
L22-1MIT 6.5900 Fall 2023

Mengjia Yan
Computer Science & Artificial Intelligence Lab

M.I.T.

Virtualization

MIT 6.5900 Fall 2023

Abstractions

Devices
Materials
Atoms

Computer architecture
Processors, caches, pipelining

Instruction set + memory

Bits, Logic gates

Software

Digital design
Combinational and sequential circuits

Digital circuits

November 27, 2023 L23-2

MIT 6.5900 Fall 2023

Abstractions

Devices
Materials
Atoms

Computer architecture
Processors, caches, pipelining

Instruction set + memory

Virtual machines

Bits, Logic gates

Computer programs

Digital design
Combinational and sequential circuits

Computer systems
Operating systems, virtual memory, I/O

Digital circuits

November 27, 2023 L23-3

MIT 6.5900 Fall 2023

Evolution in Number of Users

IBM 1620
1959

Single User

Runtime
loaded with

program

IBM 360
1960s

Multiple Users

OS for
sharing

resources

IBM PC
1980s

Single User

OS for
sharing

resources

Cloud Servers
1990s

Multiple Users

Multiple OSs

November 27, 2023 L23-4

MIT 6.5900 Fall 2023

Single-Program Machine

• Hardware executes a single program and has direct
and complete access to all hardware resources

• The ISA is the interface between software and
hardware:
– Program counter
– General purpose registers
– Memory

Program

Hardware

Processor Memory Disk Network card Display

…

Keyboard

ISA

November 27, 2023 L23-5

MIT 6.5900 Fall 2023

Single-Program Machine (with RTL)

• Runtime library added to save programming effort
and provided an abstraction to create uniform
interface to devices.

Program

Hardware

Processor Memory Disk Network card Display

…

Keyboard

ISA
Runtime Library

RTL
API

November 27, 2023 L23-6

MIT 6.5900 Fall 2023

Multi-Program Machine (1st attempt)

ISA
Runtime Library

RTL
API

Program Program

Any problems?

Hardware

November 27, 2023 L23-7

MIT 6.5900 Fall 2023

Simple Base and Bound Translation

Introduce a new privileged mode in which the base and
bounds registers are visible/accessible.

Load X

Program
Address
Space

Bound
Register £

Bounds
Violation?

M
ai

n
M

em
or

y

current
segment

Base
Register

+

Physical
AddressEffective

Address

Base Physical Address

Segment Length

November 27, 2023 L23-8

MIT 6.5900 Fall 2023

Protecting Memory

Page Table Entry

Valid<31> Modified<26>Prot<30:27> OS<25:21> PFN<20:0>

Valid ProtTag PFNTLB Entry

• TLB access checks if protection allows access for current mode
• TLB fills require read/copy page table data -> security sensitive

TLB Fill

November 27, 2023 L23-9

MIT 6.5900 Fall 2023

Operating Systems

• Operating System (OS) goals:
– Abstraction: OS hides details of underlying hardware

• e.g., a process can open and access files instead of issuing
raw commands to the disk

– Resource management: OS controls how processes share
hardware (CPU, memory, disk, etc.)

– Protection and privacy: Processes cannot access each
other’s data

process1

OS Kernel

Hardware

processN…process2

ISA

Application Binary
Interface (ABI)

November 27, 2023 L23-10

MIT 6.5900 Fall 2023

Operating System Mechanisms

• The OS kernel lets processes invoke system services
(e.g., access files or network sockets) via system calls

• The OS kernel schedules processes into cores
– Each process is given a fraction of CPU time
– A process cannot use more CPU time than allowed

• The OS kernel provides a private
address space to each process
– Each process is allocated space in

physical memory by the OS
– A process is not allowed to access

the memory of other processes

free

Process 2
memory

OS Kernel
memory

Process 1
memory

Ph
ys

ic
al

M
em

or
y free

…

Running
process Process 1 Process 2

Time

Process 1

November 27, 2023 L23-11

MIT 6.5900 Fall 2023

ISA Extensions to Support OS

• Two modes of execution: user and supervisor
– OS kernel runs in supervisor mode
– All other processes run in user mode

• Privileged instructions and registers that are only
available in supervisor mode

• How to transition from user mode to supervisor
mode?
– Traps (exceptions) to safely transition from user to supervisor

mode

November 27, 2023 L23-12

MIT 6.5900 Fall 2023

Process Mode Switching

user mode
kernel mode

Trap, e.g., i/o read() or exception

Switch to kernel mode;
Pass arguments;
Save app state;
Transfer to trap handler

Check arguments;
Find kernel routine addr

Restore app state;
Return to userTrap handler

Kernel routine

Must be at
fixed addresses Why?

