
L23-1MIT 6.5900 Fall 2023

Mengjia Yan
Computer Science & Artificial Intelligence Lab

M.I.T.

Security

MIT 6.5900 Fall 2023

Security and Information Leakage
• Hardware isolation mechanisms like virtual memory

guarantee that architectural state will not be directly
exposed to other processes…but

• ISA is a timing-independent interface, and
– Specify what should happen, not when

• ISA only specifies architectural updates (reg, mem, PC…)
– Micro-architectural changes are left unspecified

• So implementation details and timing behaviors (e.g.,
microarchitectural state, power, etc.) have been exploited
to breach security mechanisms.

• In specific, they have been used as channels to leak
information!

November 29, 2023 L22-2

MIT 6.5900 Fall 2023

Standard Communication Model

November 29, 2023

Message

Transmitter

Message

ReceiverChannel

1. Transmitter gets a message
2. Transmitter modulates channel
3. Receiver detects modulation on channel
4. Receiver decodes modulation as message

Sender Recipient

L22-3

MIT 6.5900 Fall 2023

Communication Model of Attacks
[Belay, Devadas, Emer]

• Domains – Distinct architectural domains in which
architectural state is not shared.

• Secret – the “message” that is transmitted on the channel
and detected by the receiver

• Channel – some “state” that can be changed, i.e., modulated,
by the “transmitter” and whose modulation can be detected
by the “receiver”.

November 29, 2023

Because channel is not a “direct” communication channel,
it is often referred to as a “side channel”

Domain of victim

Secret

Transmitter

Domain of attacker

Secret

ReceiverChannel
Acce

ss Decode

L22-4

MIT 6.5900 Fall 2023

Communication Model of Attacks
[Belay, Devadas, Emer]

1. Transmitter “accesses” secret
2. Transmitter modulates channel (microarchitectural

state) with a message based on secret
3. Receiver detects modulation on channel
4. Receiver decodes modulation as a message containing

the secret

November 29, 2023

Domain of victim

Secret

Transmitter

Domain of attacker

Secret

ReceiverChannel
Acce

ss Decode

L22-5

MIT 6.5900 Fall 2023

ATM Acoustic Channels

• Secret:
• Transmitter:
• Channel:
• Modulation:
• Receiver:
• Decoders:

Domain of victim

Secret

Transmitter

Domain of attacker

Secret

ReceiverChannel
Acce

ss Decode

November 29, 2023

Pin
Keypad
Air
Acoustic waves
Cheap Microphone
ML Model

L22-6

MIT 6.5900 Fall 2023

Physical vs Timing vs uArch Channel

• Types of channels

Processor

Power, EM,
sound…

Attacker requires
measurement
equipment à

physical access

Processor Response
time

Attacker may be
remote (e.g., over

an internet
connection)

Physical
channels

Timing channels

Victim Victim

November 29, 2023 L22-7

MIT 6.5900 Fall 2023

Timing Channel Example

def check(input):

 size = len(passwd); //passwd contains 8 digits
 for i in range(0,size):

if (input [i] != password[i]):
return ("error");

 return (“success”)

L22-8November 29, 2023

The execution time is dependent on how many characters match
between the input and the correct password. Attacker can brute-
force each character. Maximally try 10*8 times.

Blind guess needs to maximally try: 10^8
Can we do better to reduce the number of trials?

MIT 6.5900 Fall 2023

Physical vs Timing vs uArch Channel

• Types of channels

Processor

Power, EM,
sound…

Attacker requires
measurement
equipment à

physical access

Processor Response
time

Attacker may be
remote (e.g., over

an internet
connection)

Physical
channels

Timing channels

Processor

Attacker may be
remote, or be co-

located

Microarchitectural
channels

Microarch events
(e.g., timing,

perf. counters…)

Victim Victim Victim
Attacker

November 29, 2023 L22-9

MIT 6.5900 Fall 2023

Side Channel Attacks in 1977

• A side channel due to disk arm
optimization
– Enqueues requests by ascending cylinder

number and dequeues (executes) them by the
"elevator algorithm."

• Example:
1. Receiver issues a request to 55
2. Sender issues a request to either 53 or 57
3. Receiver then issues requests to both 52 and 58

Q: If the Receiver receives data for 52 first, can
we guess what did Sender issue before?
Q: If we remove step 1, can the attack still work?

November 29, 2023

Note this requires an “active” receiver
that preconditions the channel

L22-10

53

MIT 6.5900 Fall 2023

Communication w/ Active Receiver

• An active receiver may need to “precondition” the channel to
prepare for detecting modulation

• An active receiver also needs to deal with synchronization of
transmission (modulation) activity with reception
(demodulation) activity.

