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Part D: On-Chip Networks (24 points + 10 bonus) 
 
You are choosing between two topologies for your on-chip network, shown below. 

 
For a system of N nodes, the 2-D Torus topology consists of ! = # rows and columns, where 
each row or column is a ring. 
 
Question 1 (10 points) 
 
Your first task is to compare the topologies along key metrics. Fill in the table below as a 
function of the number of nodes in the network, N. The units for each cell are hops or links. For 
average distance, assume uniform random traffic (where each node sends 1/Nth of the traffic to 
each destination, including itself). 
To ease your derivations, you can define a variable ! = #, and assume k is an even integer. 
For partial credit, give the asymptotic growth instead. 
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Question 2 (8 points) 
 
As discussed in lecture, higher-dimensional topologies have smaller diameter, but the routers are 
more expensive. For what range of number of nodes, N, is the average latency in cycles of a 2-D 
torus topology lower than the average latency in cycles of a ring topology? (Provide an 
inequality on N.) 
 
Assume the following: 

• Traversing one link requires 1 cycle 
• Traversing one router requires 1 cycles in the ring topology 
• Traversing one router requires 4 cycles in the 2-D torus ring topology 
• Entering and exiting the network at a router counts as traversing the router 
• Traffic is uniform random 

(For example, in a 4-node ring, the latency to send a flit from a node to a node two hops away is 
5 cycles: 1 cycle to enter the network at the first router, 2 cycles for two link traversals, 1 cycle 
for one router traversal, and 1 cycle to exit the network at the last router.) 
 
Consider the Ring topology. 
Every hop takes 2 cycles (1 for link, 1 for router, including the exit router). 
The average distance in hops for uniform random traffic is N/4. 
Add 1 cycle to enter the network. 
Lring = N/4 * 2 + 1 = N/2 + 1 
 
Consider the 2-D Torus topology. 
Every hop takes 5 cycles (1 for link, 4 for router) 
Average distance in hops is √N/2. 
Add 4 cycles to enter the network. 
Ltorus = √N/2 * 5 + 4 = 5/2√N + 4 
 
When is Ltorus < Lring? 
=> 5/2√N + 4 < N/2 + 1 
=> 0 < N - 5√N - 6  
=> 0 < (√N - 6)(√N +1) 
=> N > 36 
 
Since N is an even square, N >= 64.  
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Question 3 (6 points) 
 
In a stroke of genius, you realize that a Hierarchical Ring topology (shown below) can bridge the 
low-latency routing of a Ring topology with the lower diameter of a 2-D Torus topology. For a 
system of N nodes, the Hierarchical Ring topology consists of one global ring surrounded by 
! = # local rings. Each local ring has one node that also bridges with the global ring. 
 
Fill in the table below as a function of the number of nodes in the network, N. The units for each 
cell are hops or links. To ease your derivations, you can define a variable ! = #, and assume k 
is an even integer. For partial credit, give the asymptotic growth instead. 
 
 
 
 

 
 
Each of the # local rings contains # links. The single global ring contains # links. 
 
The diameter within a ring is '

(  . In the worst case, such a diameter is crossed for three rings: 
one end of a local ring to the bridge to enter the global ring, to the most distant bridge to exit the 
global ring, then to the end of that local ring. 
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Bonus Question (10 points) 
 
Warning: This question is harder than others, so we recommend finishing as much of the 
quiz as you can before attempting it! 
 
Derive the average distance (in hops or links) for a Hierarchical Ring topology as a function of 
the number of nodes in the network, N. Assume uniform random traffic (where each node sends 
1/Nth of the traffic to each destination, including itself). To ease your derivations, you can define 
a variable ! = #, and assume k is an even integer. Only exact answers are accepted, no partial 
credit. 
 
 
With probability  +,   the source and destination are in the same ring. 

The average distance in this case is ,-. 
 
With probability  ,.+,    the source and destination are in different rings. 

The average distance to enter the global ring is ,- (this includes when the source is a bridge node). 

The average distance to exit the global ring is ,- (this includes when the destination is a bridge). 

The average distance to traverse the global ring is not ,-, because we have assumed the source 

and destination are in different rings; we scale the average distance for a ring by ,
,.+. 

 
The average distance is therefore: 
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