Graphics Processing Units
(GPUs)

Daniel Sanchez
Computer Science & Artificial Intelligence Lab
M.I.T.

November 13, 2023 MIT 6.5900 Fall 2023 L19-1

Why Study GPUs?

e Very successful commodity accelerator/co-processor

e GPUs combine two strategies to increase efficiency
— Massive parallelism
— Specialization

e Jllustrates tension between performance and
programmability in accelerators

e And within the context of programmability illustrates
the principle of "make the common case fast”.

November 13, 2023 MIT 6.5900 Fall 2023 L19-2

Graphics Processors Timeline

e Until mid-90s

— Most graphics processing in CPU
— VGA controllers used to accelerate some display functions

e Mid-90s to mid-2000s

— Fixed-function accelerators for 2D and 3D graphics
e triangle setup & rasterization,
e texture mapping & shading

- Programming:
e OpenGL and DirectX APIs

November 13, 2023 MIT 6.5900 Fall 2023 L19-3

Contemporary GPUs

3D geometric
primitives

GPU

Programmable unified processors

A4
Vertex
programs

Geometry
programs

Plxel
programs

Compute
programs

Hidden surface

removal

1

/ﬁ Rasterlzatlon [

I

GPU memory (DRAM)

Final image

e Modern GPUs

Some fixed-function hardware (texture, raster ops, ray tracing...)

— Plus programmable data-parallel multiprocessors

- Programming:
e OpenGL/DirectX
e Plus more general-purpose languages (CUDA, OpenCL,

November 13, 2023

MIT 6.5900 Fall 2023

Luebke and
Humphreys, 2007

)

L19-4

GPUs in Modern Systems

e Discrete GPUs

— PCle-based accelerator
— Separate GPU memory

e Integrated GPUs
— CPU and GPU on same die

— Shared main memory and
last-level cache

DRAM interface

digital logic

e Pros/cons?

DRAM interface
| E——
PP

Apple A7, 28nm
TSMC, 102mm?
November 13, 2023 MIT 6.5900 Fall 2023 L19-5

Single Instruction Multiple Thread

PC > 1$ » IR

KN ZaN
SIMT

- Many threads, each with
private architectural
state, e.qg., registers

— Group of threads that
issue together called a
warp

— All threads that issue
together execute same
instruction

— Entire pipeline is an SM
or streaming
multiprocessor

green-> Nvidia terminology

November 13, 2023

GPR

X

n

/A
T~

/ Lane

Y
ZaN|

3

» GPR

X1,
— A
\

Y
ZaN

3

< S o3 o=

\

MIT 6.5900 Fall 2023

L19-6

Multithreading + Single Instruction Multiple Thread

.| X B
5 R GPR1 = .
N ~ “J W
1 a\| >
A M
e
m
(0]
r
_» X1] y
GPR1 *
[~ v > é
N :
+1 |° ‘Al
_" I /2 :u /2 :u

November 13, 2023 MIT 6.5900 Fall 2023 L19-7

Streaming Multiprocessor Overview

- Warp scheduler Scoreboard
. Warp No. | Address | SIMD instructions | Operands?
Instruction 1 42 Id.global.f64 Ready
cache 1 43 mul.164 No
3 95 shl.s32 Ready
3 96 add.s32 No
8 11 ld.global.f64 Ready
8 12 Id.global.f64 Ready
| 1
-4]
1
[Instruction register]
!
" v s e i, IO, O S P, R, I s ST A G,
Sdpedipedipadiped(psdip ”ﬁ"ﬁ”ﬁrﬁ ! ‘FT\ SIMD Lanes
v \ 2 v v vy W > gy | vy v v v vy WV 1 W ‘ W (Thread
5
Migh:| fay | fug; |‘Mag: |:Mug | Pay | Sy |'Fag; |Mag) Mag | Pag: |-Nug’| Pag) | Wag; | Py | Tag
8
K% 32 [1Kx32 | 1Kx32 | 1Kx32 | 1Kx32 | 1Kx32 [1Kx32 [1Kx32 [1Kx32 | 1Kx32 | 1Kx32 | 1Kx32 | 1K= 32 1Kutn§1K-&j1Kx32
oad | Load | Load | Load 08 Load | Load | Load | Load | Load | Load | Load | Load | Load | Load |
Hore store stwore store store store store store store store store store store store store store
unit unit U unit n unit uni unit unil unit n unit unit unit unit | unk
S A ARSI I E NN N
I Address coalescing unit l [Interconnection network]
}
' ' §r ot
To Global
Local Memory
64KB MamOry

