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Quiz 3 Review



Quiz 3 logistics

• Time: 1pm on Wednesday, December 13
– In-class quiz

• Usual rules (no calculators, closed book)
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Topics

• Microcoded and VLIW processors

• Vector processors and GPUs

• Transactional memory

• Accelerators

• Security and Virtualization
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Microcoded processors

• Introduces a layer of interpretation
– Each ISA instruction is executed as a sequence of

simpler microinstructions

• Pros:
– Enables simpler hardware
– Enables more flexible ISA

• Cons:
– Sacrifices performance
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VLIW: Very Long Instruction Word

• The compiler:
– Guarantees intra-instruction parallelism
– Schedules (reorders) to maximize parallel execution

• The architecture:
– Allows operation parallelism within an instruction

• No cross-operation RAW check
– Provides deterministic latency for all operations

• Enables simple hardware but leaves hard tasks to
software
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Software pipelining vs. Unrolling

12/11/23 66.823 Fall 2023

time

performance

time

performance

Loop Unrolling

Software Pipelining

Startup overhead

Wind-down overhead

Loop Iteration

Loop Iteration

Software pipelining pays startup/wind-down 
costs only once per loop, not once per iteration



Trace scheduling
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• Pros
– Can hoist instructions 

that come after the 
branch so that we use 
VLIW instructions more 
efficiently

• Cons
– Compensation path can 

be expensive



VLIW issues
• Limited by static information
– Unpredictable branches

• Possible solution: predicated execution
– Unpredictable memory operations

• Possible solution: Memory Latency Register (MLR)

• Code size explosion
– Wasted slots
– Replicated code

• Portability
• Compiler complexity
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Vector processing

• Supercomputers in 70s – 80s
• Multimedia/SIMD extensions in current ISAs

• Single-Instruction Multiple-Data (SIMD)

• Typical hardware implications
– Simpler instruction fetch due to fewer instructions
– Banked register files/memory due to simple access 

patterns
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Vector processing

• Vector chaining

• Vector stripmining

• Vector scatter/gatter

• Masked vector instructions
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Example: Masks
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Problem: Want to vectorize loops with conditional code:
for (i = 0; i < N; i++)
    if (A[i] > 0) then
        A[i] = B[i];
    

Solution: Add vector mask (or flag) registers
– vector version of predicate registers, 1 bit per element

…and maskable vector instructions
– vector operation becomes NOP at elements where mask bit is clear

Code example:
CVM               # Turn on all elements 
LV vA, rA         # Load entire A vector
SGTVS.D vA, F0    # Set bits in mask register where A>0
LV vA, rB         # Load B vector into A under mask
SV vA, rA         # Store A back to memory under mask



GPU pipeline
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GPU memory system

• Memory types (with different scopes)
– Per-thread memory
– Scratchpad shared memory
– Global memory

• Memory primitives: gathers and scatters

• Efficient code requires reducing conflicts
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GPU caches

• Goal: saving bandwidth instead of reducing 
latency
– Also enables data compression

• Allows flexible and power-efficient designs
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Transactional memory

• Use speculation to provide atomicity and 
isolation without losing concurrency

• Properties of transactions
– Atomicity (all or nothing)
– Isolation
– Serializability

• Declarative synchronization
• System implements synchronization
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Advantages of TM

• Easy-to-use synchronization
• High performance
• Composability
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TM implementation

• Choices
– Hardware transactional memory (HTM)
– Software transactional memory (STM)
– Hybrid transactional memory

• Basic implementation
– Version management
– Conflict detection
– Conflict resolution
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Version management

• Eager versioning
– Undo-log based
– Fast commits and slow aborts

• Lazy versioning
– Write-buffer based
– Slow commits and fast aborts
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Conflict detection
• Read-write and write-write conflicts

• Pessimistic detection
– Checks during loads/stores
– Typical resolution: requester wins/stalls
– Detects conflicts early
– Requires more to guarantee forward progress

• Optimistic detection
– Checks when attempting to commit
– Typical resolution: committer wins
– Guarantees forward progress (still has fairness issues)
– Detects conflicts late
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HTM implementation
• Version management: use caches

– Caching write-buffer or undo-log
– Tracking read-set and write-set

• Conflict detection: use the cache coherence protocols

• Pros:
– Low implementation overheads
– Simplifies consistency

• Cons:
– Performance pathologies
– Capacity limitations
– Interaction with Irrevocable execution
– …
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Accelerators

• Why are they useful?
– Use limited number of transistors more efficiently
– Trade-off of flexibility vs. efficiency
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Accelerators

• Dataflow
– Mainly categorized by type of reuse
– Output/Input/Weight stationary

• Sparsity
– Format
– Gating
– Skipping
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What type of dataflow is this?
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R

Weights

W

Inputs

E = W-ceil(R/2)†

Outputs

* =

int i[W];     # Input activations
int f[S];     # Filter weights
int o[Q];     # Output activations

for q in [0, Q):
    for s in [0, S):
          w = q+s
          o[q] += i[w]*f[s];



Virtualizaton

• Virtualization allows sharing of resources
– Multiple processes
– Multiple users

• A Virtual Machine provides the illusion of 
having one’s own machine (i.e., emulation of 
computer hardware)
– for a single process (e.g., kernel, interpreter)
– for an OS (e.g., hypervisor)
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VM Protection

• A virtual machine should provide strong 
guarantees on the illusion of the emulated 
hardware underneath
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Support for VM

• ISA-level virtualization
– Partial
– Full

• Shadow paging
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Security
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Message

Transmitter

Message

ReceiverChannel

• Transmitter accepts message
• Transmitter modulates channel
• Receiver detects modulation on channel
• Receiver decodes modulation as message.



Security

• Should be able to identify
– The transmitter & the secret
– The channel
– Which part of the code modulates the channel
– How can the receiver decode the secret
– Does the receiver need to be active (i.e., does the 

channel need to be preconditioned)
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Wish you all the best!
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