November 29, 2023

Domain of victim

Secret

Transmitter

Domain of attacker

Secret

ReceiverChannel
Acce

ss Decode

Channel
Preconditioning

L22-11

MIT 6.5900 Fall 2023

Cache:

#
 s

et
s

A Cache-based Channel

Process 1
(Xmtr)

Process 2
(Receiver)

write to setif (send ‘0’)
 idle
else
 write to a set

t1 = rdtsc()
read from the set
t2 = rdtsc()

if t2 – t1 > hit_time:
 decode ‘1’
else

decode ‘0’

November 29, 2023 L22-12

MIT 6.5900 Fall 2023

Cache:

#
 s

et
s

A Cache-based Channel

Process 1
(Xmtr)

Process 2
(Receiver)

write to setif (send ‘0’)
 idle
else
 write to a set

t1 = rdtsc()
read from the set
t2 = rdtsc()

if t2 – t1 > hit_time:
decode ‘1’

else
 decode ‘0’

November 29, 2023 L22-13

MIT 6.5900 Fall 2023

Transmitter in RSA [Percival 2005]

• Square-and-multiply based exponentiation

November 29, 2023

Input : base b, modulo m,
 exponent e = (en−1 ...e0)2
Output: be mod m
r = 1
for i = n−1 down to 0 do
 r = sqrt(r)
 r = mod(r,m)
 if ei == 1 then
 r = mul(r,b)
 r = mod(r,m)
 end
end
return r

Secret-dependent
memory access
à transmitter

L22-14

MIT 6.5900 Fall 2023

Cache:

#
 s

et
s

A Multi-way Cache-based Channel

Process 1
(Xmtr)

Process 2
(Receiver)

fill a setif (send ‘0’)
 idle
else
 write to a set

t1 = rdtsc()
read all of the set
t2 = rdtsc()

if t2 – t1 > hit_time:
 decode ‘1’
else
 decode ‘0’

November 29, 2023 L22-15

MIT 6.5900 Fall 2023

Cache:

#
 s

et
s

A Multi-way Cache-based Channel

Process 1
(Xmtr)

Process 2
(Receiver)

fill a setif (send ‘0’)
 idle
else
 write to a set

t1 = rdtsc()
read all of the set
t2 = rdtsc()

if t2 – t1 > hit_time:
 decode ‘1’
else
 decode ‘0’

November 29, 2023 L22-16

Precondition
(Prime)

Receive
(Probe)

Transmit

Decode

MIT 6.5900 Fall 2023

Generalizes to Other Resources

Hardware
resourceXmtr Receiver

t1 = rdtsc()
Use resource
t2 = rdtsc()

if (send ‘1’)
Use resource

else
 idle

if (t2 – t1 > THRESH)
 read ‘1’
else
 read ‘0’

November 29, 2023 L22-17

Any other exploitable structures?

MIT 6.5900 Fall 2023

Channel Examples

November 29, 2023

Resource Shared by

Private cache (L1, L2) Intra-core

Shared cache (LLC) On-socket cross core

Cache directory Cross socket

DRAM row buffer Cross socket

TLB (private/shared) Intra-core/Inter-core

Branch Predictor Intra-core

Network-on-chip On-socket cross core

… …

L22-18

MIT 6.5900 Fall 2023

See Attack in Action: Flush+Reload

• The conceptual version
– The sender and receiver shares addresses in a page
– Sender repeated accesses address A or B
– Receiver repeats:

• flush A and B; using “clflush” -> precondition
• wait for a few cycles; (sender does something) -> modulation
• time how long it takes to reload A and B -> receive+decode

L22-19November 29, 2023

Cache:
#

 s
et

s

Process 1
(Xmtr)

Process 2
(Receiver)

MIT 6.5900 Fall 2023

See Attack in Action: Page Sharing

• Virtual addresses in different processes map to the
same physical address. When?
– Lazy page allocation
– Shared library
– Memory de-duplication

L23-20November 29, 2023

Virtual Address Space
(Programmer's View)

Physical Address Space
(limited by DRAM size)

4KB

4KB

VA

PA

Page Table
per process

Process 1

Process 2

4KB
the same
content

MIT 6.5900 Fall 2023

See Attack in Action: Pseudocode

Sender:

buffer = mmap(4KB);
secret = getinput();

while (true){
 load buffer[secret*64];
}

L23-21November 29, 2023

Receiver:

buffer = mmap(4KB);
hit_count [MAX] = 0;

for i in range(0,MAX){
 t1 = rdtsc();
 load buffer[i*64];
 t2 = rdtsc();
 if (t2-t1 > threshold){
 hit_count[i] ++;
 }
}

Why *64?

