023

L11-3

Multithreading

How can we guarantee no dependencies between
instructions in a pipeline?

Take instructions from different programs

Interleave 4 threads, T1-T4, on non-bypassed 5-stage pipe

10 M 12 13 14 15 16 17 .8 . 19

T1: LW r1, O(r2) FIDIXIM WE; Prior instruction in
T2 ADD 7.1, 4 [EIDDKMIN | 2 ez ahers
T3: XORI r5, r4, #12 FID|IX|M back before next
T4: SW 0(r7), r5 FIDIX i instruction in

T1: LW 15, 12(r1) WEE ik

October 16, 2023 MIT 6.5900 Fall 2023 L11-3

CDC 6600 Peripheral Processors
(Cray, 1964)

First commercial multithreaded hardware

10 “virtual” I/O processors

Fixed interleave on simple pipeline

Pipeline has 100ns cycle time

Each virtual processor executes one instruction every 1000ns

October 16, 2023 MIT 6.5900 Fall 2023 L11-4

Simple Single-threaded Pipeline

v kX R _
" { 18 ~IR—{ GPR1 | O = ‘

Y
N

October 16, 2023 MIT 6.5900 Fall 2023 L11-5

Simple Multi-threaded Pipeline

v kX R _
" { 18 ~IR—{ GPR1 | O = ‘
A 'Y | é D$ ‘]_U‘
N {1

October 16, 2023 MIT 6.5900 Fall 2023 L11-6

Simple Multi-threaded Pipeline

\ 4 ‘X R _
1$ [—|IR—| GPR1 A = ‘

October 16, 2023 MIT 6.5900 Fall 2023 L11-6

Simple Multi-threaded Pipeline

'II :X > _T
% =Rl GPR1 = =

October 16, 2023 MIT 6.5900 Fall 2023 L11-6

Simple Multi-threaded Pipeline

N } $:lR:GPR1J_u: = \.

+1[
_u v :l_l v
2 Thread W 2

select

D x

>— > <

Have to carry thread select down pipeline to ensure
correct state bits read/written at each pipe stage

October 16, 2023 MIT 6.5900 Fall 2023 L11-6

Multithreading Costs

October 16, 2023 MIT 6.5900 Fall 2023 L11-7

Multithreading Costs

e Each thread needs its own user architectural state
- PC
— GPRs (CDC6600 PPUs - accumulator-based architecture)

October 16, 2023 MIT 6.5900 Fall 2023 L11-7

Multithreading Costs

e Each thread needs its own user architectural state
- PC
— GPRs (CDC6600 PPUs - accumulator-based architecture)

e Also, needs its own system architectural state
— Virtual memory page table base register
— Exception handling registers

October 16, 2023 MIT 6.5900 Fall 2023 L11-7

Multithreading Costs

e Each thread needs its own user architectural state
- PC
— GPRs (CDC6600 PPUs - accumulator-based architecture)

e Also, needs its own system architectural state
— Virtual memory page table base register
— Exception handling registers

e Other costs?

October 16, 2023 MIT 6.5900 Fall 2023 L11-7

Multithreading Costs

e Each thread needs its own user architectural state
- PC
— GPRs (CDC6600 PPUs - accumulator-based architecture)

e Also, needs its own system architectural state
— Virtual memory page table base register
— Exception handling registers

e Other costs?

e Appears to software (including OS) as multiple,
albeit slower, CPUs

October 16, 2023 MIT 6.5900 Fall 2023 L11-7

Thread Scheduling Policies

e Fixed interleave (CDC 6600 PPUs, 1965)

— Each of N threads executes one instruction every N cycles
— If thread not ready to go in its slot, insert pipeline bubble

October 16, 2023 MIT 6.5900 Fall 2023 L11-8

Thread Scheduling Policies

e Fixed interleave (CDC 6600 PPUs, 1965)

— Each of N threads executes one instruction every N cycles
— If thread not ready to go in its slot, insert pipeline bubble

e Software-controlled interleave (7T ASC PPUs, 1971)
— OS allocates S pipeline slots among N threads

- Hardware performs fixed interleave over S slots, executing
whichever thread is in that slot

October 16, 2023 MIT 6.5900 Fall 2023 L11-8

Thread Scheduling Policies

e Fixed interleave (CDC 6600 PPUs, 1965)

— Each of N threads executes one instruction every N cycles
— If thread not ready to go in its slot, insert pipeline bubble

e Software-controlled interleave (7T ASC PPUs, 1971)
— OS allocates S pipeline slots among N threads

- Hardware performs fixed interleave over S slots, executing
whichever thread is in that slot

e Hardware-controlled thread scheduling (HEP, 1982)
— Hardware keeps track of which threads are ready to go
— Picks next thread to execute based on hardware priority scheme

