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Security and Information Leakage
• Hardware isolation mechanisms like virtual memory 

guarantee that architectural state will not be directly 
exposed to other processes…but

• ISA is a timing-independent interface, and
– Specify what should happen, not when

• ISA only specifies architectural updates (reg, mem, PC…)
– Micro-architectural changes are left unspecified

• So implementation details and timing behaviors (e.g., 
microarchitectural state, power, etc.) have been exploited 
to breach security mechanisms.

• In specific, they have been used as channels to leak 
information!
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Standard Communication Model

November 29, 2023

Message

Transmitter

Message

ReceiverChannel

1. Transmitter gets a message
2. Transmitter modulates channel
3. Receiver detects modulation on channel
4. Receiver decodes modulation as message

Sender Recipient
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Communication Model of Attacks
[Belay, Devadas, Emer]

• Domains – Distinct architectural domains in which 
architectural state is not shared.

• Secret – the “message” that is transmitted on the channel 
and detected by the receiver 

• Channel – some “state” that can be changed, i.e., modulated, 
by the “transmitter” and whose modulation can be detected 
by the “receiver”.

November 29, 2023

Because channel is not a “direct” communication channel,
it is often referred to as a “side channel”

Domain of victim

Secret

Transmitter

Domain of attacker

Secret

ReceiverChannel
Acce

ss Decode
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Communication Model of Attacks
[Belay, Devadas, Emer]

1. Transmitter “accesses” secret
2. Transmitter modulates channel (microarchitectural 

state) with a message based on secret
3. Receiver detects modulation on channel
4. Receiver decodes modulation as a message containing 

the secret
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Domain of victim

Secret

Transmitter

Domain of attacker

Secret

ReceiverChannel
Acce

ss Decode
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ATM Acoustic Channels

• Secret:
• Transmitter:
• Channel:
• Modulation:
• Receiver:
• Decoders:

Domain of victim

Secret

Transmitter

Domain of attacker

Secret

ReceiverChannel
Acce

ss Decode
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Pin
Keypad
Air
Acoustic waves
Cheap Microphone
ML Model
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Physical vs Timing vs uArch Channel

• Types of channels

Processor

Power, EM, 
sound…

Attacker requires 
measurement 
equipment à 

physical access

Processor Response 
time

Attacker may be 
remote (e.g., over 

an internet 
connection)

Physical 
channels

Timing channels

Victim Victim
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Timing Channel Example

def check(input):

 size = len(passwd); //passwd contains 8 digits  
  for i in range(0,size):

if (input [i] != password[i]):
return ("error");

  return (“success”)

L22-8November 29, 2023

The execution time is dependent on how many characters match 
between the input and the correct password. Attacker can brute-
force each character. Maximally try 10*8 times.

Blind guess needs to maximally try: 10^8
Can we do better to reduce the number of trials?
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Physical vs Timing vs uArch Channel

• Types of channels

Processor

Power, EM, 
sound…

Attacker requires 
measurement 
equipment à 

physical access

Processor Response 
time

Attacker may be 
remote (e.g., over 

an internet 
connection)

Physical 
channels

Timing channels

Processor

Attacker may be 
remote, or be co-

located

Microarchitectural 
channels

Microarch events 
(e.g., timing, 

perf. counters…)

Victim Victim Victim
Attacker
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Side Channel Attacks in 1977

• A side channel due to disk arm 
optimization
– Enqueues requests by ascending cylinder 

number and dequeues (executes) them by the 
"elevator algorithm."

• Example:
1. Receiver issues a request to 55
2. Sender issues a request to either 53 or 57
3. Receiver then issues requests to both 52 and 58

Q: If the Receiver receives data for 52 first, can 
we guess what did Sender issue before?
Q: If we remove step 1, can the attack still work?

November 29, 2023

Note this requires an “active” receiver 
that preconditions the channel
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Communication w/ Active Receiver

• An active receiver may need to “precondition” the channel to 
prepare for detecting modulation

• An active receiver also needs to deal with synchronization of 
transmission (modulation) activity with reception 
(demodulation) activity.

