
Coherence & 
Consistency

Ryan Lee
6.823 Fall 2023

Adapted from prior course offerings

11/3/23 1



Cache Coherence
»Two necessary conditions:

1. Write propagation: Writes eventually become visible 
to other processors

2. Write serialization: All processors observe writes to 
one location appear to happen in a consistent order

»MSI protocol provides a sufficient condition via 
single-writer multi-reader policy
- Only one cache may have write permission at any given 

point in time
- Multiple caches can have read-only permission at a 

given point in time

11/3/23 2



Write-back caches: MSI

»Three stable states per cache-line
- Invalid (I): Cache does not have a copy
- Shared (S): Cache has read-only copy; clean
- Modified (M): Cache has only copy; writable; 

(potentially) dirty

»Processor-initiated actions:
- Read: needs to upgrade permission to S
- Write: needs to upgrade permission to M
- Evict: relinquish permissions (caused by access to a 

different cache line)

11/3/23 3



MSI directory states

»Uncached (Un): No cache has a valid copy
»Shared (Sh): One or more caches in S state. Must 

track sharers.
»Exclusive (Ex): One of the caches in M state. Must 

track owner.

»Does the directory need transient states?
- Yes on downgrades/invalidations, to guarantee 

serialization

11/3/23 4



Memory Consistency

»Why care about it?
- Allows us to reason about multiprocessor behavior

»Note that coherence != consistency
- Coherence: Makes processors have an up-to-date view 

of a single memory location
- Consistency: Deals with memory operations on multiple 

memory locations

11/3/23 5



Consistency Choices

»Sequential Consistency
- Arbitrary order-preserving interleaving of memory 

references of sequential programs
- Easiest to understand, but hard to make performant 

processors!

»Relax consistency orderings for processor 
optimizations
- TSO: stores can be ordered after later loads -> 

consequence of store buffers
- Non-blocking caches, speculative execution, ...

11/3/23 6


