
Last updated:
9/20/2021

Problem M2.1: Execute Data Instructions (Spring 2014 Quiz 1, Part A)

One day, Ben Bitdiddle started an EDSACjr-based company. Ben wanted to leverage the
speed of read-only memory and avoid the inherent hazards of the Princeton architecture,
so he went with a Harvard architecture. Unfortunately, Ben’s system didn’t have any index
registers, so he couldn’t write self-modifying code. That meant there were a large number
of programs he couldn’t implement anymore. Ben decided to add an instruction to solve
this problem. He called his new instruction EXD , for execute data. The EXD instruction
treats the contents of the accumulator as a new instruction and executes whatever that
instruction may be. If the accumulator does not contain a valid instruction, then EXD falls
back on the processor’s fault handling for bad instructions (which you needn’t worry
about).

For example, from Handout #1 the instruction ADD 6 (which adds the contents of memory
at address six to the accumulator) is encoded as: 0000 0100 0000 0110.

Therefore if the contents of the accumulator are 0000 0100 0000 0110, the EXD instruction
will interpret the accumulator as an ADD 6 instruction, and add the contents of memory at
address six to the accumulator (now interpreted as the number: 0000 0100 0000 0110 =
1030). So if memory at address six holds the value one, then the accumulator will become
0000 0100 0000 0111. (Which can be interpreted either as the instruction ADD 7 or the
number 1031.)

To simplify writing assembly code, Ben Bitdiddle also augments the EDSACjr’s
instruction set with a load instruction, LD n. This load simply places the value in memory
address n into the accumulator: ACC ß Mem[n]. LD is encoded as 01011 n; that is, the
opcode is 01011.

When Ben shows his idea to Alyssa P. Hacker, she points out that EXD could cause an
infinite loop. Provide a specific code sequence that illustrates Alyssa’s point, using EXD to
loop forever.

Problem M2.1.A

Last updated:
9/20/2021

Ignoring Alyssa’s observation, Ben decided to implement his EXD instruction for the
EDSACjr, but he started having trouble figuring out how to use it. Help Ben by writing a
series of EDSACjr instructions that will perform an indirect reduced add (that is, the
instructions will take a vector of pointers, follow each pointer, and sum up the values stored
at the locations in memory that the pointers specify). In C++, this might look something
like:

int s=0;
for (int i=0; i < 10; i++){
 s += *A[i];
}

Fill in the template below with assembly code for this program on the Harvard EDSACjr.
You can define memory contents for both the data and instruction memories.

Data Mem Instr Mem
Addr Data
A: 120
 107
 122
 130
 151
 112
 132
 109
 140
 117

s: 0
i: 10

107: 40
109: 10
112: 24
117: 50
120: 5
122: 10
130: 20
132: 29
140: 22
151: 12

one: 1

Addr Data
Loop: LD i
 SUB one
 BLT Done
 STORE i

 CLEAR
 BGE Loop
Done: HLT

Problem M2.1.B

Last updated:
9/20/2021

Page 3 of 13

Unhappy with the performance, now Ben decided to implement a pipelined version of EXD. Ben
realized that the EXD instruction was in and of itself a control hazard. Help Ben safeguard his
pipeline. The diagram below shows the front end of the five-stage pipeline we used in class. A
new datapath and mux have been added to move rd1 into the instruction register of the decode
stage.

Your task is to write the new stall signal (stall’) and fill in the missing signal, EXDmux. Write
your signal in terms of signals (e.g., PC or rd1 or IRD) and feel free to use the old stall signal
(stall).

stall’ = ___

EXDmux = ___

Problem M2.1.C

Last updated:
9/20/2021

Page 4 of 13

Problem M2.2: CISC and RISC: Comparing ISAs

This problem requires the knowledge of Handout #2 (CISC ISA—x86jr), Handout #3 (RISC ISA—
MIPS32), and Lectures 1 and 2. Please read these materials before answering the following
questions.

