Accelerators-II

Tushar Krishna
Associate Professor @ Georgia Tech
Visiting Professor @ MIT EECS and CSAIL

Slide Acknowledgments: Michael Pellauer, Angshuman Parashar, Joel Emer, Vivienne Sze, Hyoukjun Kwon, Felix Kao
Outline

• Recap
• Dataflows for 1D Convolution
• Getting more realistic
• Advanced Dataflows
Outline

• Recap
• Dataflows for 1D Convolution
• Getting more realistic
• Advanced Dataflows
Recap

• Why domain-specific accelerators?
 – High Throughput requirements (workload constraint)
 – Energy costs of Data Movement (technology constraint)

• Why do accelerators help?
 – custom datapaths for the operator(s) of interest (e.g., matrix multiplication)
 – remove control overheads that Turing-complete engines (e.g., CPUs) have such as instruction fetch/decode, speculation, caches, ..
Accelerators

Off-Chip Memory

Custom Datapath

Global Buffer (100 – 500 kB)

DRAM
Why does this matter?

Attainable Performance (GFLOPS) vs. FLOPs/Byte

- Floating Point Operations per Second (Ops/Second)
- Peak Compute Performance (Depends on number of PEs)

Energy Overheads:
- Normalized Energy Cost
 - 1× (Reference)
 - 1×
 - 2×
 - 6×
 - 200×

Memory Bandwidth (BW) vs. Compute Bound Region

- Mem bound region
- Compute bound region

December 6, 2023
How to reduce BW requirement?

<table>
<thead>
<tr>
<th>VGG16 conv 3_2</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Multiply Add Ops</td>
<td>1.85 Billion</td>
</tr>
<tr>
<td>Weights</td>
<td>590 K</td>
</tr>
<tr>
<td>Inputs</td>
<td>803 K</td>
</tr>
<tr>
<td>Outputs</td>
<td>803 K</td>
</tr>
</tbody>
</table>

How to exploit reuse? “Dataflow”

i.e., fine-grained schedule of computations within DNN accelerators

- Computation Order
- Parallelization Strategy
Dataflow Implication: Algorithm Reuse \rightarrow HW Reuse

- **7D Computation Space**
 - $R \times S \times X \times Y \times C \times K \times N$

- **4D Operand/Result Data Spaces**
 - **Weights** - $R \times S \times C \times K$
 - **Inputs** - $X \times Y \times C \times N$
 - **Outputs** - $P \times Q \times K \times N$

How to describe and navigate?

- **HW Design-space**
 - Number of PEs
 - Memory Hierarchy (Sizes and Bandwidths)
 - Interconnect Bandwidth

- **HW Reuse Structures**
 - **Temporal**
 - **Spatial** (Multicast)
 - **Spatial** (Forwarding)
Outline

• Recap
• **Dataflows for 1D Convolution**
• Getting more realistic
• Advanced Dataflows
Output Stationary (OS) Dataflow

Computation

\[
\text{for (int } x = 0; x < X'; x++) \\
\text{for (int } s = 0; s < S; s++) \\
\text{Output}[x] += \text{Weight}[s] \times \text{Input}[x+s]
\]

Data

PartialSum[X'][S] needs to access:
- Weight[s]
- Output[x']
- Input[x'+s]

Computation Space

Data Space

Each point is a partial sum

Spatial multicast opportunity for weights

Output does not change over time => Temporal reuse opportunity

December 6, 2023
Describing OS dataflow

Weights S * Inputs X = Outputs* $X' = X-S$

```c
int i[X];  // Input activations
int w[S];  // Filter weights
int o[X']; // Output activations

for (x = 0; x < X'; x++) {
    for (s = 0; s < S; s++) {
        o[x] += i[x+s]*w[s];
    }
}
```

How often does the datapath change the weight and input? Every cycle
Output? Every S cycles: “Output stationary”
What do we mean by “stationary”?