November 13, 2023

MIT 6.5900 Fall 2023

Each SM supports 10s of
warps (e.g., 64 in Kepler)
with ~32 threads/warp

Fetch 1 instr/cycle

Issue 1 ready instr/cycle

- Simple scoreboarding: all
warp elements must be ready

Instruction broadcast to all
lanes

Multithreading is the main
latency-hiding mechanism

L19-8

Little’s Law (again!)

Throughput (T) = Number in Flight (N) / Latency (L)

Example:

November 13, 2023

64 warps (number of instructions in flight)
1 instruction / cycle (desired throughput)

—

Issue [,

MIT 6.5900 Fall 2023

L19-9

Context Size vs Number of Contexts

e SMs support a variable number of contexts based

on required registers (and shared memory)
— Few large contexts - Fewer register spills
- Many small contexts - More latency tolerance
— Choice left to the compiler

e Example: Kepler supports up to 64 warps
- Max: 64 warps @ <=32 registers/thread
— Min: 8 warps @ 256 registers/thread

November 13, 2023 MIT 6.5900 Fall 2023 L19-10

Multiple Thread - Single Instruction Multiple Thread

o X]
1$ > IR | A |
Al GPR1 L = * é
| aN >
A M
e
m
0]
r
Fﬁl” x|, -1y
A | T >
GPR1 . '
[~ v > é
+1 |° A
1. How to implement memory accesses?
"2. How to implement branches?

November 13, 2023 MIT 6.5900 Fall 2023 L19-11

Many Memory Types

Thread 0 — Per Thread Memory

Thread 1 —

Thread 2 —

Scratchpad Shared Memory

Global Memory

November 13, 2023 MIT 6.5900 Fall 2023

L19-12

Private Per Thread Memory

Thread 0O > Thread 0 Memory >
Thread 1 > Thread 1 Memory >
Thread 2 > Thread 2 Memory

e Private memory
— No cross-thread sharing
- Small, fixed size memory
e Can be used for constants
— Multi-bank implementation (can be in global memory)

November 13, 2023 MIT 6.5900 Fall 2023 L19-13

Shared Scratchpad Memory

Thread 0 A b shared Memory Bank [A
C C
Thread 1 U Shared Memory Bank PP U
+ +
X X

Thread 2 A — Shared Memory Bank
b
a a
r r

e Shared scratchpad memory (threads share data)
— Small, fixed size memory (16K-64K per SM = ‘core’)
— Banked for high bandwidth
— Fed with address coalescing unit (ACU) + crossbar
e ACU can buffer/coalesce requests

November 13, 2023 MIT 6.5900 Fall 2023 L19-14

Memory Access Divergence

o All loads are gathers, all stores are scatters

e Address coalescing unit detects sequential and
strided patterns, coalesces memory requests, but
complex patterns can result in multiple lower
bandwidth requests (memory divergence)

e Writing efficient GPU code requires most accesses
to not conflict, even though programming model
allows arbitrary patterns!

November 13, 2023 MIT 6.5900 Fall 2023 L19-15

Shared Global Memory

Thread O | A Global Memory Bank [P A >
C C

Thread 1 | U Global Memory Bank [P U >
+ +

g X - X ,

Thread 2 1 & — Global Memory Bank >
b
. d a
r r

e Shared global memory
— Large shared memory
— Will also suffer from memory divergence