MIT 6.5900 Fall 2023

Cache:

#
 s

et
s

Disrupting Communication

Process 1
(Xmtr)

Process 2
(Receiver)

November 29, 2023

“We found that identifying all of the sources of accurate
clocks was much easier than finding all of the possible
timing channels in the system.
… If we could make the clocks less accurate, then the
effective bandwidth of all timing channels in the system
would be lowered.” (1991)

L22-22

MIT 6.5900 Fall 2023

Secret-independent Channel Modulation

• Different from conventional communication, this is a side
channel (unintended communication).

• One mitigation is to not use the channel.
-> ”data-oblivious execution” or “constant-time programming”.

November 29, 2023

Domain of victim

Secret

Transmitter

Domain of attacker

Secret

Receiver
Acce

ss DecodeChannel

L22-23

MIT 6.5900 Fall 2023

Secret-independent Channel Modulation

How to make the code
execution independent
of the secret?

November 29, 2023

Input : base b, modulo m,
 exponent e = (en−1 ...e0)2
Output: be mod m
r = 1
for i = n−1 down to 0 do
 r = sqrt(r)
 r = mod(r,m)

if ei == 1 then
r = mul(r,b)
r = mod(r,m)

end
end
return r

No secret-dependent
branches, memory
accesses, floating point
operations

L22-24

p = (ei == 1)
r2 = mul(r,b)
r2 = mod(r,m)
cmov [p] r, r2

Constant-time programming is hard

After removing the
secret-dependent
branch, how about code
inside these functions?

MIT 6.5900 Fall 2023

Cache:

#
 s

et
s

Disrupting Communication

Process 1
(Xmtr)

Process 2
(Receiver)

November 29, 2023 L22-25

MIT 6.5900 Fall 2023

Cache:

#
 s

et
s

Disrupting Communication

Process 1
(Xmtr)

Process 2
(Receiver)

fill a setif (send ‘0’)
 idle
else
 write to a set

t1 = rdtsc()
read all of the set
t2 = rdtsc()

if t2 – t1 > hit_time:
 decode ‘1’
else
 decode ‘0’Kirianski et. al. Dawg, Micro’18

November 29, 2023 L22-26

MIT 6.5900 Fall 2023

Disjoint Channels

• Making disjoint channels makes communication impossible.

• Channel can be allocated by “domain” and will need to be
“cleaned” as processes enter and leave running state, so next
process cannot see any “modulation” on the channel.

November 29, 2023

Domain of victim

Secret

Transmitter

Domain of attacker

Secret

Receiver
Channel

Acce
ss Decode

Channel

L22-27

MIT 6.5900 Fall 2023

Types of Transmitters

November 29, 2023

Domain of victim

Secret

Transmitter

Domain of attacker

Secret

ReceiverChannel
Acce

ss Decode

• Types of transmitter:
1. Pre-existing so victim itself leaks secret, (e.g., RSA keys)
2. Programmed and invoked by attacker (e.g., Meltdown)

L22-28

MIT 6.5900 Fall 2023

Reminder: Speculative Execution

• In x86, a page table can have kernel pages which are
only accessible in kernel mode:
– This avoids switching page tables on context switches, but
– Hardware speculatively assumes that there will not be an

illegal access, so instructions following an illegal
instruction are executed speculatively.

November 29, 2023

Address Space User pages Kernel pages

0x0 0xFF...F

• So what does the following code do when run in user
mode do?

• Causes a protection fault, but data at “kernel_address”
is speculatively read and loaded into val.

val = *kernel_address;

L22-29

MIT 6.5900 Fall 2023

Meltdown [Lipp et al. 2018]

1. Preconditioning: Receiver allocates an array
subchannels[256] and flushes all its cache lines

2. Transmit: Transmitter (controlled by attacker) executes

3. Receive: After handling protection fault, receiver times
accesses to all of subchannels[256], finds the
subchannel that was “modulated” to decode the secret.

• Result: Attacker can read arbitrary kernel data!
– For higher performance, use transactional memory (protection

fault aborts transaction on exception instead of invoking kernel)
– Mitigation?