The datatype (and dimension) that changes most slowly

Sums: 1/10, Inputs: 3/10, Weights: 9/40

- Imprecise analogy: think of data transfers as a wave with “amplitude” and “period”
 - The stationary datatype has the longest period (locally held tile changes most slowly)
 - Note: like waves, may have harmful “interference” (bursts)
 - Intermediate staging buffers reduce both bandwidth and energy

- Often corresponds to datatype that is “done with” earliest without further reloads

- **Note**: the “stationary” name is meant to give intuition, not to be a complete specification of all the behavior of a dataflow
“Done with” vs “Needs Reload”

int \textit{i}[X]; \quad \# \text{Input activations}
int \textit{w}[S]; \quad \# \text{Filter weights}
int \textit{o}[X’]; \quad \# \text{Output activations}

\begin{verbatim}
for (x = 0; x < X’; x++) {
 for (s = 0; s < S; s++) {
 o[x] += i[x+s]*w[s];
 }
}
\end{verbatim}

- How many times will \(x == 2 \)?
- How many times will \(x+s == 2 \)?
- How many times will \(s == 2 \)?

• Temporal distance between re-occurrence dictates buffer size to avoid re-load
• How do you know if a buffer that size is worth it?

December 6, 2023
• **Minimize** partial sum R/W energy consumption
 – maximize local accumulation

• **Broadcast/Multicast** filter weights and **reuse activations spatially** across the PE array
Weight Stationary (WS) Dataflow

Computation:
\[
\begin{align*}
\text{for} & (\text{int } s = 0; s < S; s++) \\
\text{for} & (\text{int } x = 0; x < X'; x++)
\end{align*}
\]
Output\[x\] += Weight\[s\] * Input\[x+s\]

Data:
PartialSum[X']\[S\] needs to access:
- Weight\[s\]
- Output\[x'\]
- Input\[x'+s\]

Computation Space
Weight does not change over time => Temporal reuse opportunity

Data Space
Each point is a data access

Need Spatial reduction for output
Describing WS Dataflow

Computation

```c
int i[X];  // Input activations
int w[S];  // Filter weights
int o[X']; // Output activations

for (s = 0; s < S; s++) {
    for (x = 0; x < X'; x++) {
        o[x] += i[x+s]*w[s];
    }
}
```

What about the loop nest makes it weight stationary?

outermost loop is S rank
WS Dataflow Implementation

- Minimize weight read energy consumption
 - maximize convolutional and filter reuse of weights

- Broadcast activations and accumulate psums spatially across the PE array.
Simple Model for Mapping Dataflows to HW

Weights * Inputs = Outputs

Weights : S
Inputs : X
Outputs : X' = X - ceil(S/2)

Common metric	Weights	Inputs	Outputs / Partial Sums
Alg. Min. accesses to backing store (MINALG) | S | X | X'
Maximum operand uses (MAXOP) | SX' | SX' | SX'
1D Convolution Summary

<table>
<thead>
<tr>
<th>Hardware Structure</th>
<th>Per Data Type</th>
<th>OS Dataflow Implication</th>
<th>WS Dataflow Implication</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bandwidth to MAC</td>
<td>Weight Fetch Rate</td>
<td>Every Cycle</td>
<td>Every S Cycles</td>
</tr>
<tr>
<td></td>
<td>Input Fetch Rate</td>
<td>Every Cycle</td>
<td>Every Cycle</td>
</tr>
<tr>
<td></td>
<td>Output Fetch Rate</td>
<td>Every S Cycles</td>
<td>Every Cycle</td>
</tr>
<tr>
<td>Local Buffer Sizes for Temporal Reuse</td>
<td>Weight Buffer Size</td>
<td>S</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Input Buffer Size</td>
<td>S</td>
<td>X'</td>
</tr>
<tr>
<td></td>
<td>Output Buffer Size</td>
<td>1</td>
<td>X'</td>
</tr>
<tr>
<td>Total Local Buffer Accesses</td>
<td>Weight Buffer</td>
<td>X'</td>
<td>SX'</td>
</tr>
<tr>
<td></td>
<td>Input Buffer</td>
<td>X'</td>
<td>S</td>
</tr>
<tr>
<td></td>
<td>Output Buffer</td>
<td>SX'</td>
<td>S</td>
</tr>
</tbody>
</table>

Why is product always SX'?

Total computations same
Outline

- Recap
- Dataflows for 1D Convolution
- Getting more realistic
 - Multi-layer Buffering
 - Multiple PEs
 - Full Convolution
- Advanced Dataflows
Outline

• Recap
• Dataflows for 1D Convolution
• Getting more realistic
 – Multi-layer Buffering
 – Multiple PEs
 – Full Convolution
• Advanced Dataflows
Multi-layer Buffering

How will this be reflected in the loop nest?

