Reliable Architectures

Mengjia Yan
Computer Science & Artificial Intelligence Lab
M.I.T.

Many of the slides in this presentation
are from public presentations made
by Joel Emer for the AVF work

MIT 6.5900 Fall 2023 L20-1

Event Changes State of a Single Bit

 Hard Error — Changes that are permanent
« Soft Error — Changes that are not permanent

November 15, 2023 MIT 6.5900 Fall 2023 L20-2

Impact of Neutron Strike on a Si Device

neutron strike

v Strikes release electron &
hole pairs that can be
absorbed by source &

drain to alter the state of
the device

Transistor Device

e Secondary source of upsets: Alpha particles from packaging

November 15, 2023 MIT 6.5900 Fall 2023 L20-3

Cosmic Rays Come From Deep Space

; I ¥
“\

Earth’s Surface

e Neutron flux is higher at higher altitudes
— 3-5x increase in Denver at 5,000 feet
— 100x increase in airplanes at 30,000+ feet

November 15, 2023 MIT 6.5900 Fall 2023 L20-4

Basics of Charge Generation

Cosmic rays of >1GeV result in neutrons of >1MeV

Energy Electron-Hole Charge
(eV) Pairs (Femtocoulombs)

3.6eV 1 3.2x10-4
1MeV ~2.8x10° ~44
1GeV ~2.8x108 ~44x103

In 2010:
« Critical charge on a DRAM: ~25 fCoulomb
« Critical charge on an SRAM: <4 fCoulomb

November 15, 2023 MIT 6.5900 Fall 2023 L20-5

Cosmic Ray Strikes:
Evidence & Reaction

e Publicly disclosed incidences

— Error logs in large servers, E. Normand, “Single Event Upset at
Ground Level,” IEEE Trans. on Nucl Sci, Vol. 43, No. 6, Dec 1996.

— Sun Microsystems found cosmic ray strikes on L2 cache with
defective error protection caused Sun’s flagship servers to crash,
R. Baumann, IRPS Tutorial on SER, 2000.

— Cypress Semiconductor reported in 2004 a single soft error
brought a billion-dollar automotive factory to a halt once a
month, Zielger & Puchner, "SER - History, Trends, and
Challenges,” Cypress, 2004.

- In 2003, a "single-event upset” was blamed for an electronic
voting error in Schaerbeekm, Belgium. A bit flip in the electronic
voting machine added 4,096 extra votes to one candidate.

November 15, 2023 MIT 6.5900 Fall 2023 L20-6

Physical solutions are hard

e Shielding?
— No practical absorbent (e.g., approximately > 10 ft of concrete)
— This is unlike Alpha particles which are easily blocked

e Technology solution?
— Partially-depleted SOI of some help, effect on logic unclear
— Fully-depleted SOI may help, but is challenging to manufacture
— FIinFETs are showing significantly lower vulnerability

e Circuit-level solution?

— Radiation-hardened circuits can provide 10x improvement with
significant penalty in performance, area, cost

- 2-4x improvement may be possible with less penalty

November 15, 2023 MIT 6.5900 Fall 2023 L20-7

Triple Modular Redundancy
(Von Neumann, 1956)

— Result

V does a majority vote on the results

November 15, 2023 MIT 6.5900 Fall 2023 L20-8

Dual Modular Redundancy
(e.g., BINAC 1949, Stratus 1982)

Error?

C — Mismatch?

Error?

e Processing stops on mismatch

e Error signal used to decide which processor be used
to restore state to other

November 15, 2023 MIT 6.5900 Fall 2023 L20-9

Pair and Spare Lockstep
(e.g., Tandem, 1975)

Primary

Mismatch?

Backup

Mismatch?

e Primary creates periodic checkpoints
e Backup restarts from checkpoint on mismatch

November 15, 2023 MIT 6.5900 Fall 2023 L20-10

Redundant Multithreading
(e.g., Reinhardt, Mukherjee, 2000)

Leading Thread

Fault? Fault?

