Reliable Architectures

Mengjia Yan Computer Science & Artificial Intelligence Lab M.I.T.

Many of the slides in this presentation are from public presentations made by Joel Emer for the AVF work

MIT 6.5900 Fall 2023

Event Changes State of a Single Bit

- Hard Error Changes that are permanent
- Soft Error Changes that are not permanent

Impact of Neutron Strike on a Si Device

Strikes release electron & hole pairs that can be absorbed by source & drain to alter the state of the device

Transistor Device

• Secondary source of upsets: Alpha particles from packaging

Cosmic Rays Come From Deep Space

- Neutron flux is higher at higher altitudes
 - 3-5x increase in Denver at 5,000 feet
 - 100x increase in airplanes at 30,000+ feet

November 15, 2023

MIT 6.5900 Fall 2023

Basics of Charge Generation

Cosmic rays of >1GeV result in neutrons of >1MeV

Energy (eV)	Electron-Hole Pairs	Charge (Femtocoulombs)
3.6eV	1	3.2x10 ⁻⁴
1MeV	~2.8x10 ⁵	~44
1GeV	~2.8x10 ⁸	~44x10 ³

In 2010:

- Critical charge on a DRAM: ~25 fCoulomb
- Critical charge on an SRAM: <4 fCoulomb

Cosmic Ray Strikes: Evidence & Reaction

- Publicly disclosed incidences
 - Error logs in large servers, E. Normand, "Single Event Upset at Ground Level," IEEE Trans. on Nucl Sci, Vol. 43, No. 6, Dec 1996.
 - Sun Microsystems found cosmic ray strikes on L2 cache with defective error protection caused Sun's flagship servers to crash, R. Baumann, IRPS Tutorial on SER, 2000.
 - Cypress Semiconductor reported in 2004 a single soft error brought a billion-dollar automotive factory to a halt once a month, Zielger & Puchner, "SER – History, Trends, and Challenges," Cypress, 2004.
 - In 2003, a "single-event upset" was blamed for an electronic voting error in Schaerbeekm, Belgium. A bit flip in the electronic voting machine added 4,096 extra votes to one candidate.

Physical solutions are hard

- Shielding?
 - No practical absorbent (e.g., approximately > 10 ft of concrete)
 - This is unlike Alpha particles which are easily blocked
- Technology solution?
 - Partially-depleted SOI of some help, effect on logic unclear
 - Fully-depleted SOI may help, but is challenging to manufacture
 - FinFETs are showing significantly lower vulnerability
- Circuit-level solution?
 - Radiation-hardened circuits can provide 10x improvement with significant penalty in performance, area, cost
 - 2-4x improvement may be possible with less penalty

Triple Modular Redundancy (Von Neumann, 1956)

V does a majority vote on the results

Dual Modular Redundancy (e.g., BINAC 1949, Stratus 1982)

- Processing stops on mismatch
- Error signal used to decide which processor be used to restore state to other

Pair and Spare Lockstep (e.g., Tandem, 1975)

- Primary creates periodic checkpoints
- Backup restarts from checkpoint on mismatch

Redundant Multithreading (e.g., Reinhardt, Mukherjee, 2000)

Leading Thread

• Writes are checked

Component Protection

Fujitsu SPARC in 130 nm technology (ISSCC 2003)
– 80% of 200k latches protected with parity

Strike on a bit (e.g., in register file)

SDC = Silent Data Corruption, DUE = Detected Unrecoverable Error

Metrics

- Interval-based
 - MTTF = Mean Time to Failure
 - MTTR = Mean Time to Repair
 - MTBF = Mean Time Between Failures = MTTF + MTTR
 - Availability = MTTF / MTBF
- Rate-based
 - FIT = Failure in Time = 1 failure in a billion hours
 - 1 year MTTF = 10^9 / (24 * 365) FIT = 114,155 FIT
 - SER FIT = SDC FIT + DUE FIT

Hypothetical Example

Cache: 0 FIT

- + IQ: 100K FIT
- + FU: 58K FIT

Total of 158K FIT

November 15, 2023

MIT 6.5900 Fall 2023

Number of Vulnerable Bits Growing with Moore's Law

Typical SDC goal: 1000 year MTBF Typical DUE goal: 10-25 year MTBF

Architectural Vulnerability Factor (AVF)

AVF_{bit} = Probability Bit Matters

of Visible Errors

of Bit Flips from Particle Strikes

$FIT_{bit} = intrinsic FIT_{bit} * AVF_{bit}$

November 15, 2023

MIT 6.5900 Fall 2023

Statistical Fault Injection (SFI) with RTL

- + Naturally characterizes all logical structures
- RTL not available until late in the design cycle
- Numerous experiments to flip all bits
- Generally done at the chip level
 - Limited structural insight

Architectural Vulnerability Factor Does a bit matter?