New ‘level’ of loops
1D Convolution – “Tiled”

Weights * Inputs = Outputs

\[
\begin{align*}
\text{int } i[X]; & \quad \# \text{ Input activations} \\
\text{int } w[S]; & \quad \# \text{ Filter Weights} \\
\text{int } o[X']; & \quad \# \text{ Output activations}
\end{align*}
\]

// Level 1
for (x1 = 0; x1 < X'1; x1++) {
 for (s1 = 0; s1 < S1; s1++) {
 // Level 0
 for (x0 = 0; x0 < X'0; x0++) {
 for (s0 = 0; s0 < S0; s0++) {
 x = x1 * X'0 + x0;
 s = r1 * R0 + r0;
 o[x] += i[x+s] * w[s];
 }
 }
 }
}

Note X’ and S are factored so:
X’0 * X’1 = X’
S0 * S1 = S

December 6, 2023
Buffer sizes

- Level 0 buffer size is volume needed in each Level 1 iteration.
- Level 1 buffer size is volume needed to be preserved and re-delivered in future (usually successive) Level 1 iterations.

- A **legal mapping** will fit into the hardware’s buffer sizes
Buffer sizes

```
// Level 1
for (x1 = 0; x1 < X’1; x1++) {
    for (s1 = 0; s1 < S1; s1++) {
        // Level 0
        for (x0 = 0; x0 < X’0; x0++) {
            for (s0 = 0; s0 < S0; s0++) {
                o[x1*X’0+x0] += i[x1*X’0+x0 + s1*S0+s0] * w[s1*S0+s0];
            }
        }
    }
}
```

Constant over each level 1 iteration

<table>
<thead>
<tr>
<th></th>
<th>Level 0</th>
<th>Level 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weights</td>
<td>S0</td>
<td>S</td>
</tr>
<tr>
<td>Inputs</td>
<td>X’0+S0</td>
<td>S</td>
</tr>
<tr>
<td>Outputs</td>
<td>X’0</td>
<td>1</td>
</tr>
</tbody>
</table>
Energy Costs

```plaintext
// Level 1
for (x1 = 0; x1 < X'1; x1++) {
    for (s1 = 0; s1 < S1; s1++) {
        // Level 0
        for (x0 = 0; x0 < X'0; x0++) {
            for (s0 = 0; s0 < S0; s0++) {
                o[x1*X'0+x0] += i[x1*X'0+x0 + s1*S0+s0] * w[s1*S0+s0];
            }
        }
    }
}
```

Constant over each level 1 iteration

Energy of a buffer access is a function of the size of the buffer.

Each buffer level’s energy is proportional to the number of accesses at that level.

For level 0 that is all the operands to the Datapath.

For level L>0 there are three components:

- Data arriving from level L+1
- Data that needs to be transferred to level L-1
- Data that is returned from level L-1

December 6, 2023
Mapping – Weight Access Costs

```c
// Level 1
for (x1 = 0; x1 < X’1; x1++) {
    for (s1 = 0; s1 < S1; s1++) {
        // Level 0
        for (x0 = 0; x0 < X’0; x0++) {
            for (s0 = 0; s0 < S0; s0++) {
                o[x1*X’0+x0] += i[x1*X’0+x0 + s1*S0+s0] * w[s1*S’0+s0];
            }
        }
    }
}
```

Weights

```plaintext
s1=0
```

```
Next x1 iteration
```

December 6, 2023
Mapping – Weight Access Costs

- **Level 0 reads**
 - Per level 1 iteration \(\rightarrow \) \(X'0*S0 \) weight reads
 - Times \(X'1*S1 \) level 1 iterations
 - Total reads \(= (X'0*S0)*(X'1*S1) = (X'0*X'1)*(S0*S1) = SX' \)

- **Level 1 to 0 transfers**
 - Per level 1 iteration \(\rightarrow \) \(S0 \) weights transferred
 - Times same number of level 1 iterations \(= X'1 * S1 \)
 - Total transfers \(\rightarrow \) \(S0*(X'1*S1) = X'1*(S0*S1) = SX'1 \)

