Graphics Processing Units (GPUs)

Daniel Sanchez
Computer Science & Artificial Intelligence Lab
M.I.T.
Why Study GPUs?

• Very successful commodity accelerator/co-processor

• GPUs combine two strategies to increase efficiency
 – Massive parallelism
 – Specialization

• Illustrates tension between performance and programmability in accelerators

• And within the context of programmability illustrates the principle of “make the common case fast”.
Graphics Processors Timeline

• Until mid-90s
 – Most graphics processing in CPU
 – VGA controllers used to accelerate some display functions

• Mid-90s to mid-2000s
 – Fixed-function accelerators for 2D and 3D graphics
 • triangle setup & rasterization,
 • texture mapping & shading
 – Programming:
 • OpenGL and DirectX APIs
Contemporary GPUs

- Modern GPUs
 - Some fixed-function hardware (texture, raster ops, ray tracing...)
 - Plus programmable data-parallel multiprocessors
 - Programming:
 - OpenGL/DirectX
 - Plus more general-purpose languages (CUDA, OpenCL, ...)

Luebke and Humphreys, 2007
GPUs in Modern Systems

• Discrete GPUs
 – PCIe-based accelerator
 – Separate GPU memory

• Integrated GPUs
 – CPU and GPU on same die
 – Shared main memory and last-level cache

• Pros/cons?
Single Instruction Multiple Thread

SIMT
- Many threads, each with private architectural state, e.g., registers
- Group of threads that issue together called a warp
- All threads that issue together execute same instruction
- Entire pipeline is an SM or streaming multiprocessor

green-> Nvidia terminology
Multithreading + Single Instruction Multiple Thread
Streaming Multiprocessor Overview

- Each SM supports 10s of warps (e.g., 64 in Kepler) with 32 threads/warp
- Fetch 1 instr/cycle
- Issue 1 ready instr/cycle
 - Simple scoreboard: all warp elements must be ready
- Instruction broadcast to all lanes
- Multithreading is the main latency-hiding mechanism
Little’s Law (again!)

\[\text{Throughput } (\bar{T}) = \frac{\text{Number in Flight } (\bar{N})}{\text{Latency } (\bar{L})} \]

Example:

- 64 warps (number of instructions in flight)
- 1 instruction / cycle (desired throughput)

\[\Rightarrow <64 \text{ cycle average instruction latency} \]
Context Size vs Number of Contexts

- SMs support a variable number of contexts based on required registers (and shared memory)
 - Few large contexts → Fewer register spills
 - Many small contexts → More latency tolerance
 - Choice left to the compiler

- Example: Kepler supports up to 64 warps
 - Max: 64 warps @ <=32 registers/thread
 - Min: 8 warps @ 256 registers/thread
Multiple Thread – Single Instruction Multiple Thread
Many Memory Types

- Per Thread Memory
- Scratchpad Shared Memory
- Global Memory

Thread 0
Thread 1
Thread 2
Private Per Thread Memory

- Private memory
 - No cross-thread sharing
 - Small, fixed size memory
 - Can be used for constants
 - Multi-bank implementation (can be in global memory)
Shared Scratchpad Memory

- Shared scratchpad memory (threads share data)
 - Small, fixed size memory (16K-64K per SM = ‘core’)
 - Banked for high bandwidth
 - Fed with address coalescing unit (ACU) + crossbar
 - ACU can buffer/coalesce requests
Memory Access Divergence

- All loads are gathers, all stores are scatters

- Address coalescing unit detects sequential and strided patterns, coalesces memory requests, but complex patterns can result in multiple lower bandwidth requests (memory divergence)

- Writing efficient GPU code requires most accesses to not conflict, even though programming model allows arbitrary patterns!
Shared global memory
 - Large shared memory
 - Will also suffer from memory divergence
Shared Global Memory

- Memory hierarchy with caches
 - Cache to save memory bandwidth
 - Caches also enable compression/decompression of data
 Serialized cache access

- Trade latency for power/flexibility
 - Only access data bank that contains data
 - Facilitate more sophisticated cache organizations
 - e.g., greater associativity
Handling Branch Divergence

• Similar to vector processors, but masks are handled internally
 – Per-warp stack stores PCs and masks of non-taken paths