Trailing Thread

e Writes are checked

November 15, 2023 MIT 6.5900 Fall 2023 L20-11

Component Protection

Parity ECC

Error?

e Fujitsu SPARC in 130 nm technology (ISSCC 2003)
— 80% of 200k latches protected with parity

November 15, 2023 MIT 6.5900 Fall 2023 L20-12

Strike on a bit (e.g., in register file)

Bit %QQ
Read? no
yes

Benign fault
Bit has error no error
protection?
o detectign & NG error
correction
detection only
Affects program Affects program
outcome? outcome?
yes Yo yes no
SDC Benign fault True DUE False DUE
no error

SDC = Silent Data Corruption, DUE = Detected Unrecoverable Error

November 15, 2023 MIT 6.5900 Fall 2023 L20-13

Metrics

e Interval-based
— MTTF = Mean Time to Failure
- MTTR = Mean Time to Repair
- MTBF = Mean Time Between Failures = MTTF + MTTR
— Availability = MTTF / MTBF

e Rate-based
— FIT = Failure in Time = 1 failure in a billion hours

- 1 year MTTF = 1079 / (24 * 365) FIT = 114,155 FIT
— SER FIT = SDC FIT + DUE FIT

Hypothetical Example

Cache: 0 FIT
+ IQ: 100K FIT
+ FU: 58K FIT

Total of 158K FIT

November 15, 2023 MIT 6.5900 Fall 2023 L20-14

Number of Vulnerable Bits
Growing with Moore’s Law

& 10000
4 12x GAP
2 1000 -
>
ES 1007
2%
-
S
m ' —5—100% Vulnerable
o
a
o 1 © © ~ ® o o <« « |m=20%Vulnerable
O o o, o o o, o) - - -
S & & & & &8 & & 8§ 8§
Year —— 1000 year MTBF Goal

Typical SDC goal: 1000 year MTBF
Typical DUE goal: 10-25 year MTBF

November 15, 2023 MIT 6.5900 Fall 2023 L20-15

Architectural Vulnerability Factor
(AVF)

AVF,: = Probability Bit Matters

of Visible Errors
of Bit Flips from Particle Strikes

FIT,, = intrinsic FIT,, * AVF,;

November 15, 2023 MIT 6.5900 Fall 2023 L20-16

Statistical Fault Injection (SFI)
with RTL

y Simulate strike on latch

/1,0

Check whether fault propagates
to architectural state

+ Naturally characterizes all logical structures

— RTL not available until late in the design cycle
— Numerous experiments to flip all bits

— Generally done at the chip level
— Limited structural insight

November 15, 2023 MIT 6.5900 Fall 2023 L20-17

Architectural Vulnerability Factor
Does a bit matter?

e Branch Predictor

e Program Counter

November 15, 2023 MIT 6.5900 Fall 2023 L20-18

Architecturally Correct Execution
(ACE)

Program Input

Program Outputs

e ACE path requires only a subset of values to flow correctly
through the program’s data flow graph (and the machine)

e Anything else (un-ACE path) can be derated away

November 15, 2023 MIT 6.5900 Fall 2023

L20-19

Example of un-ACE instruction:
Dynamically Dead Instruction

Dynamically
Dead
Instruction

e Most bits of an un-ACE instruction do not affect program
output

November 15, 2023 MIT 6.5900 Fall 2023

L20-20

Vulnerability of a structure

AVF = fraction of cycles a bit contains ACE state

ACE% = B/4

November 15, 2023 MIT 6.5900 Fall 2023 L20-21

Vulnerability of a structure

AVF = fraction of cycles a bit contains ACE state

(2+1+0+3)/4
4

Average number of ACE bits in a cycle

Total number of bits in the structure

November 15, 2023 MIT 6.5900 Fall 2023

L20-22

Little’s Law for ACEs

+ >

N ace | | Tace X Lace

N ace
Motal

November 15, 2023 MIT 6.5900 Fall 2023 L20-23

AVF

Computing AVF

e Approach is conservative
— Assume every bit is ACE unless proven otherwise

e Data Analysis using a Performance Model
— Prove that data held in a structure is un-ACE

e Timing Analysis using a Performance Model
— Tracks the time this data spent in the structure

November 15, 2023 MIT 6.5900 Fall 2023 L20-24

ACE Lifetime Analysis (1)

(e.g., write-through data cache)

e Idle is UnACE

Fill Read Read Evict

e Assuming all time intervals are equal
e For 3/5 of the lifetime the bit is valid

e Gives a measure of the structure’s utilization
— Number of useful bits
— Amount of time useful bits are resident in structure
— Valid for a particular trace

November 15, 2023 MIT 6.5900 Fall 2023 L20-25

ACE Lifetime Analysis (2)

(e.g., write-through data cache)

e Valid is not necessarily ACE

A Read [, ,|__Evict
a» +
‘ +

Write-through Data Cache

Fill A Read
L)

P
Y

¥

e ACE % = AVF = 2/5 = 40%

e Example Lifetime Components
— ACE: fill-to-read, read-to-read
— UnACE: idle, read-to-evict, write-to-evict

November 15, 2023 MIT 6.5900 Fall 2023 L20-26

ACE Lifetime Analysis (3)