Disjoint/partitioned reuse pattern

December 6, 2023
Mapping – Input Access Costs

// Level 1
for (x1 = 0; x1 < X’1; x1++) {
 for (s1 = 0; s1 < S1; s1++) {
 // Level 0
 for (x0 = 0; x0 < X’0; x0++) {
 for (s0 = 0; s0 < S0; s0++) {
 o[x1*X’0+x0] += i[x1*X’0+x0 + s1*S0+s0] * w[s1*S0+s0];
 }
 }
 }
}

Inputs

Sliding window

Input halo!
Mapping – Input Access Costs

- **Level 0 reads**
 - Per level 1 iteration -> X’0+S0 inputs reads
 - Times X’1*S1 level 1 iterations
 - Total reads = X’1*S1*(X’0+S0) = ((X’1*X’0)*S1)+(X’1*(S1*S0))
 = X’*S1+X’1*S reads

- **Level 1 to 0 transfers**
 - For s=0, X’0+S0 inputs transferred
 - For each of the following S1-1 iterations another S0 inputs transferred
 - So total per x1 iteration is: X’0+S0*S1 = X’0+S inputs
 - Times number of x1 iterations = X’1
 - So total transfers = X’1*(X’0+S) = (X’1*X’0)+X’1*S = X’+X’1*S

Sliding window/partitioned reuse pattern
// Level 1
for (x1 = 0; x1 < X’1; x1++) {
 for (s1 = 0; s1 < S1; s1++) {
 // Level 0
 for (x0 = 0; x0 < X’0; x0++) {
 for (s0 = 0; s0 < S0; s0++) {
 o[x1*X’0+x0] += i[x1*X’0+x0 + s1*S0+s0] * w[s1*S0+s0];
 }
 }
 }
}

Outputs

s1=0

X’0

s1++

X’0

Next x1 iteration

s1=0

X’0
Mapping – Output Access Costs

• Level 0 writes
 – Due to level 0 being ‘output stationary’ only $X'0$ writes per level 1 iteration
 – Times $X'1*S1$ level 1 iterations
 – Total writes = $X'0*(X'1*S1) = (X'0*X'1)*S1 = X'*S1$ writes

• Level 0 to 1 transfers
 – After each $S1$ iterations a completed partial sum for $X'0$ outputs are transferred
 – There are $X'1$ chunks of $S1$ iterations
 – So total is $X'1*X'0 = X'$ transfers
Mapping Data Cost Summary

// Level 1
for (x1 = 0; x1 < X’1; x1++) {
 for (s1 = 0; s1 < S1; s1++) {
 // Level 0
 for (x0 = 0; x0 < X’0; x0++) {
 for (s0 = 0; s0 < S0; s0++) {
 o[x1*X’0+x0] += i[x1*X’0+x0 + s1*S0+s0]* w[s1*S0+s0];
 }
 }
 }
}

<table>
<thead>
<tr>
<th></th>
<th>Level 0</th>
<th>Level 1 to 0 transfers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weight Reads</td>
<td>SX’</td>
<td>SX’1</td>
</tr>
<tr>
<td>Input Reads</td>
<td>X’ * S1 + X’1 * S</td>
<td>X’ + X’1 * S</td>
</tr>
<tr>
<td>Output Reads</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Output Writes</td>
<td>X’ * S1</td>
<td>X’</td>
</tr>
</tbody>
</table>
Outline

• Recap
• Dataflows for 1D Convolution
• Getting more realistic
 – Multi-layer Buffering
 – Multiple PEs
 – Full Convolution
• Advanced Dataflows
Spatial PEs

How will this be reflected in the loop nest? New ‘level’ of loops
1D Convolution – Partition Outputs

Weights S * Inputs X = Outputs $X' = X - \text{ceil}(S/2)$

```
int i[X];  // Input activations
int w[S];  // Filter Weights
int o[X']; // Output activations

// Level 1
parallel-for (x1 = 0; x1 < X'; x1++) {
    parallel-for (s1 = 0; s1 < S1; s1++) {
        // Level 0
        for (x0 = 0; x0 < X'; x0++) {
            for (s0 = 0; s0 < S0; s0++) {
                o[x1*X'0+x0] += i[x1*X'0+x0 + s1*S0+s0] * w[s1*S0+s0];
            }
        }
    }
}
```