October 16, 2023 MIT 6.5900 Fall 2023 L11-8

Denelcor HEP
(Burton Smith, 1982)

First commercial machine to use hardware threading in main CPU

— 120 threads per processor
— 10 MHz clock rate

- Up to 8 processors
— Precursor to Tera MTA (Multithreaded Architecture)

October 16, 2023 MIT 6.5900 Fall 2023 L11-9

Tera MTA
(Burton Smith, 1990-97)

e Up to 256 processors
e Up to 128 active threads per processor

e Processors and memory modules populate a sparse
3D torus interconnection fabric

e Flat, shared main memory
- No data cache
— Sustains one main memory access per cycle per processor

e GaAs logic in prototype, 1KW/processor @ 260MHz
- CMOS version, MTA-2, 50W/processor

October 16, 2023 MIT 6.5900 Fall 2023 L11-10

MTA Architecture

e Each processor supports 128 active hardware threads
- 1 x 128 = 128 stream status word (SSW) registers,
- 8 x 128 = 1024 branch-target registers,
- 32 x 128 = 4096 general-purpose registers

e Three operations packed into 64-bit instruction (short VLIW)
- One memory operation,
— One arithmetic operation, plus
— One arithmetic or branch operation

e Thread creation and termination instructions

e Explicit 3-bit “lookahead” field in instruction gives number of
subsequent instructions (0-7) that are independent of this one
— Allows fewer threads to fill machine pipeline
— Used for variable-sized branch delay slots

October 16, 2023 MIT 6.5900 Fall 2023 L11-11

MTA Pipeline

October 16, 2023

[Issue Pool] Inst Fetch
W / l \
M A C
A —)
re Ke)
IS T w
) =
=)
= :
= W
[Retry Pool]
[Interconnection Network]
Memory pipeline

MIT 6.5900 Fall 2023

e Every cycle, one
instruction from one
active thread is
launched into pipeline

e Instruction pipeline
is 21 cycles long

e Memory operations
incur ~150 cycles of
latency

L11-12

MTA Pipeline

[Issue Pool] Inst Fetch e Every cycIe, one
> instruction from one
W / l \ active thread is
M A c launched into pipeline
e Instruction pipeline
s () D ol is 21 cycles long
5 S _
g T W e Memory operations
2 g incur ~150 cycles of
=
|2 W latency

[
»

[Retry Pool]

Assuming a single thread issues one
instruction every 21 cycles, and clock
rate is 260 MHz...

What is single thread performance?

[Interconnection Network]

Memory pipeline

October 16, 2023 MIT 6.5900 Fall 2023 L11-12

MTA Pipeline

[Issue Pool] Inst Fetch e Every cycIe, one
> instruction from one
W / l \ active thread is
M A c launched into pipeline
e Instruction pipeline
s () D ol is 21 cycles long
5 S _
g T W e Memory operations
2 g incur ~150 cycles of
=
|2 W latency

[
»

[Retry Pool]

Assuming a single thread issues one
instruction every 21 cycles, and clock
rate is 260 MHz...

What is single thread performance?

[Interconnection Network]

Memory pipeline Effective single thread issue rate

is 260/21 = 12.4 MIPS

October 16, 2023 MIT 6.5900 Fall 2023 L11-12

Coarse-Grain Multithreading

October 16, 2023 MIT 6.5900 Fall 2023 L11-13

Coarse-Grain Multithreading

Tera MTA designed for supercomputing applications
with large data sets and low locality
- No data cache

- Many parallel threads needed to hide large memory
latency

October 16, 2023 MIT 6.5900 Fall 2023 L11-13

Coarse-Grain Multithreading

Tera MTA designed for supercomputing applications
with large data sets and low locality
- No data cache

- Many parallel threads needed to hide large memory
latency

Other applications are more cache friendly
- Few pipeline bubbles when cache getting hits

— Just add a few threads to hide occasional cache miss
latencies

- Swap threads on cache misses

October 16, 2023 MIT 6.5900 Fall 2023 L11-13

Multithreading Design Choices

e Fine-grained multithreading
— Context switch among threads every cycle

October 16, 2023 MIT 6.5900 Fall 2023 L11-14

Multithreading Design Choices

e Fine-grained multithreading
— Context switch among threads every cycle

e Coarse-grained multithreading
— Context switch among threads every few cycles, e.g., on:
e Function unit data hazard,
e L1 miss,
e L2 miss...

October 16, 2023 MIT 6.5900 Fall 2023 L11-14

Multithreading Design Choices

e Fine-grained multithreading
— Context switch among threads every cycle

e Coarse-grained multithreading
— Context switch among threads every few cycles, e.g., on:
e Function unit data hazard,
e |1 miss,
e L2 miss...

e Why choose one style over another?