November 13, 2023 MIT 6.5900 Fall 2023 L19-16

Shared Global Memory

. 1\ > C b Global Memory Bank I’ c | |
Misses r r
48 o] ° P Global Memory Bank I'F ° » —
S s
> Z ® Global Memory Bank [Z > —
> Al Cache Tags/Data > C » N N
C r a a
€ e
of Y Pl cacheTags/pata P © < r r N
+ s
of X P| cacheTags/pata [S o W wo L,
b b 0 0
a a r > Buffered Data " r
r r k k
> Buffered Data »
L
\/ > Buffered Data >
[Hits

e Memory hierarchy with caches

— Cache to save memory bandwidth
— Caches also enable compression/decompression of data

November 13, 2023 MIT 6.5900 Fall 2023 L19-17

Serialized cache access

Data Store Data Store

A~ 0 o0 T w

@D Wn o
A~ 0 o0 T w
D W0 hh O

X o a3+
X o a3+

_‘
_|

o

|
o
]

Tag Store Tag Store

e Trade latency for power/flexibility
— Only access data bank that contains data
— Facilitate more sophisticated cache organizations
e e.g., greater associativity

November 13, 2023 MIT 6.5900 Fall 2023 L19-18

Handling Branch Divergence

e Similar to vector processors, but masks are
handled internally
— Per-warp stack stores PCs and masks of non-taken paths

e On a conditional branch
— Push the current mask onto the stack
— Push the mask and PC for the non-taken path
— Set the mask for the taken path

e At the end of the taken path

— Pop mask and PC for the non-taken path and execute

e At the end of the non-taken path

— Pop the original mask before the branch instruction
e If a mask is all zeros, skip the block

November 13, 2023 MIT 6.5900 Fall 2023 L19-19

Example: Branch Divergence

Assume 4 threads/warp,
initial mask 1111

if (m[i] = 9) { O
if (a[i] > b[i]) { O
y[i] = a[i] - b[i];

} else { O
y[i] = b[i] - a[i];

} 4
} else { ®)

y[i] = 6;
} O

0 Push mask 1111
Push mask 0011
Set mask 1100

9 Push mask 1100
Push mask 0100
Set mask 1000

O Pop mask 0100

a Pop mask 1100

O Pop mask 0011

@ Pop mask 1111

Optimization for branches that all go same way?

November 13, 2023 MIT 6.5900 Fall 2023

L19-20

Branch divergence and locking

e Consider the following executing in multiple threads
In a warp:

if (condition[i]) {
while (locked(map@[i])){}
lock(locks[map@[i]]);

} else {
unlock(locks[mapl[i]]);

¥

where i is a thread id and map@[], mapl[]
are permutations of thread ids.

What can go wrong here?

November 13, 2023 MIT 6.5900 Fall 2023 L19-21

GPU Programming Environments

Code for accelerated kernels

e CUDA (Nvidia-only)
- C-like language that runs on GPU
— Libraries: cuDNN, cuBLAS, cuFFT

e OpenCL (open standard)
- C-like language that runs on GPU, CPU or FPGA
— usually less optimized than CUDA

November 13, 2023 MIT 6.5900 Fall 2023 L19-22

CUDA GPU Thread Model

Thread

Thread Block

per-Threa d Lo cal M emory

.

per-Block
Sha red Me mory

Grid 0

>

& &
>

< &
>

>
>
>
“e

Seq uence

Grid 1

— — — Inter-Grid S ynchronization — — —

r
>

& &

& &
>

& &

A

Y

Globa | Me mory

November 13, 2023

Single-program multiple data (SPMD)
model

Each context is a thread
- Threads have registers
- Threads have local memory

Parallel threads packed in blocks
— Blocks have shared memory
— Threads synchronize with barrier
— Blocks run to completion (or abort)

Grids include independent blocks
- May execute concurrently
— Share global memory, but
— Have limited inter-block synchronization

MIT 6.5900 Fall 2023 L19-23

Code Example: DAXPY

C Code CUDA Code
// Invoke DAXPY // Invoke DAXPY with 256 threads per block
daxpy(n,2.0,X,y): __host__
/[DAXPY in C int nblocks = (n+ 255) / 256;
void daxpy(int n, double a, double *x, double *y) daxpy<<<nblocks, 256>>>(n, 2.0, X, y):
{ // DAXPY in CUDA
for (int i =0; i < n; ++i) —device__
yli] = a*x[i] + y[il; void daxpy(int n, double a, double *x, double *y)
} {

int 1 = blockldx x*blockDim.x + threadldx .x:
if (1 < n) y[i] = a*x[i] + y[i];
}

e CUDA code launches 256 threads per block

e CUDA vs vector terminology:

— Thread = 1 iteration of scalar loop (1 element in vector loop)
— Block = Body of vectorized loop (VL=256 in this example)
— Grid = Vectorizable loop

November 13, 2023 MIT 6.5900 Fall 2023 L19-24

GPU Kernel Execution

@ Transfer input data from

CPU to GPU memory
Mem I AMem @ Launch kernel (grid)
T \ ® QWait for kernel to finish
1((if synchronous)
cp(k U @ Transfer results to CPU
N Q memory
O

« Data transfers can dominate execution time
« Integrated GPUs with unified address space
- no copies, but CPU & GPU contend for memory

November 13, 2023 MIT 6.5900 Fall 2023 L19-25

Hardware Scheduling

Stream Queues
Ordered queues of grids

Y

Grid Management Unit
Pending & suspended grids

CUDA-Created
Work

Y

1000"s of pending grids

y
' Two-way link allows
pausing dispatch

Y

‘-_\

/’ - Work Distributor
Actively dispatching grids

32 Active Grids

November 13, 2023

e Grids can be launched by
CPU or GPU

- Work from multiple CPU
threads and processes

e HW unit schedules grids on
SMs

— Priority-based scheduling

e Multi-level scheduling
— Limited number of active grids
— More queued/paused

MIT 6.5900 Fall 2023 L19-26

Synchronization

e Barrier synchronization within a thread block
(__syncthreads())

— Tracking simplified by grouping threads into warps
— Counter tracks number of warps that have arrived to barrier

e Atomic operations to global memory

— Read-modify-write operations (add, exchange, compare-and-
swap, ...)

— Performed at the memory controller or at the L2

e Limited inter-block synchronization!
— Can’t wait for other blocks to finish

November 13, 2023 MIT 6.5900 Fall 2023 L19-27

GPU ISA and Compilation

e GPU microarchitecture and instruction set
change very frequently

e To achieve compatibility:
— Compiler produces intermediate pseudo-assembler
language (e.qg., Nvidia PTX)
— GPU driver JITs kernel, tailoring it to specific
microarchitecture

e In practice, little performance portability
— Code is often tuned to specific GPU architecture

November 13, 2023 MIT 6.5900 Fall 2023 L19-28

System-Level Issues

e Instruction semantics
— EXceptions

e Scheduling
— Each kernel is non-preemptive (but can be aborted)

— Resource management and scheduling left to GPU driver,
opaque to OS

e Memory management
— First GPUs had no virtual memory

— Recent support for basic virtual memory (protection
among grids, no paging)

— Host-to-device copies with separate memories (discrete
GPUs)

— Very recent GPUs support paging

November 13, 2023 MIT 6.5900 Fall 2023 L19-29

GPU: Multithreaded Multicore Chip

e Example: Nvidia Pascal GP100 (2016)

November 13, 2023

MIT 6.5900 Fall 2023

60 streaming
multiprocessors (SMs)

4MB Shared L2 cache
8 memory controllers
e 720 GB/s (HBM2)

Fixed-function logic for
graphics (texture units,
raster ops, ...)

Scalability - change
number of cores and
memory channels

Scheduling mostly
controlled by hardware

L19-30

Pascal Streaming Multiprocessor (SM)

e Execution units
. | - 64 FUs (int and FP)
 instructonBuffer instructionBuffer — 16 |Oad'St0re FUS

Warp Scheduler Warp Scheduler
Dispatch Unit

— 16 special FUs (e.q.,
| e sqrt, sin, cos, ...)