Note:
- $X'0*X'1 = X'$
- $S0*S1 = S$

$X'1 = 2$
$S1 = 1 \Rightarrow s1 = 0$
1D Convolution – Partition Outputs

Weights \(S \) * Inputs \(X \) = Outputs \(X' = X - \lceil S/2 \rceil \)

\[
\begin{align*}
\text{int } i[X]; & \quad \# \text{ Input activations} \\
\text{int } w[S]; & \quad \# \text{ Filter Weights} \\
\text{int } o[X']; & \quad \# \text{ Output activations}
\end{align*}
\]

// Level 1
parallel-for (x1 = 0; x1 < 2; x1++) {
 // Level 0
 for (x0 = 0; x0 < X'0; x0++) {
 for (s0 = 0; s0 < S0; s0++) {
 o[x1*X'0+x0] += i[x1*X'0+x0 + s1*S0+s0] * w[s1*S0+s0];
 }
 }
}
Spatial PEs

Implementation opportunity? Yes, single fetch and multicast
1D Convolution – Partition Outputs

```c
// Level 1
parallel-for (x1 = 0; x1 < 2; x1++) {
  // Level 0
  for (x0 = 0; x0 < X'0; x0++) {
    for (s0 = 0; s0 < S0; s0++) {
      o[x1*X'0+x0] += i[x1*X'0+x0 + s1*S0+s0] * w[s1*S0+s0];
    }
  }
}
```

How do we recognize multicast opportunities?

Indices independent of spatial index
Spatial PEs: Partitioned Outputs

L0 Weights
L0 Inputs
L0 Outputs

PE0
PE1

\[\begin{align*}
 & \gg w[0] \quad \gg w[0] \\
 & \gg i[0] \quad \gg i[X'0+0] \\
 & \gg w[1] \quad \gg w[1] \\
 & \gg i[1] \quad \gg i[X'0+1] \\
 & \gg w[2] \quad \gg w[2] \\
 & \gg i[2] \quad \gg i[X'0+2] \\
 & \ll o[0] \quad \ll o[X'0+0] \\
 & \ll o[1] \quad \ll o[X'0+1] \\
 & \gg w[0] \quad \gg w[0] \\
 & \gg i[1] \quad \gg i[X'0+1] \\
 & \gg w[1] \quad \gg w[1] \\
 & \gg i[2] \quad \gg i[X'0+2] \\
 & \gg w[2] \quad \gg w[2] \\
 & \gg i[3] \quad \gg i[X'0+3] \\
 & \ll o[1] \quad \ll o[X'0+1]
\end{align*} \]

Implementation opportunity?
Parallel fetch
Assuming S=3

December 6, 2023
1D Convolution – Partition Weights

Weights \(*\) Inputs = Outputs

\[
\begin{align*}
\text{int } i[X]; & \quad \text{# Input activations} \\
\text{int } w[S]; & \quad \text{# Filter Weights} \\
\text{int } o[X']; & \quad \text{# Output activations}
\end{align*}
\]

// Level 1
parallel-for (s1 = 0; s1 < 2; s1++) {
 // Level 0
 for (x0 = 0; x0 < X’0; x0++) {
 for (s0 = 0; s0 < S0; s0++) {
 o[x1*X’0+x0] += i[x1*X’0+x0 + s1*S0+s0] * w[s1*S0+s0];
 }
 }
}

Note:
X’0*X’1 = X’
S0*S1 = S
1D Convolution – Partition Weights

// Level 1
parallel-for (s1 = 0; s1 < 2; s1++) {
 // Level 0
 for (x0 = 0; x0 < X’0; x0++) {
 for (s0 = 0; s0 < S0; s0++) {
 o[x1*X’0+x0] += i[x1*X’0+x0 + s1*S0+s0] * w[s1*S0+s0];
 }
 }
}