October 16, 2023 MIT 6.5900 Fall 2023 L11-14

Multithreading Design Choices

e Fine-grained multithreading
— Context switch among threads every cycle

e Coarse-grained multithreading

— Context switch among threads every few cycles, e.g., on:

e Function unit data hazard,
e |1 miss,
e |2 miss...

e Why choose one style over another?

e Choice depends on
— Context-switch overhead
— Number of threads supported (due to per-thread state)
— Expected application-level parallelism...

October 16, 2023 MIT 6.5900 Fall 2023

L11-14

TX-2: Multi-sequence computer
(Wes Clark, Lincoln Labs, 1956)

32 Instruction sequences (threads) with
e a fixed priority order among the threads, and
e executes many instructions in a thread - switches mediated by:

— Instruction “break”/"dismiss” bits
— Attention request from I/0

Start-Over

In-out alarms

Arithmetic alarms (overflows, etc.)
Magnetic tape units (multiple)
High-speed printer
Analog-to-digital converter
Paper tape readers (multiple)
Light pen

Display (multiple)

Memory Test Computer

TX-0

Digital-to-analog converter
Paper tape punch
Flexowriters (multiple)

*Main sequences (three)

October 16, 2023 MIT 6.5900 Fall 2023 L11-15

MIT Alewife (1990)

e Modified SPARC chips

— Register windows hold different
thread contexts

e Up to four threads per node

e Thread switch on local cache
MmISS

October 16, 2023 MIT 6.5900 Fall 2023 L11-16

IBM PowerPC RS64-IV (2000)

e Commercial coarse-grain multithreading CPU

e Based on PowerPC with quad-issue in-order five-
stage pipeline

e Each physical CPU supports two virtual CPUs

e On L2 cache miss, pipeline is flushed and execution
switches to second thread

— Short pipeline minimizes flush penalty (4 cycles), small
compared to memory access latency

— Flush pipeline to simplify exception handling

October 16, 2023 MIT 6.5900 Fall 2023 L11-17

Superscalar Machine Efficiency

Issue width

Instruction
issue
Completely idle cycle
(vertical waste)
Time
Patrtially filled cycle,
ie., IPC<4

(horizontal waste)

e Why horizontal waste?
e Why vertical waste?

October 16, 2023 MIT 6.5900 Fall 2023 L11-18

Vertical Multithreading

Issue width

Instruction
issue
Second thread interleaved
cycle-by-cycle
Time
Patrtially filled cycle,
ie. IPC <4

(horizontal waste)

e What is the effect of cycle-by-cycle interleaving?

October 16, 2023 MIT 6.5900 Fall 2023

L11-19

Vertical Multithreading

Issue width

Instruction
issue
Second thread interleaved
cycle-by-cycle
Time
Patrtially filled cycle,
ie. IPC <4

(horizontal waste)

e What is the effect of cycle-by-cycle interleaving?
— removes vertical waste, but leaves some horizontal waste

October 16, 2023 MIT 6.5900 Fall 2023

L11-19

Chip Multiprocessing

~Issue width

Time

e What is the effect of splitting into multiple processors?

October 16, 2023 MIT 6.5900 Fall 2023 L11-20

Chip Multiprocessing

~Issue width

«

Time

e What is the effect of splitting into multiple processors?
— reduces horizontal waste,
— |leaves some vertical waste, and
— caps peak throughput of each thread.

October 16, 2023 MIT 6.5900 Fall 2023 L11-20

Ideal Superscalar Multithreading
[Tullsen, Eggers, Levy, UW, 1995]

Issue width

Time

e Interleave multiple threads to multiple issue slots
with no restrictions

October 16, 2023 MIT 6.5900 Fall 2023 L11-21

0-0-0 Simultaneous Multithreading
[Tullsen, Eggers, Emer, Levy, Stamm, Lo, DEC/UW, 1996]

e Add multiple contexts and fetch support and allow instructions
fetched from different threads to issue simultaneously

o Utilize wide out-of-order superscalar processor issue queue to
find instructions to issue from multiple threads

e Key insight: OOO instruction window already has most of the
circuitry required to schedule from multiple threads

e Any single thread can utilize whole machine

October 16, 2023 MIT 6.5900 Fall 2023 L11-22

Basic Out-of-order Pipeline

Fetch Decode Queue Reg Execute Dcache Reg Retire
/Map Read /Store Write
Buffer

v

Regs Regs

Dcache

[¥% |

[EV8 — Microprocessor Forum, Oct 1999]
October 16, 2023 MIT 6.5900 Fall 2023 L11-23

Basic Out-of-order Pipeline

Fetch Decode Queue Reg Execute Dcache Reg Retire
/Map Read /Store Write
Buffer

v

Regs Regs

Dcache

[¥% |

A
v

Thread-
blind

[EV8 — Microprocessor Forum, Oct 1999]
October 16, 2023 MIT 6.5900 Fall 2023 L11-23

SMT Pipeline

Fetch Decode Queue Reg Execute Dcache Reg Retire
/Map Read /Store Write
Buffer

Dcache Regs

[EV8 — Microprocessor Forum, Oct 1999]
October 16, 2023 MIT 6.5900 Fall 2023 L11-24

Icount Choosing Policy

Fetch from thread with the least instructions in flight.