Problem M2.2.A CISC

Let us begin by considering the following C code.

int b; //a global variable

void multiplyByB(int a){
 int i, result;
 for(i = 0; i<b; i++){
 result=result+a;
 }
}

Using gcc and objdump on a Pentium III, we see that the above loop compiles to the following
x86 instruction sequence. (On entry to this code, register %ecx contains i, register %edx contains
result and register %eax contains a. b is stored in memory at location 0x08047580.) A brief
explanation of each instruction in the code is given in Handout #2.

xor %edx,%edx
xor %ecx,%ecx

 loop: cmp 0x08047580,%ecx
 jl L1
 jmp done
 L1: add %edx,%eax
 inc %ecx
 jmp loop
 done: ...

How many bytes is the program? For the above x86 assembly code, how many bytes of instructions
need to be fetched if b = 10? Assuming 32-bit data values, how many bytes of data memory need
to be fetched? Stored?

Problem M2.2.B RISC

Translate each of the x86 instructions in the following table into one or more MIPS32 instructions
in Handout #3. Place the L1 and loop labels where appropriate. You should use the minimum
number of instructions needed. Assume that upon entry R2 contains a and R3 contains i. R1 should

Last updated:
9/20/2021

Page 5 of 13

be loaded with the value of b from memory location 0x08047580, while R4 should receive result.
If needed, use R5 to hold the condition value and R6, R7, etc., for temporaries. You should not
need to use any floating point registers or instructions in your code.

x86 instruction label MIPS32 instruction sequence
xor %edx,%edx

xor %ecx,%ecx

cmp 0x08049580,%ecx

jl L1

jmp done

add %eax,%edx

inc %ecx

jmp loop

... done: ...

How many bytes is the MIPS32 program using your direct translation? How many bytes of
MIPS32 instructions need to be fetched for b = 10 using your direct translation? How many bytes
of data memory need to be fetched? Stored?

Problem M2.2.C Optimization

To get more practice with MIPS32, optimize the code from part B so that it can be expressed in
fewer instructions. Your solution should contain commented assembly code, a paragraph which
explains your optimizations and a short analysis of the savings you obtained.

Last updated:
9/20/2021

Page 6 of 13

Problem M2.3: Addressing Modes on MIPS ISA

Ben Bitdiddle is suspicious of the benefits of complex addressing modes. So he has decided
to investigate it by incrementally removing the addressing modes from our MIPS ISA.
Then he will write programs on the “crippled” MIPS ISAs to see what the programming
on these ISAs is like.

Problem M2.3.A Displacement addressing mode

As a first step, Ben has discontinued supporting the displacement (base+offset) addressing
mode, that is, our MIPS ISA only supports register indirect addressing (without the offset).

Can you still write the same program as before? If so, please translate the following load
instruction into an instruction sequence in the new ISA. If not, explain why.

LW R1, 16(R2) è

Problem M2.3.B Register indirect addressing

Now he wants to take a bolder step by completely eliminating the register indirect
addressing. The new load and store instructions will have the following format.

LW R1, imm16 ; R1 <- M[imm16]
SW R1, imm16 ; M[imm16] <- R1

6 5 5 16

Opcode Rs Offset

Can you still write the same program as before? If so, please translate the following load
instruction into an instruction sequence in the new ISA. If not, explain why. (Don’t worry
about branches and jumps for this question.)

LW R1, 16(R2) è

Last updated:
9/20/2021

Page 7 of 13

Problem M2.3.C Subroutine

Ben is wondering whether we can implement a subroutine using only absolute addressing.
He changes the original ISA such that all the branches and jumps take a 16-bit absolute
address (the 2 lower orders bits are 0 for word accesses), and that jr and jalr are not
supported any longer.