• On a conditional branch
 – Push the current mask onto the stack
 – Push the mask and PC for the non-taken path
 – Set the mask for the taken path

• At the end of the taken path
 – Pop mask and PC for the non-taken path and execute

• At the end of the non-taken path
 – Pop the original mask before the branch instruction

• If a mask is all zeros, skip the block
Example: Branch Divergence

Assume 4 threads/warp,
initial mask 1111

if (m[i] != 0) {
 if (a[i] > b[i]) {
 y[i] = a[i] - b[i];
 } else {
 y[i] = b[i] - a[i];
 }
} else {
 y[i] = 0;
}

Optimization for branches that all go same way?
Branch divergence and locking

- Consider the following executing in multiple threads in a warp:

```c
if (condition[i]) {
    while (locked(map0[i])){}
    lock(locks[map0[i]]);
} else {
    unlock(locks[map1[i]]);
}
```

where i is a thread id and $map0[]$, $map1[]$ are permutations of thread ids.

What can go wrong here?

Warp-based implementation can cause deadlock
GPU Programming Environments

Code for accelerated kernels

- **CUDA (Nvidia-only)**
 - C-like language that runs on GPU
 - Libraries: cuDNN, cuBLAS, cuFFT

- **OpenCL (open standard)**
 - C-like language that runs on GPU, CPU or FPGA
 - usually less optimized than CUDA
CUDA GPU Thread Model

- Single-program multiple data (SPMD) model

- Each context is a thread
 - Threads have registers
 - Threads have local memory

- Parallel threads packed in blocks
 - Blocks have shared memory
 - Threads synchronize with barrier
 - Blocks run to completion (or abort)

- Grids include independent blocks
 - May execute concurrently
 - Share global memory, but
 - Have limited inter-block synchronization
Code Example: DAXPY

C Code

// Invoke DAXPY
daxpy(n, 2.0, x, y);
// DAXPY in C
void daxpy(int n, double a, double *x, double *y)
{
 for (int i = 0; i < n; ++i)
 y[i] = a*x[i] + y[i];
}

CUDA Code

// Invoke DAXPY with 256 threads per block
__host__
int nbblocks = (n + 255) / 256;
daxpy<<<nbblocks, 256>>>(n, 2.0, x, y);
// DAXPY in CUDA
__device__
void daxpy(int n, double a, double *x, double *y)
{
 int i = blockIdx.x*blockDim.x + threadIdx.x;
 if (i < n) y[i] = a*x[i] + y[i];
}

- CUDA code launches 256 threads per block
- CUDA vs vector terminology:
 - Thread = 1 iteration of scalar loop (1 element in vector loop)
 - Block = Body of vectorized loop (VL=256 in this example)
 - Grid = Vectorizable loop
GPU Kernel Execution

1. Transfer input data from CPU to GPU memory
2. Launch kernel (grid)
3. Wait for kernel to finish (if synchronous)
4. Transfer results to CPU memory

- Data transfers can dominate execution time
- Integrated GPUs with unified address space
 → no copies, but CPU & GPU contend for memory
Hardware Scheduling

- Grids can be launched by CPU or GPU
 - Work from multiple CPU threads and processes

- HW unit schedules grids on SMs
 - Priority-based scheduling

- Multi-level scheduling
 - Limited number of active grids
 - More queued/paused
Synchronization

• Barrier synchronization within a thread block (\texttt{__syncthreads()})
 - Tracking simplified by grouping threads into warps
 - Counter tracks number of warps that have arrived to barrier

• Atomic operations to global memory
 - Read-modify-write operations (add, exchange, compare-and-swap, ...)
 - Performed at the memory controller or at the L2

• Limited inter-block synchronization!
 - Can’t wait for other blocks to finish
GPU ISA and Compilation

• GPU microarchitecture and instruction set change very frequently

• To achieve compatibility:
 – Compiler produces intermediate pseudo-assembler language (e.g., Nvidia PTX)
 – GPU driver JITs kernel, tailoring it to specific microarchitecture

• In practice, little performance portability
 – Code is often tuned to specific GPU architecture
System-Level Issues

• Instruction semantics
 – Exceptions

• Scheduling
 – Each kernel is non-preemptive (but can be aborted)
 – Resource management and scheduling left to GPU driver, opaque to OS