November 29, 2023

Domain of victim

Secret

Transmitter

Domain of attacker

Secret

ReceiverChannel
Acce

ss Decode

Channel
Preconditioning
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Cache:

#
 s

et
s

A Cache-based Channel

Process 1 
(Xmtr)

Process 2 
(Receiver)

write to setif (send ‘0’)
   idle
else
  write to a set

t1 = rdtsc()
read from the set
t2 = rdtsc()

if t2 – t1 > hit_time: 
    decode ‘1’
else 

decode ‘0’
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Cache:

#
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A Cache-based Channel

Process 1 
(Xmtr)

Process 2 
(Receiver)

write to setif (send ‘0’)
   idle
else
  write to a set

t1 = rdtsc()
read from the set
t2 = rdtsc()

if t2 – t1 > hit_time: 
decode ‘1’

else 
    decode ‘0’
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Transmitter in RSA [Percival 2005]

• Square-and-multiply based exponentiation

November 29, 2023

Input : base b, modulo m,
   exponent e = (en−1 ...e0 )2 
Output: be mod m
r = 1
for i = n−1 down to 0 do 
 r = sqrt(r)
 r = mod(r,m) 
 if ei == 1 then 
       r = mul(r,b)
       r = mod(r,m) 
 end 
end 
return r 

Secret-dependent 
memory access 
à transmitter
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Cache:

#
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A Multi-way Cache-based Channel

Process 1 
(Xmtr)

Process 2 
(Receiver)

fill a setif (send ‘0’)
   idle
else
  write to a set

t1 = rdtsc()
read all of the set
t2 = rdtsc()

if t2 – t1 > hit_time: 
    decode ‘1’
else 
    decode ‘0’
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Cache:

#
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A Multi-way Cache-based Channel

Process 1 
(Xmtr)

Process 2 
(Receiver)

fill a setif (send ‘0’)
   idle
else
  write to a set

t1 = rdtsc()
read all of the set
t2 = rdtsc()

if t2 – t1 > hit_time: 
    decode ‘1’
else 
    decode ‘0’
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Precondition 
(Prime)

Receive 
(Probe)

Transmit 

Decode 
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Generalizes to Other Resources

Hardware 
resourceXmtr Receiver

t1 = rdtsc()
Use resource
t2 = rdtsc()

if (send ‘1’)
Use resource

else
  idle

if (t2 – t1 > THRESH) 
 read ‘1’
else 
 read ‘0’

November 29, 2023 L22-17

Any other exploitable structures?
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Channel Examples

November 29, 2023

Resource Shared by

Private cache (L1, L2) Intra-core

Shared cache (LLC) On-socket cross core

Cache directory Cross socket

DRAM row buffer Cross socket

TLB (private/shared) Intra-core/Inter-core

Branch Predictor Intra-core

Network-on-chip On-socket cross core

… …

L22-18
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See Attack in Action: Flush+Reload

• The conceptual version
– The sender and receiver shares addresses in a page
– Sender repeated accesses address A or B
– Receiver repeats:

• flush A and B; using “clflush” -> precondition
• wait for a few cycles; (sender does something) -> modulation
• time how long it takes to reload A and B -> receive+decode

L22-19November 29, 2023

Cache:
#

 s
et

s

Process 1 
(Xmtr)

Process 2 
(Receiver)
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See Attack in Action: Page Sharing

• Virtual addresses in different processes map to the 
same physical address. When?
– Lazy page allocation
– Shared library
– Memory de-duplication

L23-20November 29, 2023

Virtual Address Space 
(Programmer's View)

Physical Address Space
(limited by DRAM size)

4KB

4KB

VA

PA

Page Table
per process

Process 1

Process 2

4KB
the same 
content
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See Attack in Action: Pseudocode

Sender:

buffer = mmap(4KB);
secret = getinput(); 

while (true){
    load buffer[secret*64];
}

L23-21November 29, 2023

Receiver:

buffer = mmap(4KB);
hit_count [MAX] = 0;

for i in range(0,MAX){
    t1 = rdtsc();
    load buffer[i*64];
    t2 = rdtsc();
    if (t2-t1 > threshold){
 hit_count[i] ++;
    }
}