With the new ISA he decides to rewrite a piece of subroutine code from his old project.
Here is the original C code he has written.

int b; //a global variable

void multiplyByB(int a){
 int i, result;
 for(i=0; i<b; i++){
 result=result+a;
 }
}

The C code above is translated into the following instruction sequence on our original
MIPS ISA. Assume that upon entry, R1 and R2 contain b and a, respectively. R3 is used
for i and R4 for result. By a calling convention, the 16-bit word-aligned return address
is passed in R31.

Subroutine: xor R4, R4, R4 ; result = 0

xor R3, R3, R3 ; i = 0
loop: slt R5, R3, R1

bnez R5, L1 ; if (i < b) goto L1
return: jr R31 ; return to the caller
L1: add R4, R4, R2 ; result += a

addi R3, R3, #1 ; i++
j loop

If you can, please rewrite the assembly code so that the subroutine returns without using a
jr instruction (which is a register indirect jump). If you cannot, explain why.

Last updated:
9/20/2021

Page 8 of 13

Problem M2.4: Write Effective Address Extensions (Spring 2014 Quiz 1,
Part B)

You’ve noticed that many programs execute code similar to the following during loops:

LD R1, 4(R2)
ADD R2, R2, 4

Or:

ST R1, 4(R2)
ADD R2, R2, 4

You want to optimize your architecture for this common case. You are going to do so by
adding “write effective address” variants of the load and store instructions, LDWA and
STWA. The semantics of these instructions are that they will perform the normal memory
operation (LD or ST) and then write the effective address in the register that indexed into
memory (not the register whose contents are read/written to memory). Specifically these
instructions do the following:

LDWA rs, rt, Imm:
 rs ß Memory[(rt) + Imm]
 rt ß (rt) + Imm

STWA rs, rt, Imm:
 Memory[(rt) + Imm] ß (rs)
 rt ß (rt) + Imm

These extensions allow us to rewrite the previous examples as:

LDWA R1, R2, 4

And:

STWA R1, R2, 4

Last updated:
9/20/2021

Page 9 of 13

You start with implementing STWA. For the following sequence of instructions and the standard five-stage pipeline (shown above),
indicate how each instruction will flow through the pipeline on the following page. Assume full bypassing and stall logic are
implemented for your architecture. Use arrows to indicate forwarding and dashes for stalls, as illustrated.

Problem M2.4.A

Last updated:
9/20/2021

Page 10 of 13

Instruction 0 1 2 3 4 5 6 7 8 9 10 11 12

LD R1, 0(R2) F D E M W

ADD R3, R1, 10 F D - E M W

LD R4, 0(R3)

STWA, R4, R1, 4

STWA R4, R1, 4

ADD R2, R1, R3

Last updated:
9/20/2021

Page 11 of 13

You next want to implement LDWA, and quickly realize that LDWA runs into a structural hazard on the register file. You decide to fix
this by adding an extra writeback stage (W2) to your pipelined design as shown above. In one or two sentences, explain what the hazard
is and why the additional stage fixes it (assume correct stall logic).

Problem M2.4.B

Last updated:
9/20/2021

Page 12 of 13

Assume that the six-stage design above has full bypassing and correct stall logic. Fill in the pipeline for the instructions given below,
using arrows and dashes as before.

Instruction 0 1 2 3 4 5 6 7 8 9 10 11 12

LD R1, 0(R2) F D E M W1 W2

ADD R3, R1, 10 F D - E M W1 W2

LDWA R5, R3, 0

ADD R1, R3, R4

LDWA R5, R3, 0

ADD R1, R5, R0

Problem M2.4.C

Last updated:
9/20/2021

Page 13 of 13

Adding a second writeback stage is only one way to fix this structural hazard. An alternative design is to add a second write port to the
register file. Quickly sketch the datapath for this design in the diagram above. You do not need to write the stall logic. (Additional
signals are: we2, ws2, wd2.)

In one or two sentences, explain the tradeoffs between adding an additional pipeline stage vs. adding a write port to the register file.
What conditions might favor one or the other design?

Problem M2.4.D

Problem M2.4.E