November 27, 2023 L23-13

MIT 6.5900 Fall 2023

Protection – Single OS

User
Process

Tr
ap Tr
ap

User
Process

OS Kernel

Key idea: Provides a strong abstraction
that cannot be escaped

November 27, 2023 L23-14

MIT 6.5900 Fall 2023

Virtual Machines

• The OS gives a Virtual Machine (VM) to each process
– Each process believes it runs on its own machine…
– …but this machine does not exist in physical hardware

OS Kernel (specially privileged process)

Physical Hardware

Processor Memory Disk Network card Display

…
Keyboard

Virtual
Processor

Virtual
Memory Events Files Sockets Syscalls

Process2

Virtual
Processor

Virtual
Memory Events Files Sockets Syscalls

Process3

Virtual
Processor

Virtual
Memory Events Files Sockets Syscalls

Process4

Process1

ABI
Virtual
CPUs

Virtual
Memory Events Files Sockets Syscalls

VM1

November 27, 2023 L23-15

MIT 6.5900 Fall 2023

Virtual Machines

• A Virtual Machine (VM) is an emulation of a
computer system
– Very general concept, used beyond operating systems

ABI
Virtual
CPUs

Virtual
Memory Events Files Sockets Syscalls

Process1

OS Kernel (specially privileged process)

Physical Hardware

Processor Memory Disk Network card Display

…
Keyboard

Virtual
Processor

Virtual
Memory Events Files Sockets Syscalls

Process2

Virtual
Processor

Virtual
Memory Events Files Sockets Syscalls

Process3

Virtual
Processor

Virtual
Memory Events Files Sockets Syscalls

Process4

VM1

November 27, 2023 L23-16

MIT 6.5900 Fall 2023

Virtual Machines Are Everywhere

• Example: Consider a Python program running on a
Linux Virtual Machine

Python program

Python interpreter (CPython) Implements a Python VM

Win/Linux/MacOS/… ABI

Linux OS kernel Implements a Linux-x86 VM

VirtualBox

Implements an x86 physical
machine

OS kernel (Win/Linux/MacOS/…)

Hardware (e.g., your laptop)

Python Language

Linux ABI

x86 ISA

Implements an OS-x86 VM
x86 ISA

Implements an x86 system VM

November 27, 2023 L23-17

MIT 6.5900 Fall 2023

Implementing Virtual Machines

• Virtual machines can be implemented entirely in
software, but at a performance cost
– e.g., Python programs are 10-100x slower than native Linux

programs due to Python interpreter overheads

• We want to support virtual machines with minimal
overheads à often need hardware support!

November 27, 2023 L23-18

MIT 6.5900 Fall 2023

Application-level virtualization
• Programs are usually distributed in a binary format:

– Encodes the program’s instructions and initial values of data segments.
– Conforms to the application binary interface (ABI).

• ABI specifications include
– Which instructions are available (the ISA)
– What system calls are possible (I/O, or the environment)
– What state is available at process creation

• Operating system implements the virtual environment
– At process startup, OS reads the binary program, creates an environment

for it, then begins to execute the code, handling traps for I/O calls,
emulation, etc.

November 27, 2023 L23-19

MIT 6.5900 Fall 2023

Full ISA-Level Virtualization
Run programs for one ISA on hardware with different ISA (for

compatibility, platform-independent):

• Run-time Hardware Emulation
– IBM System 360 had IBM 1401 emulator in microcode
– Intel Itanium converted x86 to native VLIW (two software-visible ISAs)
– ARM cores support 64-bit ARM, 32-bit ARM, 16-bit Thumb

• Run-time Software Emulation (OS software interprets instructions)
– E.g., OS for PowerPC Macs had emulator for 68000 code

• Static Binary Translation (convert at install time, load time, or
offline)
– IBM AS/400 to modified PowerPC cores
– DEC tools for VAX->Alpha and MIPS->Alpha

• Dynamic Binary Translation (non-native to native ISA at run-time)
– Sun’s HotSpot Java JIT (just-in-time) compiler
– Transmeta Crusoe, x86->VLIW code morphing

November 27, 2023 L23-20

MIT 6.5900 Fall 2023

Partial ISA-level virtualization

Implement part of ISA in software to trade-off between
performance and cost (make the common things fast):

• Expensive but rarely used instructions can cause trap to OS
emulation routine:
– e.g., decimal arithmetic in µVax implementation of VAX ISA