• Memory management
 – First GPUs had no virtual memory
 – Recent support for basic virtual memory (protection among grids, no paging)
 – Host-to-device copies with separate memories (discrete GPUs)
 – Very recent GPUs support paging
GPU: Multithreaded Multicore Chip

- Example: Nvidia Pascal GP100 (2016)
 - 60 streaming multiprocessors (SMs)
 - 4MB Shared L2 cache
 - 8 memory controllers
 - 720 GB/s (HBM2)
 - Fixed-function logic for graphics (texture units, raster ops, ...)
 - Scalability → change number of cores and memory channels
 - Scheduling mostly controlled by hardware
Pascal Streaming Multiprocessor (SM)

- **Execution units**
 - 64 FUs (int and FP)
 - 16 load-store FUs
 - 16 special FUs (e.g., sqrt, sin, cos, ...)

- **Memory structures**
 - 64K 32-bit registers
 - 64KB shared memory

- **Contexts**
 - 2048 threads
 - 32 blocks
Vector vs GPU Terminology

<table>
<thead>
<tr>
<th>Type</th>
<th>More descriptive name</th>
<th>Closest old term outside of GPUs</th>
<th>Official CUDA/NVIDIA GPU term</th>
<th>Book definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vectorizable Loop</td>
<td>Vectorizable Loop</td>
<td>Vectorizable Loop</td>
<td>Grid</td>
<td>A vectorizable loop, executed on the GPU, made up of one or more Thread Blocks (bodies of vectorized loop) that can execute in parallel.</td>
</tr>
<tr>
<td>Body of</td>
<td>Body of a (Strip-Mined) Vectorized Loop</td>
<td>Body of a (Strip-Mined) Vectorized Loop</td>
<td>Thread Block</td>
<td>A vectorized loop executed on a multithreaded SIMD Processor, made up of one or more threads of SIMD instructions. They can communicate via Local Memory.</td>
</tr>
<tr>
<td>Sequence of</td>
<td>One iteration of a Scalar Loop</td>
<td>CUDA Thread</td>
<td>Thread Block</td>
<td>A single SIMD instruction executed across SIMD Lanes.</td>
</tr>
<tr>
<td>SIMD Lane</td>
<td>Scalar Processor</td>
<td>Giga Thread Engine</td>
<td>Warp</td>
<td>A traditional thread, but it contains just SIMD instructions that are executed on a multithreaded SIMD Processor. Results stored depending on a per-element mask.</td>
</tr>
<tr>
<td>Thread Block</td>
<td>Thread scheduler in a Multithreaded CPU</td>
<td>Warp Scheduler</td>
<td>Warp</td>
<td>A SIMD Lane executes the operations in a thread of SIMD instructions on a single element. Results stored depending on mask.</td>
</tr>
<tr>
<td>SIMD Lane</td>
<td>Vector Lane</td>
<td>Thread Processor</td>
<td>Main Memory</td>
<td>DRAM memory accessible by all multithreaded SIMD Processors in a GPU.</td>
</tr>
<tr>
<td>GPU Memory</td>
<td>Main Memory</td>
<td>Global Memory</td>
<td>Private Memory</td>
<td>Portion of DRAM memory private to each SIMD Lane.</td>
</tr>
<tr>
<td>Local Memory</td>
<td>Local Memory</td>
<td>Shared Memory</td>
<td>Local Storage (OS)</td>
<td>Fast local SRAM for one multithreaded SIMD Processor, unavailable to other SIMD Processors.</td>
</tr>
<tr>
<td>SIMD Lane Registers</td>
<td>Vector Lane Registers</td>
<td>Thread Processor Registers</td>
<td>Registers in a single SIMD Lane allocated across a full thread block (body of vectorized loop).</td>
<td></td>
</tr>
</tbody>
</table>

[H&P5, Fig 4.25]
CPU vs. GPU Performance

![Bar chart showing the ratio of partially-optimized CPU vs. CUDA library (cuDNN) performance.](https://github.com/jcjohnson/cnn-benchmarks)

Ratio of (partially-optimized) CPU vs. CUDA library (cuDNN)

Source: Stanford CS231n
Thank you!

Next Lecture: Reliability