e
-

Regis

o
o
S

o
o
2

o
o
=

e Memory structures
- 64K 32-bit registers

- 64KB shared
memory

o
=}
=

o
<}
14

o
-]
=

Cor
Cor
Cor
Cori
Cor
Cor
Cor
Cor

Cor
Cort
Cor
Cor
Cort
Cor
Cor
Cort

(2] (2] [o o (2] O o
o =] (=] o o (=] o o
-1 = = 1 = = = =
(2] (<] (<] (<] (<] o o (<]
o -] o o © -] o o
= = = = = = = =

[
o

[[o [o o (2] o
o =} [~} o o o -] -]

(<]
o
b4

| Texture / L1 Cache
—— s ¢ Contexts

— 2048 threads
— 32 blocks

November 13, 2023 MIT 6.5900 Fall 2023 L19-31

Vector vs GPU Terminology

November 13, 2023

More descrip- Closestold term Official CUDA/
Type tive name outsideof GPUs NVIDIAGPU term Book definition

Vectorizable Vectorizable Loop Grid A vectorizable loop, executed on the GPU, made
“ Loop up of one or more Thread Blocks (bodies of
5 vectorized loop) that can execute in parallel.
g Body of Body of a Thread Block A vectorized loop executed on a multithreaded
~ Vectorized Loop (Strip-Mined) SIMD Processor, made up of one or more threads
2 Vectorized Loop of SIMD instructions. They can communicate via
E Local Memory.
5 Sequence of One iteration of CUDA Thread A vertical cut of a thread of SIMD instructions
g SIMD Lane a Scalar Loop corresponding to one element executed by one

Operations SIMD Lane. Result is stored depending on mask
and predicate register.

t“ A Thread of Thread of Vector ~ Warp A traditional thread, but it contains just SIMD
§ SIMD Instructions instructions that are executed on a multithreaded

Instructions SIMD Processor. Results stored depending on a

g per-clement mask.
% SIMD Vector Instruction PTX Instruction A single SIMD instruction exccuted across SIMD
g Instruction Lanes.

Multithreaded (Multithreaded) Streaming A multithreaded SIMD Processor executes

SIMD Vector Processor ~ Multiprocessor threads of SIMD instructions, independent of

Processor other SIMD Processors.

5 Thread Block Scalar Processor ~ Giga Thread Assigns multiple Thread Blocks (bodies of

-E Scheduler Engine vectorized loop) to multithreaded SIMD

= Processors.

2 SIMD Thread Thread scheduler ~ Warp Scheduler Hardware unit that schedules and issues threads
@ Scheduler in a Multithreaded of SIMD instructions when they are ready to

g CPU execute; includes a scoreboard o track SIMD
g Thread exccution.

SIMD Lane Vector Lane Thread Processor A SIMD Lane executes the operations in a thread
of SIMD instructions on a single element. Results
stored depending on mask.

GPU Memory ~ Main Memory Global Memory DRAM memory accessible by all multithreaded

v SIMD Processors in a GPU.

g Private Stack or Thread Local Memory Portion of DRAM memory private to each SIMD

g Memory Local Storage (OS) Lane.

= Local Memory Local Memory Shared Memory Fast local SRAM for one multithreaded SIMD

E Processor, unavailable to other SIMD Processors.

* SIMD Lanc Vector Lane Thread Processor Registers in a single SIMD Lane allocated across
Registers Registers Registers a full thread block (body of vectorized loop).

MIT 6.5900 Fall 2023

[H&P5, Fig 4.25]

L19-32

CPU vs. GPU Performance

B Intel E5-2620v3 [Pascal Titan X (no cuDNN) [Pascal Titan X (cuDNN 5.1)
24000

18000

oo OOX 7x 71x 04X
Y /

1

VGG-16 VGG-19 ResNet- 18 Res-Net-50 ResNet-200

6000

16 Forward + Backward time (ms)

N=

0

Data from https:/github.com/jcjohnson/cnn-benchmarks

Ratio of (partially-optimized) CPU vs. CUDA library (cuDNN)

Source: Stanford CS231n

November 13, 2023 MIT 6.5900 Fall 2023 L19-33

Thank you!

Next Lecture:
Reliability

November 13, 2023 MIT 6.5900 Fall 2023 L19-34

