
Ryan Lee

12/11/23 6.823 Fall 2023 1

Quiz 3 Review

Quiz 3 logistics

• Time: 1pm on Wednesday, December 13
– In-class quiz

• Usual rules (no calculators, closed book)

12/11/23 26.823 Fall 2023

Topics

• Microcoded and VLIW processors

• Vector processors and GPUs

• Transactional memory

• Accelerators

• Security and Virtualization

12/11/23 36.823 Fall 2023

Microcoded processors

• Introduces a layer of interpretation
– Each ISA instruction is executed as a sequence of

simpler microinstructions

• Pros:
– Enables simpler hardware
– Enables more flexible ISA

• Cons:
– Sacrifices performance

12/11/23 46.823 Fall 2023

VLIW: Very Long Instruction Word

• The compiler:
– Guarantees intra-instruction parallelism
– Schedules (reorders) to maximize parallel execution

• The architecture:
– Allows operation parallelism within an instruction

• No cross-operation RAW check
– Provides deterministic latency for all operations

• Enables simple hardware but leaves hard tasks to
software

12/11/23 56.823 Fall 2023

Software pipelining vs. Unrolling

12/11/23 66.823 Fall 2023

time

performance

time

performance

Loop Unrolling

Software Pipelining

Startup overhead

Wind-down overhead

Loop Iteration

Loop Iteration

Software pipelining pays startup/wind-down
costs only once per loop, not once per iteration

Trace scheduling

12/11/23 76.823 Fall 2023

• Pros
– Can hoist instructions

that come after the
branch so that we use
VLIW instructions more
efficiently

• Cons
– Compensation path can

be expensive

VLIW issues
• Limited by static information
– Unpredictable branches

• Possible solution: predicated execution
– Unpredictable memory operations

• Possible solution: Memory Latency Register (MLR)

• Code size explosion
– Wasted slots
– Replicated code

• Portability
• Compiler complexity

12/11/23 86.823 Fall 2023

Vector processing

• Supercomputers in 70s – 80s
• Multimedia/SIMD extensions in current ISAs

• Single-Instruction Multiple-Data (SIMD)

• Typical hardware implications
– Simpler instruction fetch due to fewer instructions
– Banked register files/memory due to simple access

patterns

12/11/23 96.823 Fall 2023

Vector processing

• Vector chaining

• Vector stripmining

• Vector scatter/gatter

• Masked vector instructions

12/11/23 106.823 Fall 2023

Example: Masks

12/11/23 116.823 Fall 2023

Problem: Want to vectorize loops with conditional code:
for (i = 0; i < N; i++)
 if (A[i] > 0) then
 A[i] = B[i];

Solution: Add vector mask (or flag) registers
– vector version of predicate registers, 1 bit per element

…and maskable vector instructions
– vector operation becomes NOP at elements where mask bit is clear

Code example:
CVM # Turn on all elements
LV vA, rA # Load entire A vector
SGTVS.D vA, F0 # Set bits in mask register where A>0
LV vA, rB # Load B vector into A under mask
SV vA, rA # Store A back to memory under mask

GPU pipeline

12/11/23 126.823 Fall 2023

+1

2 2

PC I$ IR GPR

X

Y
+ *

GPR

X

Y

+ *
M
e
m
o
r
y

PC
1PC

1PC
1PC

1

GPR1GPR1GPR1GPR1

GPR1GPR1GPR1GPR1

All threads in one thread
block are assigned to one
SM

GPU memory system

• Memory types (with different scopes)
– Per-thread memory
– Scratchpad shared memory
– Global memory

• Memory primitives: gathers and scatters

• Efficient code requires reducing conflicts

12/11/23 136.823 Fall 2023

GPU caches

• Goal: saving bandwidth instead of reducing
latency
– Also enables data compression

• Allows flexible and power-efficient designs

12/11/23 146.823 Fall 2023

Transactional memory

• Use speculation to provide atomicity and
isolation without losing concurrency

• Properties of transactions
– Atomicity (all or nothing)
– Isolation
– Serializability

• Declarative synchronization
• System implements synchronization

12/11/23 156.823 Fall 2023

Advantages of TM

• Easy-to-use synchronization
• High performance
• Composability

12/11/23 166.823 Fall 2023

TM implementation

• Choices
– Hardware transactional memory (HTM)
– Software transactional memory (STM)
– Hybrid transactional memory

• Basic implementation
– Version management
– Conflict detection
– Conflict resolution

12/11/23 176.823 Fall 2023

Version management

• Eager versioning
– Undo-log based
– Fast commits and slow aborts

• Lazy versioning
– Write-buffer based
– Slow commits and fast aborts

12/11/23 186.823 Fall 2023

Conflict detection
• Read-write and write-write conflicts

• Pessimistic detection
– Checks during loads/stores
– Typical resolution: requester wins/stalls
– Detects conflicts early
– Requires more to guarantee forward progress

• Optimistic detection
– Checks when attempting to commit
– Typical resolution: committer wins
– Guarantees forward progress (still has fairness issues)
– Detects conflicts late

12/11/23 196.823 Fall 2023

HTM implementation
• Version management: use caches

– Caching write-buffer or undo-log
– Tracking read-set and write-set

• Conflict detection: use the cache coherence protocols

• Pros:
– Low implementation overheads
– Simplifies consistency

• Cons:
– Performance pathologies
– Capacity limitations
– Interaction with Irrevocable execution
– …

12/11/23 206.823 Fall 2023

Accelerators

• Why are they useful?
– Use limited number of transistors more efficiently
– Trade-off of flexibility vs. efficiency

12/11/23 216.823 Fall 2023

Accelerators

• Dataflow
– Mainly categorized by type of reuse
– Output/Input/Weight stationary

• Sparsity
– Format
– Gating
– Skipping

12/11/23 226.823 Fall 2023

What type of dataflow is this?

12/11/23 236.823 Fall 2023

R

Weights

W

Inputs

E = W-ceil(R/2)†

Outputs

* =

int i[W]; # Input activations
int f[S]; # Filter weights
int o[Q]; # Output activations

for q in [0, Q):
 for s in [0, S):
 w = q+s
 o[q] += i[w]*f[s];

Virtualizaton

• Virtualization allows sharing of resources
– Multiple processes
– Multiple users

• A Virtual Machine provides the illusion of
having one’s own machine (i.e., emulation of
computer hardware)
– for a single process (e.g., kernel, interpreter)
– for an OS (e.g., hypervisor)

12/11/23 246.823 Fall 2023

VM Protection

• A virtual machine should provide strong
guarantees on the illusion of the emulated
hardware underneath

12/11/23 256.823 Fall 2023

User
Process

Tr
ap Tr
ap

User
Process

OS
Kernel

Support for VM

• ISA-level virtualization
– Partial
– Full

• Shadow paging

12/11/23 266.823 Fall 2023

Security

12/11/23 276.823 Fall 2023

Message

Transmitter

Message

ReceiverChannel

• Transmitter accepts message
• Transmitter modulates channel
• Receiver detects modulation on channel
• Receiver decodes modulation as message.

Security

• Should be able to identify
– The transmitter & the secret
– The channel
– Which part of the code modulates the channel
– How can the receiver decode the secret
– Does the receiver need to be active (i.e., does the

channel need to be preconditioned)

12/11/23 286.823 Fall 2023

Wish you all the best!

12/11/23 6.823 Fall 2023 29