Why *64?
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Cache:

#
 s

et
s

Disrupting Communication

Process 1 
(Xmtr)

Process 2 
(Receiver)

November 29, 2023

“We found that identifying all of the sources of accurate 
clocks was much easier than finding all of the possible 
timing channels in the system. 
… If we could make the clocks less accurate, then the 
effective bandwidth of all timing channels in the system 
would be lowered.” (1991)
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Secret-independent Channel Modulation

• Different from conventional communication, this is a side 
channel (unintended communication).

• One mitigation is to not use the channel. 
-> ”data-oblivious execution” or “constant-time programming”.

November 29, 2023

Domain of victim

Secret

Transmitter

Domain of attacker

Secret

Receiver
Acce

ss DecodeChannel
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Secret-independent Channel Modulation

How to make the code 
execution independent 
of the secret?

November 29, 2023

Input : base b, modulo m,
   exponent e = (en−1 ...e0 )2 
Output: be mod m
r = 1
for i = n−1 down to 0 do 
  r = sqrt(r)
  r = mod(r,m) 

if ei == 1 then 
r = mul(r,b)
r = mod(r,m) 

end 
end 
return r 

No secret-dependent 
branches, memory 
accesses, floating point 
operations

L22-24

p = (ei == 1)
r2 = mul(r,b)
r2 = mod(r,m)
cmov [p] r, r2 

Constant-time programming is hard

After removing the 
secret-dependent 
branch, how about code 
inside these functions?



MIT 6.5900 Fall 2023

Cache:

#
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Disrupting Communication

Process 1 
(Xmtr)

Process 2 
(Receiver)
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Cache:

#
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Disrupting Communication

Process 1 
(Xmtr)

Process 2 
(Receiver)

fill a setif (send ‘0’)
   idle
else
  write to a set

t1 = rdtsc()
read all of the set
t2 = rdtsc()

if t2 – t1 > hit_time: 
    decode ‘1’
else 
    decode ‘0’Kirianski et. al. Dawg, Micro’18
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Disjoint Channels

• Making disjoint channels makes communication impossible.

• Channel can be allocated by “domain” and will need to be 
“cleaned” as processes enter and leave running state, so next 
process cannot see any “modulation” on the channel.

November 29, 2023

Domain of victim

Secret

Transmitter

Domain of attacker

Secret

Receiver
Channel

Acce
ss Decode

Channel
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Types of Transmitters

November 29, 2023

Domain of victim

Secret

Transmitter

Domain of attacker

Secret

ReceiverChannel
Acce

ss Decode

• Types of transmitter:
1. Pre-existing so victim itself leaks secret, (e.g., RSA keys)
2. Programmed and invoked by attacker (e.g., Meltdown)

L22-28
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Reminder: Speculative Execution

• In x86, a page table can have kernel pages which are 
only accessible in kernel mode:
– This avoids switching page tables on context switches, but
– Hardware speculatively assumes that there will not be an 

illegal access, so instructions following an illegal 
instruction are executed speculatively.

November 29, 2023

Address Space User pages Kernel pages

0x0 0xFF...F

• So what does the following code do when run in user 
mode do?

• Causes a protection fault, but data at “kernel_address” 
is speculatively read and loaded into val.

val = *kernel_address;
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Meltdown [Lipp et al. 2018]

1. Preconditioning: Receiver allocates an array 
subchannels[256] and flushes all its cache lines

2. Transmit: Transmitter (controlled by attacker) executes

3. Receive: After handling protection fault, receiver times 
accesses to all of subchannels[256], finds the 
subchannel that was “modulated” to decode the secret. 

• Result: Attacker can read arbitrary kernel data!
– For higher performance, use transactional memory (protection 

fault aborts transaction on exception instead of invoking kernel)
– Mitigation? 