(e.g., write-through data cache)

e Data ACEness is a function of instruction

ACEness
s | _Read 5, | Read 5, +|__Evict
‘ = ‘ = ‘ Idle ‘
+ +

Fill
Write-through Data Cache

e Second Read is by an unACE instruction

e AVF =1/5 = 20%

November 15, 2023 MIT 6.5900 Fall 2023 L20-27

Dynamic Instruction Breakdown

DYNAMICALLY
DEAD
20%

PERFORMANCE
INST
1%

PREDICATED
FALSE
7%

Average across Spec2K slices

November 15, 2023 MIT 6.5900 Fall 2023

L20-28

Mapping ACE & un-ACE Instructions
to the Instruction Queue

Architectural un-ACE Micro-architectural un-ACE

November 15, 2023 MIT 6.5900 Fall 2023 L20-29

Instruction Queue

WRONG PATH PREDICATED
3% P — FasE
3%
DYNAMICALLY / PERFORMANCE
DEAD INST
8% 1%

ACE percentage = AVF = 29%

November 15, 2023 MIT 6.5900 Fall 2023 L20-30

Strike on a bit (e.g., in register file)

Bit %QQ
Read? no
yes

Benign fault
Bit has error no error
protection?
o detectign & NG error
correction
detection only
Affects program Affects program
outcome? outcome?
yes Yo yes no
SDC Benign fault True DUE False DUE
no error

SDC = Silent Data Corruption, DUE = Detected Unrecoverable Error

November 15, 2023 MIT 6.5900 Fall 2023 L20-31

DUE AVF of Instruction Queue
with Parity

True DUE AVF
29%

ldle & Misc
38%

Uncommitted
6%

CPU2000 60
Asim Dead 6% False DUE AVF
Simpoint 1% 33%
[tanium®2-like
November 15, 2023 MIT 6.5900 Fall 2023

L20-32

Coping with Wrong-Path Instructions

(assume parity-protected instruction queue)

g

INSt = inst: =P | RR | Execute=» Commit
I DECLARE I
ERROR
Instruction ON ISSUE Data Cache
Cache (IC)

* Problem: not enough information at issue

November 15, 2023 MIT 6.5900 Fall 2023 L20-33

The =n (Possibly Incorrect) Bit
(assume parity-protected instruction queue)

. /) — —
inst =»{ inst: inst(n) inst () inst () = inst (n)

I I I e A | | |
I POST ERROR I
IN = BIT ON
Instruction ISSUE Data Cache
Cache (IC)

At commit point, declare error only if not wrong-path
instruction and n bit is set

November 15, 2023 MIT 6.5900 Fall 2023 L20-34

Sources of False DUE in an
Instruction Queue

e Instructions with uncommitted results

- e.g., wrong-path, predicated-false
— solution: n (possibly incorrect) bit till commit

e Instruction types neutral to errors
- e.g., no-ops, prefetches, branch predict hints
— solution: anti-= bit

e Dynamically dead instructions
— instructions whose results will not be used in future
— solution: = bit beyond commit

November 15, 2023 MIT 6.5900 Fall 2023

L20-35

Reliability Problems in 2020s

e Silent Data Corruption (SDC)

— Cloud companies noticed SDC is a widespread problem for large-
scale infrastructure systems.

— “Cores that don’t count” by Google, HotOS, 2021
— "“Silent data corruption at Scale” by Facebook, Arxiv, 2021

e Problems
— Long error detection latencies: taking days to weeks
— Scalability

Shuffle and merge

------------------------- Example errors:

1. Compute file size L ' 4. Write file to
for decompression | ! Decompress file size | database if size > 0
calculation '
371 - —
> Int[(11)°] = 0, expected =1
v D

Spark shuffle and
merge database

N —

Spark pre-shuffle
data store
(compresse: d)

Int[(11)1°7] = 32809, expected = 26854

Defective . "
CPU 5. Missing rows in DB

’—m‘ Int[(11)3] =1, expected = 0

3. Expected Result = 156.24 ‘

—

November 15, 2023 MIT 6.5900 Fall 2023 L20-36

Reliability Problems in 2020s

e Rowhammer: Repeatedly accessing a row enough
times can cause disturbance errors in nearby rows

Address — Row of Cells =
] R(’ N - Repeate
am — Row —— 4@ d Data
= Row —
- Row —

Data

November 15, 2023 MIT 6.5900 Fall 2023 L20-37

Thank you!

Next Lecture:
Transactional Memory

MIT 6.5900 Fall 2023 L20-38