Why does this enhance throughput?

October 16, 2023 MIT 6.5900 Fall 2023 L11-25

Why Does Icount Make Sense?

October 16, 2023 MIT 6.5900 Fall 2023 L11-26

Why Does Icount Make Sense?

Assuming latency (L) is unchanged with the addition of threading.
For each thread i with original throughput T; (and 4 threads):

October 16, 2023 MIT 6.5900 Fall 2023 L11-26

SMT Fetch Policies (Locks)

e Problem: _
Spin looping thread consumes resources

October 16, 2023 MIT 6.5900 Fall 2023 L11-27

SMT Fetch Policies (Locks)

e Problem: _
Spin looping thread consumes resources

e Solution:

Provide quiescing operation that allows a

thread to sleep until a memory location
changes

Load and start

loop: watching 0(r2)
ARM r1, 0(r2) *4J///
BEQ rl, got it

QUIESCE *\\‘\\\\\\\\‘ Inhibit scheduling of
BR loop

thread until activity
observed on 0(r2)

got it:

October 16, 2023 MIT 6.5900 Fall 2023 L11-27

Adaptation to parallelism type

For regions with high thread
level parallelism (TLP) entire
machine width is shared by all

threads

Issue width

i
i

i
i

B
i

i b

LA i
i i

Time

B
-

i
i

i
i

i
i

i
i

October 16, 2023

For regions with low thread level
parallelism (TLP) entire machine
width is available for instruction
level parallelism (ILP)

Issue width

Time

MIT 6.5900 Fall 2023

L11-28

Pentium-4 Hyperthreading (2002)

e First commercial SMT design (2-way SMT)
— Hyperthreading == SMT

e Logical processors share nearly all resources of the
physical processor
— Caches, execution units, branch predictors

e Die area overhead of hyperthreading ~ 5%

e When one logical processor is stalled, the other can

make progress

— No logical processor can use all entries in queues when two
threads are active

e Processor running only one active software thread
runs at approximately same speed with or without
hyperthreading

October 16, 2023 MIT 6.5900 Fall 2023 L11-29

Pentium-4 Hyperthreading
Front End

L2 Cache Uop
Access EQueue Decode QueueE Fill EQueue

...............-..-...*

........-......-..-....‘

Decode

Resource divided Resource shared
between logical CPUs between logical CPUs

[Intel Technology Journal, Q1 2002]
October 16, 2023 MIT 6.5900 Fall 2023 L11-30

Pentium-4 Branch Predictor

October 16, 2023 MIT 6.5900 Fall 2023 L11-31

Pentium-4 Branch Predictor

e Separate return address stacks per thread
Why?

October 16, 2023 MIT 6.5900 Fall 2023 L11-31

Pentium-4 Branch Predictor

e Separate return address stacks per thread
Why?

e Separate first-level global branch history table
Why?

October 16, 2023 MIT 6.5900 Fall 2023 L11-31

Pentium-4 Branch Predictor

e Separate return address stacks per thread
Why?

e Separate first-level global branch history table
Why?

e Shared second-level branch history table, tagged
with logical processor IDs

October 16, 2023 MIT 6.5900 Fall 2023 L11-31

Pentium-4 Hyperthreading
Execution Pipeline

Uop Register Register
Queue Rename Queue Sched Read Execute L1Cache Write Retire

Store

r

_ i Re-Order
| L1D-Cache] ReUISters { Buffer

e .
-{I{{ ﬁ

i Registers

[Intel Technology Journal, Q1 2002]
October 16, 2023 MIT 6.5900 Fall 2023 L11-32

Summary: Multithreading Styles

Thread 1 OS context switch code Thread 2
Processor
Intermapt, exception, oxr OS a]l retam from xace'phcmT

Thread 1 Thread 2 Thread 3 Thread 1
Coarse- gramed
Multlthreaded

Cache nuss Cache nuss T Cache nuss T
C)
Fine-grained

Multithreaded

(FMT)

D)
Simultaneous
Multithreaded
(SMT)
Execution 1
Units Time

October 16, 2023 MIT 6.5900 Fall 2023

L11-33

Thank you!

MIT 6.5900 Fall 2023 L11-63

