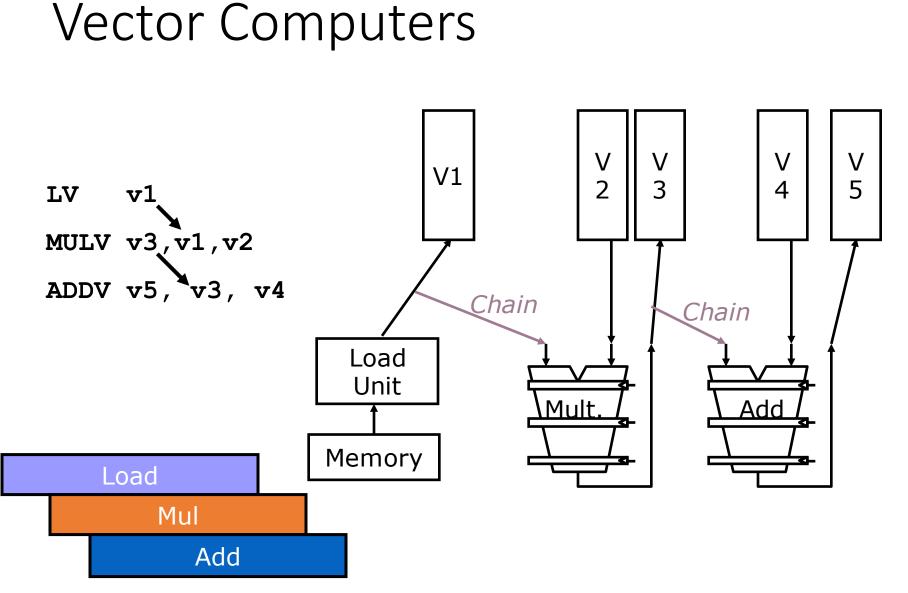
Vectors and GPUs

Ryan Lee

Adapted from prior course offerings

6.823 Fall 2023


Vector Computers

- » Idea: Operate on vectors instead of scalars
 - ISA is more expressive, therefore captures more information
 - Extract data-level parallelism (same operation on multiple pieces of data in parallel)
- » Advantages:
 - No dependences within a vector
 - Reduced instruction fetch bandwidth
 - Amortized cost of instruction fetch and decode
 - (Sometimes) regular memory access pattern
 - No need to explicitly code loops
- » Pitfalls:
 - Only works if code sequence (or parallelism) is regular

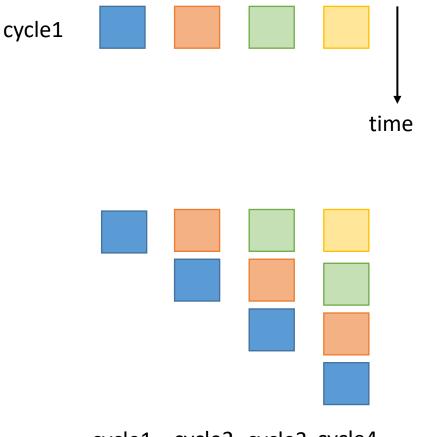
Vector Computers

Terminology:

- » Vector length register (VLR)
- » Conditional execution using vector mask (VM)
- » Vector lanes
- » Vector chaining

12/1/23

GPU: Graphics Processing Unit


- » Originally designed as a graphics acceleration engine
- » Has evolved into a hardware accelerator for massively parallel applications
- » Think of as Multithreading + Vector Processor!
 - What types of parallelism does this architecture target?

Types of Parallelism

- » ILP: Instruction-level parallelism
 - Between independent instructions in a sequential program
- » TLP: Thread-level parallelism
 - Between independent execution contexts (threads)
- » DLP: Data-level parallelism
 - Between elements of a vector (say); same operation on multiple elements

How to Utilize Parallelism?

- » Horizontal parallelism:
 More units working in parallel
- » Vertical parallelism:
 Pipelining: Keep units busy when waiting for memory dependences etc.

cycle1 cycle2 cycle3 cycle4

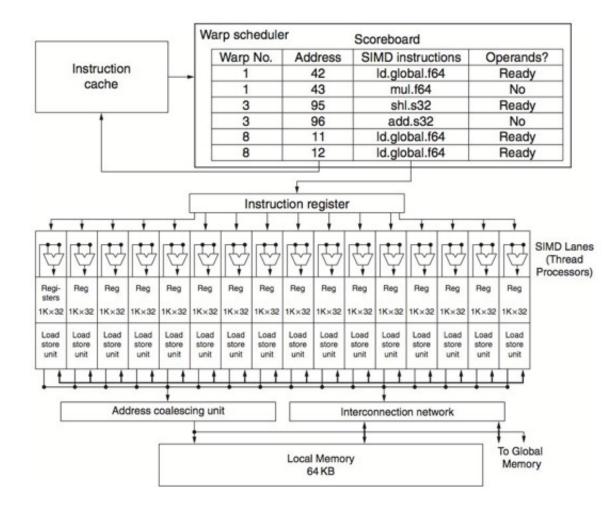
How to Extract Parallelism?

	Horizontal	Vertical
ILP	Superscalar	Pipelining/OoO
TLP	Multi-core	SMT
DLP	SIMD/SIMT/Vector	Temporal SIMT

GPUs focus on TLP, DLP

Why care about GPUs?

»Massive data parallelism in today's popular workloads


- Machine Learning
- DNNs, LLMs
- Graph analytics
- Scientific Computing

Key Concepts

» SIMT: Single-instruction multiple-thread
 - Multiple instruction streams of scalar instructions

- » Warps: A set of threads executing the same instruction (grouped dynamically by the hardware)
 - Essentially a SIMD operation formed in hardware
- » SM: Streaming multi-processor
- » Branch divergence: Masking

Streaming Multiprocessor

Example:

- » 16 physical lanes
- Tens of warps
 with 32 threads
 per warp
- Warp scheduler
 issues SIMD
 instruction,
 when all threads
 ready