How do we handle same index for output in multiple PEs? Spatial reduction

Other multicast opportunities? No
Spatial PEs: Partitioned Weights

Spatial sum needed? Yes

Assuming S=3
Spatial PEs with Spatial Summation

What if hardware cannot do a spatial sum? Illegal mapping!
NoC Support

<table>
<thead>
<tr>
<th>Hardware Structure</th>
<th>Per Data Type</th>
<th>Output-partitioned Dataflow Implication</th>
<th>Weight-partitioned Dataflow Implication</th>
</tr>
</thead>
<tbody>
<tr>
<td>Network-on-Chip for Spatial Reuse</td>
<td>Weight Distribution</td>
<td>Spatial Multicast</td>
<td>Unicast</td>
</tr>
<tr>
<td>Input Distribution</td>
<td>Unicast/Spatial Multicast</td>
<td></td>
<td>Unicast</td>
</tr>
<tr>
<td>Output Collection</td>
<td>Temporal Reduction</td>
<td></td>
<td>Spatial Reduction</td>
</tr>
</tbody>
</table>
More Realistic Loop Nest

```c
int i[W];    # Input activations
int w[R];    # Filter Weights
int o[E];    # Output activations

// Level 2
for (x2 = 0; x2 < X’2; x2++) {
    for (s2 = 0; s2 < S2; s2++) {
        // Level 1
        parallel-for (x1 = 0; x1 < X’1; x1++) {
            parallel-for (s1 = 0; s1 < S1; s1++) {
                // Level 0
                for (x0 = 0; x0 < X’0; x0++) {
                    for (s0 = 0; s0 < S0; s0++) {
                        ...
                    }
                }
            }
        }
    }
}
```
Design-space of a DNN Accelerator

Workload (CONV2D)

Target Accelerator

Mapping

HW Design-Space

Mapping Design-Space aka Map Space

HW or SW depending on flexibility

Dataflow

Mapping

December 6, 2023

MIT 6.5900 (ne 6.823) Fall 2023

L24-48
Outline

• Recap
• Dataflows for 1D Convolution
• Getting more realistic
 – Multi-layer Buffering
 – Multiple PEs
 – Full Convolution
• Advanced Dataflows
Mapping a Full Convolution

\[X' = X - S \]

\[Y' = Y - R \]
Reference Convolution Layer

```c
int i[C][Y][X];  // Input activation channels
int w[K][C][R][S];  // Filter weights (per channel pair)
int o[K][Y'][X'];  // Output activation channels

for (k = 0; k < K; k++) {
    for (y = 0; y < Y'; y++) {
        for (x = 0; x < X'; x++) {
            for (c = 0; c < C; c++) {
                for (r = 0; r < R; r++) {
                    for (s = 0; s < S; s++) {
                        o[k][y][x] += i[c][y+r][x+s]*w[k][c][r][s];
                    }
                }
            }
        }
    }
}
```
Describing a full accelerator

Input Fmaps: $I[G][N][C][H][W]$
Filter Weights: $W[G][M][C][R][S]$
Output Fmaps: $O[G][N][M][E][F]$

// DRAM levels
for (g3=0; g3<g3; g3++) {
 for (n3=0; n3<n3; n3++) {
 for (m3=0; m3<m3; m3++) {
 for (f3=0; f3<f3; f3++) {
 // Global buffer levels
 for (g2=0; g2<g2; g2++) {
 for (n2=0; n2<n2; n2++) {
 for (m2=0; m2<m2; m2++) {
 for (c2=0; c2<c2; c2++) {
 for (s2=0; s2<s2; s2++) {
 // NoC levels
 parallel-for (g1=0; g1<g1; g1++) {
 parallel-for (n1=0; n1<n1; n1++) {
 parallel-for (m1=0; m1<m1; m1++) {
 parallel-for (f1=0; f1<f1; f1++) {
 parallel-for (c1=0; c1<c1; c1++) {
 parallel-for (s1=0; s1<s1; s1++) {
 // Spad levels
 for (f0=0; f0<f0; f0++) {
 for (n0=0; n0<n0; n0++) {
 for (e0=0; e0<e0; e0++) {
 for (r0=0; r0<r0; r0++) {
 for (c0=0; c0<c0; c0++) {
 for (m0=0; m0<m0; m0++) {
 O += I x W;
 }
 }
 }
 }
 }
 }
 }
 }
 }
 }
 }
 }
 }
 }
 }
 }
 }
 }
 }
 }
}

December 6, 2023

MIT 6.5900 (ne 6.823) Fall 2023
A Mapping Representation

• For each temporal and spatial level:
 – Permutation order of all indices
 – Partitioning of data volume for all indices (factoring)
 • $\forall X \in indices \left(\prod_{l=0}^{\text{max level}} X_l \right) \geq X_{total}$
 – Data bypass flag per datatype (for temporal layers)