November 29, 2023

uint8_t secret = *kernel_address;
subchannels[secret] = 1;

Do not map kernel data in user page tables (KPTI)
Return zero upon permission check failure
(supporting precise exception)

L22-30

MIT 6.5900 Fall 2023

Types of Transmitters

• Types of transmitter:
1. Pre-existing so victim itself leaks secret, (e.g., RSA keys)
2. Programmed and invoked by attacker (e.g., Meltdown)
3. Synthesized from existing victim code and invoked by

attacker (e.g., Spectre v2)

November 29, 2023

Domain of victim

Secret

Transmitter

Domain of attacker

Secret

ReceiverChannel
Acce

ss Decode

L22-31

MIT 6.5900 Fall 2023

Spectre variant 1
[Kocher et al. 2018]

• Consider a situation where there is some kernel code
that looks like the following:

• Interpret that code as a transmitter:

• But this kernel code is protected by a branch. Can we
make the kernel speculatively execute “xmit”?

November 29, 2023

xmit: uint8_t index = *kernel_address;
 uint8_t dummy = random_array[index];

xmit: uint8_t secret = *kernel_address;
 uint8_t dummy = subchannels[secret];

L22-32

if (kernel_address is public_region) {
 uint8_t index = *kernel_address;
 uint8_t dummy = subchannels[index];
}

Conditional branch
misprediction

MIT 6.5900 Fall 2023

Spectre variant 1
[Kocher et al. 2018]

• Consider the following kernel code, e.g., in a system call

1. Precondition: Flush all the elements in array2 from cache
2. Train: Attacker invokes this kernel code with small values of

x to train the branch predictor to be taken
3. Transmit: Attacker invokes this code with an out-of-bounds

x, so that &array1[x] points to a desired kernel address.
Core mispredicts branch, speculatively fetches address
&array2[array1[x] * 4096] into the cache.

4. Receive: Attacker probes cache to infer which line of array2
was fetched, learns data at kernel address

November 29, 2023

if (x < array1_size)
 y = array2[array1[x] * 4096];

L22-33

MIT 6.5900 Fall 2023

Spectre variant 2
[Kocher et al. 2018]

• Can also exploit indirect branch predictor:
– Most BTBs store partial tags for source addresses

November 29, 2023 L22-34

kernel_address = a_desired_address;
 jump some_where_else
 …
 kernel_address = a_safe_address;
 jump xmit
 …
xmit: uint8_t secret = *kernel_address;
 uint8_t dummy = subchannels[secret];

Victim_branch

training_branch

1. Train: trigger victim_branch -> xmit many times
2. Transmit: ‘victim_branch’ and ‘training_branch’ alias in

BTB, so we can speculatively trigger victim_branch -> xmit
3. Receive: similar to Spectre v1

MIT 6.5900 Fall 2023

Types of Transmitters

• Types of transmitter:
1. Pre-existing so victim itself leaks secret, (e.g., RSA keys)
2. Programmed and invoked by attacker (e.g., Meltdown)
3. Synthesized from existing victim code and invoked by

attacker (e.g., Spectre v2)

November 29, 2023

Domain of victim

Secret

Transmitter

Domain of attacker

Secret

ReceiverChannel
Acce

ss Decode

L22-35

MIT 6.5900 Fall 2023

Spectre variants and mitigations

• Spectre relies on speculative execution, not late
exception handling à Much harder to fix than Meltdown

• Several other Spectre variants reported
– Leveraging the speculative store buffer, return address stack,

leaking privileged registers, etc.

• Can attack any type of VM, including OSs, VMMs,
JavaScript engines in browsers, and the OS network
stack (NetSpectre)

• Short-term mitigations:
– Microcode updates (disable sharing of speculative state when possible)
– OS and compiler patches to selectively avoid speculation

• Long-term mitigations:
– Disabling speculation?
– Closing side channels?

November 29, 2023 L22-36

MIT 6.5900 Fall 2023

Summary

• ISA is a timing-independent interface, and
– Specify what should happen, not when

• ISA only specifies architectural updates
– Micro-architectural changes are left unspecified

• Implementation details (e.g., speculative execution) and
timing behaviors (e.g., microarchitectural state, power,
etc.) have been exploited to breach security mechanisms.

• ISA, as a software-hardware contract, is insufficient for
reasoning about microarchitectural security

November 29, 2023 L22-37

MIT 6.5900 Fall 2023

Coming Spring 2024:
Secure Hardware Design 6.5950/1

Old number: 6.S983, 6.888
November 29, 2023 L22-38

https://shd.mit.edu

L23-39MIT 6.5900 Fall 2023

Thank you!