November 29, 2023

uint8_t secret = *kernel_address;
subchannels[secret] = 1;

Do not map kernel data in user page tables (KPTI)
Return zero upon permission check failure 
(supporting precise exception)
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Types of Transmitters

• Types of transmitter:
1. Pre-existing so victim itself leaks secret, (e.g., RSA keys)
2. Programmed and invoked by attacker (e.g., Meltdown)
3. Synthesized from existing victim code and invoked by 

attacker (e.g., Spectre v2)

November 29, 2023

Domain of victim

Secret

Transmitter

Domain of attacker

Secret

ReceiverChannel
Acce

ss Decode
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Spectre variant 1
[Kocher et al. 2018]

• Consider a situation where there is some kernel code 
that looks like the following:

• Interpret that code as a transmitter:

• But this kernel code is protected by a branch. Can we 
make the kernel speculatively execute “xmit”?

November 29, 2023

xmit: uint8_t index = *kernel_address;
   uint8_t dummy = random_array[index];

xmit: uint8_t secret = *kernel_address;
      uint8_t dummy = subchannels[secret];

L22-32

if (kernel_address is public_region) {
   uint8_t index = *kernel_address;
   uint8_t dummy = subchannels[index]; 
}

Conditional branch 
misprediction
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Spectre variant 1 
[Kocher et al. 2018]

• Consider the following kernel code, e.g., in a system call

1. Precondition: Flush all the elements in array2 from cache
2. Train: Attacker invokes this kernel code with small values of 

x to train the branch predictor to be taken
3. Transmit: Attacker invokes this code with an out-of-bounds 

x, so that &array1[x] points to a desired kernel address. 
Core mispredicts branch, speculatively fetches address 
&array2[array1[x] * 4096] into the cache.

4. Receive: Attacker probes cache to infer which line of array2 
was fetched, learns data at kernel address

November 29, 2023

if (x < array1_size)
  y = array2[array1[x] * 4096];
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Spectre variant 2
[Kocher et al. 2018]

• Can also exploit indirect branch predictor:
– Most BTBs store partial tags for source addresses

November 29, 2023 L22-34

kernel_address = a_desired_address;
 jump some_where_else
 …
 kernel_address = a_safe_address;
 jump xmit
 …
xmit: uint8_t secret = *kernel_address;
      uint8_t dummy = subchannels[secret];

Victim_branch

training_branch

1. Train: trigger victim_branch -> xmit many times
2. Transmit: ‘victim_branch’ and ‘training_branch’ alias in 

BTB, so we can speculatively trigger victim_branch -> xmit
3. Receive: similar to Spectre v1
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Types of Transmitters

• Types of transmitter:
1. Pre-existing so victim itself leaks secret, (e.g., RSA keys)
2. Programmed and invoked by attacker (e.g., Meltdown)
3. Synthesized from existing victim code and invoked by 

attacker (e.g., Spectre v2)

November 29, 2023

Domain of victim

Secret

Transmitter

Domain of attacker

Secret

ReceiverChannel
Acce

ss Decode
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Spectre variants and mitigations

• Spectre relies on speculative execution, not late 
exception handling à Much harder to fix than Meltdown

• Several other Spectre variants reported
– Leveraging the speculative store buffer, return address stack, 

leaking privileged registers, etc.

• Can attack any type of VM, including OSs, VMMs, 
JavaScript engines in browsers, and the OS network 
stack (NetSpectre)

• Short-term mitigations:
– Microcode updates (disable sharing of speculative state when possible)
– OS and compiler patches to selectively avoid speculation

• Long-term mitigations:
– Disabling speculation?
– Closing side channels?
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Summary

• ISA is a timing-independent interface, and
– Specify what should happen, not when

• ISA only specifies architectural updates
– Micro-architectural changes are left unspecified

• Implementation details (e.g., speculative execution) and 
timing behaviors (e.g., microarchitectural state, power, 
etc.) have been exploited to breach security mechanisms.

• ISA, as a software-hardware contract, is insufficient for 
reasoning about microarchitectural security
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Coming Spring 2024: 
Secure Hardware Design 6.5950/1

Old number: 6.S983, 6.888
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https://shd.mit.edu
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Thank you!