• Branch Predictor

• Program Counter

Architecturally Correct Execution (ACE)

- ACE path requires only a subset of values to flow correctly through the program's data flow graph (and the machine)
- Anything else (un-ACE path) can be derated away

November 15, 2023

Example of un-ACE instruction: Dynamically Dead Instruction

 Most bits of an un-ACE instruction do not affect program output

Vulnerability of a structure

AVF = fraction of cycles a bit contains ACE state

$$ACE\% = \mathbf{B}/4$$

T = **3**

AVF = fraction of cycles a bit contains ACE state

Average number of ACE bits in a cycle Total number of bits in the structure

Little's Law for ACEs

$$Nace = Tace \times Lace$$
$$AVF = \frac{\overline{N}ace}{N_{total}}$$

Computing AVF

- Approach is conservative
 - Assume every bit is ACE unless proven otherwise
- Data Analysis using a Performance Model
 - Prove that data held in a structure is un-ACE
- Timing Analysis using a Performance Model
 - Tracks the time this data spent in the structure

ACE Lifetime Analysis (1) (e.g., write-through data cache)

• Idle is unACE

- Assuming all time intervals are equal
- For 3/5 of the lifetime the bit is valid
- Gives a measure of the structure's utilization
 - Number of useful bits
 - Amount of time useful bits are resident in structure
 - Valid for a particular trace

ACE Lifetime Analysis (2) (e.g., write-through data cache)

• Valid is not necessarily ACE

- ACE % = AVF = 2/5 = 40%
- Example Lifetime Components
 - ACE: fill-to-read, read-to-read
 - unACE: idle, read-to-evict, write-to-evict

ACE Lifetime Analysis (3) (e.g., write-through data cache)

• Data ACEness is a function of instruction ACEness

- Second Read is by an unACE instruction
- AVF = 1/5 = 20%

Dynamic Instruction Breakdown

Mapping ACE & un-ACE Instructions to the Instruction Queue

Instruction Queue

ACE percentage = AVF = 29%

November 15, 2023

MIT 6.5900 Fall 2023

Strike on a bit (e.g., in register file)

SDC = Silent Data Corruption, DUE = Detected Unrecoverable Error

DUE AVF of Instruction Queue with Parity

Coping with Wrong-Path Instructions (assume parity-protected instruction queue)

• Problem: not enough information at issue

The π (Possibly Incorrect) Bit (assume parity-protected instruction queue)

At commit point, declare error only if not wrong-path instruction and π bit is set

Sources of False DUE in an Instruction Queue

- Instructions with uncommitted results
 - e.g., wrong-path, predicated-false
 - solution: π (possibly incorrect) bit till commit
- Instruction types neutral to errors
 - e.g., no-ops, prefetches, branch predict hints
 - solution: anti- π bit
- Dynamically dead instructions
 - instructions whose results will not be used in future
 - solution: π bit beyond commit

Reliability Problems in 2020s

- Silent Data Corruption (SDC)
 - Cloud companies noticed SDC is a widespread problem for largescale infrastructure systems.
 - "Cores that don't count" by Google, HotOS, 2021
 - "Silent data corruption at Scale" by Facebook, Arxiv, 2021
- Problems
 - Long error detection latencies: taking days to weeks
 - Scalability

Example errors:

 $Int[(1.1)^3] = 0$, expected = 1

Int [(1.1)¹⁰⁷] = 32809, expected = 26854

 $Int[(1.1)^{-3}] = 1$, expected = 0

November 15, 2023

MIT 6.5900 Fall 2023

Reliability Problems in 2020s

• Rowhammer: Repeatedly accessing a row enough times can cause disturbance errors in nearby rows

Thank you!

Next Lecture: Transactional Memory