<table>
<thead>
<tr>
<th>(N_i, K_i, C_i, X'_i, Y'_i, R_i, S_i)</th>
<th>[I_i, W_i, O_i]</th>
</tr>
</thead>
</table>

How many permutations per level? (# Indices)!
How many bypass combinations per level? 2^N
Total choices per temporal level? (# Indices)! * 2^N * factorings
Impact of Mappings

480,000 mappings shown
Spread: 19x in energy efficiency
Only 1 is optimal, 9 others within 1%
6,582 mappings have min. DRAM accesses but vary 11x in energy efficiency

VGG conv3 2 Layer. Source: Timeloop

1-level par. 2-level par. 3-level par.

Immense Search space

$O(10^{12}) + O(10^{24}) + O(10^{36})$
Exploring Mappings

- Gigantic space of potential loop orders & factorizations
- Cycle-accurate modeling of realistic dimensions and fabric sizes too slow
- Solution: use an analytic modeling

```c
int i[C][Y][X]; // Input activation channels
int w[K][C][R][S]; // Filter weights (per channel pair)
int o[K][Y'][X']; // Output activation channels

for (k = 0; k < K; k++) {
    for (y = 0; y < Y'; y++) {
        for (x = 0; x < X'; x++) {
            for (c = 0; c < C; c++) {
                for (r = 0; r < R; r++) {
                    for (s = 0; s < S; s++) {
                        o[k][y][x] += i[c][y+r][x+s] * w[k][c][r][s];
                    }
                }
            }
        }
    }
}
```

e.g.,: Timeloop (ISPASS 2019), MAESTRO (MICRO 2019), ..
Outline

- Recap
- Dataflows for 1D Convolution
- Getting more realistic
- Advanced Dataflows
 - Fusion
 - Sparsity
Outline

- Recap
- Dataflows for 1D Convolution
- Getting more realistic
- Advanced Dataflows
 - Fusion
 - Sparsity
Not All GEMMs are Compute Bound

Even in the best case with infinite on-chip storage and large number of PEs.

\[AI_{\text{best_GEMM}} = \frac{M \times K \times N}{M \times K + K \times N + M \times N} \]

Regular GEMM \((M=1024, K=1024, K=1024)\)

\[AI_{\text{best_GEMM}} = 341.33 \text{ ops/word} \]

Skewed GEMM \((M=1048576, N=32, K=32)\)

\[AI_{\text{best_GEMM}} = 16 \text{ ops/word} \]
GEMMs in Attention Layers

Compute-bound ⇒ Intra-operator dataflow to improve reuse is effective

Memory-bound ⇒ Intra-operator dataflow is not effective

Activation – Activation GEMMs
Opportunity: Fusion

- Key Intuition: “Reuse” the intermediate output immediately

Kao et al., “FLAT: An Optimized Dataflow for Mitigating Attention Bottlenecks”, ASPLOS 2023
Opportunity: Fusion

Kao et al, “FLAT: An Optimized Dataflow for Mitigating Attention Bottlenecks”, ASPLOS 2023
Outline

- Recap
- Dataflows for 1D Convolution
- Getting more realistic
- Advanced Dataflows
 - Fusion
 - Sparsity
Sparsity in DNNs

10-90% sparsity across ML Models today

Source: Sparsity in Deep Learning: Pruning and growth for efficient inference and training in neural networks
Figure source: https://htor.inf.ethz.ch/sparsity-in-dl/
Sparsity Patterns

DENSE Block Balanced (Eg: N:M) Unstructured

1D Blocks 2D Blocks
Sparse Accelerators

Trade-off Space

- **Dense**
 - Higher Regularity in Data
 - Lower Potential Speed-up
 - Lower Overhead for Sparsity Support

- **2:4 Structured Sparsity**
 - Lower Regularity in Data
 - Higher Potential Speed-up
 - Higher Overhead for Sparsity Support

- **Unstructured**
 - Higher Overhead for Sparsity Support

Flexible NoC

- **Input Buffers**
- **Weight Buffers**
- **Output Buffers**

Flexible Buffers
Sparse Dataflows

Inner Product

Outer Product

Gustavson’s

Active area of research!
Thank you!