• Infrequent but difficult operand values can cause trap
– e.g., IEEE floating-point denormals cause traps in almost all

floating-point unit implementations

• Old machine can trap unused opcodes, allows binaries for new
ISA to run on old hardware
– e.g., Sun SPARC v8 added integer multiply instructions, older v7

CPUs trap and emulate

November 27, 2023 L23-21

MIT 6.5900 Fall 2023

Motivation for Multiple OSs
Some motivations for using multiple operating systems on
a single computer:

• Allows use of capabilities of multiple distinct operating
systems

• Allows different users to share a system while using
completely independent software stacks

• Allows for load balancing and migration across multiple
machines

• Allows operating system development without making
entire machine unstable or unusable

November 27, 2023 L23-22

Cloud
Computing

MIT 6.5900 Fall 2023

Supporting Multiple OSs

• A VMM (aka Hypervisor) provides a system virtual
machine to each OS

• VMM can run directly on hardware (as above) or on
another OS
– Precisely, VMM can be implemented against an ISA (as above) or

a process-level ABI. Who knows what lays below the interface…

process1

OS Kernel1

Hardware

processN…

…

process1

OS KernelK

processM…
ABIABI

Virtual Machine Monitor (VMM/Hypervisor)
ISA ISA

ISA

November 27, 2023 L23-23

MIT 6.5900 Fall 2023

From (Machine we are
attempting to execute)
• Guest
• Client
• Foreign ISA

To (Machine that is doing
the real execution)
• Host
• Target
• Native ISA

Virtualization Nomenclature

November 27, 2023 L23-24

MIT 6.5900 Fall 2023

Virtual Machine Requirements
[Popek and Goldberg, 1974]

• Equivalence/Fidelity: A program running on the
VMM should exhibit a behavior essentially identical
to that demonstrated when running on an
equivalent machine directly.

• Resource control/Safety: The VMM must be in
complete control of the virtualized resources.

• Efficiency/Performance: A statistically dominant
fraction of machine instructions must be executed
without VMM intervention.

November 27, 2023 L23-25

MIT 6.5900 Fall 2023

Virtual Machine Requirements
[Popek and Goldberg, 1974]
Classification of instructions into 3 groups:

• Privileged instructions: Instructions that trap if the
processor is in user mode and do not trap if it is in a
more privileged mode. (previously defined)

• Control-sensitive instructions: Instructions that attempt
to change the configuration of resources in the system.

• Behavior-sensitive instructions: Those whose behavior
depends on the configuration of resources, e.g., mode

Building an effective VMM for an architecture is possible if
the set of sensitive instructions is a subset of the set of
privileged instructions.

Run guest-OS code using the trap-and-emulate strategy.
November 27, 2023 L23-26

MIT 6.5900 Fall 2023

Sensitive instruction handling

Non-VMM mode
VMM mode

Sensitive instruction

Switch to VMM mode;
Pass arguments;
Save app state

Find handler addr

Restore app state,
Return to guestVMM handler

VMM routine

November 27, 2023 L23-27

MIT 6.5900 Fall 2023

Protection – Multiple OS

User
Process

Tr
ap Tr
ap

User
Process

OS
Kernel

User
Process

Tr
ap Tr
ap

User
Process

OS
Kernel

VMM

Se
ns

itiv
e

Se
ns

iti
ve

November 27, 2023 L23-28

MIT 6.5900 Fall 2023

Virtual Memory in VMs

0
1
2
3

Virtual Address Space
of Process-1

1
0

2

3
Physical
Address
Space

Guest OS

App-a

App-b

November 27, 2023 L23-29

MIT 6.5900 Fall 2023

Virtual Memory in VMs

0
1
2
3

Virtual Address Space
of Process-1

-> Emulate the physical
memory for the VM

1
0

2

3
Physical
Address
Space

Virtual Address Space
of App-a inside VM

Virtual Address Space
of App-b inside VM

Guest Virtural Address
(gVA) Host Virtural Address

(hVA)
= Guest Physical Address

(gPA)
Host Physical Address

(hPA)

November 27, 2023 L23-30

MIT 6.5900 Fall 2023

Nested Page Tables
Guest VA Index Offset

Guest Page
Table Base

PTE

Page Table

Guest PA

PPN Offset

Guest PA == Host VA Index Offset

Host Page
Table Base

PTE

Page Table

Host PA

PPN Offset
How many accesses
do we need?

November 27, 2023 L23-31

MIT 6.5900 Fall 2023

Nested Page Tables
Guest VA Index Offset

Guest Page
Table Base

PTE

Page Table

Guest PA

PPN Offset

Guest PA == Host VA Index Offset

Host Page
Table Base

PTE

Page Table

Host PA

PPN Offset

gPA->hPA

gPA->hPA

gPA->hPA

How many accesses
do we need?

November 27, 2023 L23-32

MIT 6.5900 Fall 2023

Nested Page Tables (Hierarchical)
Guest VA Index 1 Index 2 Offset

Guest Page
Table Base

PTP
PTEL1 Table

L2 Table

Guest PA

PPN Offset

Guest PA == Host VA Index 1 Index 2 Offset
Host Page
Table Base

PTP
PTEL1 Table

L2 Table

Host PA

PPN Offset
How many accesses
do we need?

November 27, 2023 L23-33

MIT 6.5900 Fall 2023

Nested Page Tables (Hierarchical)
Guest VA Index 1 Index 2 Offset

Guest Page
Table Base

PTP
PTEL1 Table

L2 Table

Guest PA

PPN Offset

Guest PA == Host VA Index 1 Index 2 Offset
Host Page
Table Base

PTP
PTEL1 Table

L2 Table

Host PA

PPN Offset
How many accesses
do we need?

gPA->hPA

gPA->hPA
gPA->hPA

gPA->hPA

November 27, 2023 L23-34

MIT 6.5900 Fall 2023

Shadow Page Tables
Guest VA Index 1 Index 2 Offset

Guest Page
Table Base

PTP
PTEL1 Table

L2 Table

Guest PA

PPN Offset

Guest VA Index 1 Index 2 Offset
Shadow Page
Table Base

PTP
PTEL1 Table

L2 Table

Host PA

PPN Offset
How many accesses
do we need?

November 27, 2023 L23-35

MIT 6.5900 Fall 2023

Shadow Page Tables
Guest VA Index 1 Index 2 Offset

Guest Page
Table Base

PTP
PTEL1 Table

L2 Table

Guest PA

PPN Offset

Guest VA Index 1 Index 2 Offset
Shadow Page
Table Base

PTP
PTEL1 Table

L2 Table

Host PA

PPN OffsetWhat if guest OS changes
the guest page table?

November 27, 2023 L23-36

MIT 6.5900 Fall 2023

Nested vs Shadow Paging

Native Nested Paging Shadow Paging
TLB Hit VA->PA gVA->hPA gVA->hPA

TLB Miss (max) 4 24 4
PTE Updates Fast Fast Uses VMM

On x86-64

November 27, 2023 L23-37

MIT 6.5900 Fall 2023

Supporting Multiple Process Groups

• A “container” provides a process group virtual
machine to each set of processes

• Container can run directly on OS, which provides a
specific OS ABI to the processes in container

process1

Container

Hardware

processN…

…

process1

Container

processM…
ABIABI

OS Kernel
ISA ABI

ISA

November 27, 2023 L23-38

MIT 6.5900 Fall 2023

Container Semantics

• Isolation between containers is maintained by the
OS, which supports a virtualized set of kernel calls.
– Therefore, processes in all containers must target the same OS*

• Per Container Resources

– Set of processes (each with a virtual memory space)
– Set of filesystems
– Set of network interfaces and ports
– Selected devices

*Or closely related variants

November 27, 2023 L23-39

MIT 6.5900 Fall 2023

Security and Side Channels

• Hardware isolation mechanisms like virtual memory
guarantee that architectural state will not be
directly exposed to other processes…and

• ISA and ABI are timing-independent interfaces
– Specify what should happen, not when

• …so non-architectural state and other
implementation details and timing behaviors (e.g.,
microarchitectural state, power, etc.) may be used
as side channels to leak information!

November 27, 2023 L23-40

MIT 6.5900 Fall 2023

Coming Spring 2023 …

• 6.S984: Datacenter Computing
• Instructor: Christina Delimitrou
• Short description:

– Datacenter Computing explores the end-to-end stack of modern
datacenters, from hardware and OS all the way to resource
managers and programming frameworks.

– The class will also explore cross-cutting issues, such as ML for
systems, energy efficiency, availability, security, and reliability.

– The main deliverable for the course is a semester-long research
project on cloud computing, done in groups of 2-3 students. We
will provide a list of suggested projects, but students are also
encouraged to suggest their own.

• Lecture time: TR1-2:30

November 27, 2023 L23-41

L22-42MIT 6.5900 Fall 2023

Thank you!

