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Problem M9.1:  Memory Dependencies (Fall 2006)  
   
Problem M9.1.A                        
  
For each of the following 3 instruction sequences, please give the condition for a memory 
dependency to exist or explain why there cannot be a dependency. Assume that there is no memory 
aliasing (i.e. all virtual memory pages are mapped to unique physical pages).  
  
  

Instruction Pair  Condition under which Memory  
Dependency occurs  

SW R2, 0(R3)  
LW R5, 0(R4)  

  

SW R2, 0(R3)  
LW R5, 4(R3)  

  

SW R2, 0(R3)  
LW R5, 4096(R3)  
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Problem M.9.1.B                        
  
If we allow memory aliasing to occur, how will it affect your answer in part A? Assume that the 
page size is 4KB and that the machine is byte addressed.  
  
  

Instruction Pair  
Condition under which Memory  

Dependency occurs  

SW R2, 0(R3)  
LW R5, 0(R4)  

  

SW R2, 0(R3)  
LW R5, 4(R3)  

  

SW R2, 0(R3)  
LW R5, 4096(R3)  
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Problem M9.2: Vector Store Buffers (Fall 2010)  
  
Ben Bitdiddle designed an out-of-order vector machine with store buffers. This machine executes 
memory operations (both load and store) “in order”, although other instructions can be executed 
out-of-order. (All the instructions are committed “in order”.) There is a load/store issue queue to 
maintain the execution order of all the memory operations. Every load must check if the value it 
needs is in the store buffer, and to determine the proper value, every instruction is assigned a 
unique instruction number (Inum).  
  

  
  
The machine has 4 vector registers, v1 through v4, and a special-purpose vector length register, 
vlr, which can be used like a general purpose register. Any MIPS integer operation (except 
jumps/branches) can be applied to the first vlr elements of one or more vector registers by prefixing 
a V to it; for example, if vlr is 16, the instruction VLW v1, 0 (r1) loads 16 consecutive words 
starting at the address in r1 into the first 16 locations in v1, and similarly the instruction VADD 
v3, v1, v2 adds each of the first 16 elements of v1 to the corresponding element of v2 and puts the 
result in the corresponding element of v3. Each vector register can hold at most 32 word values, 
and thus vlr can be at most 32. For the entire part, assume that vlr has the value of  4.  
  
  
  
Problem M9.2.A                        
  
Suppose 10% of instructions are stores and the average lifetime of instructions in the store buffer 
is 100 cycles. Assuming the desired throughput of this machine to be 1 instruction per cycle, how 
many entries will the store buffer be holding at a given time on average?  
  
1 * 0.1 * 100 = 10 entries  
  
  
Does this machine store into memory greedily or lazily?   
  
Lazy update  
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Problem M9.2.B                        
  
Ben did not like the store buffers in the previous design, because the store buffers need to be looked 
up for every load instruction, and implementing a fast lookup to the buffers was too expensive. 
Thus, instead of using the store buffers, Ben decided to directly update the memory during 
execution (before the store instruction actually commits), and keep the old values in “store logs”. 
Each entry in the store logs consists of a valid bit, Inum, memory address and data value. 
The data field holds the value that was in the memory before the store to the location writes to the 
memory.  
  

  
  
Is this a greedy update or a lazy update?  
  
Greedy update  
  
  
  
Assume an arithmetic exception occurred, and thus, the processor state and memory need to be 
recovered appropriately. Which machine design (store buffer machine or store log machine) has 
the higher recovery cost, and why?  
  
  
The store log machine has higher recovery cost than the store buffer machine.  
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Problem M9.2.C                        
  
Now, we want to investigate how Ben’s machine with the store logs changes the processor state. 
The diagram below shows the initial processor state. Assume that the Inum space is infinite.  
  

  
  
  
In the following questions, we always start from the same initial state, and you have to update 
the diagram for each question separately, to reflect the processor state after each event has 
occurred. (The event specified in each question is the only event that takes place for that question.) 
There are extra blank boxes for vector registers and memory. Write down the new values in these 
boxes if the value changes due to the event specified in the question. You don’t have to repeat the 
values if they do not change by the specified event. Also, cross out any entries in the store logs 
which are no longer valid.   
  
Note that the vector length register (vlr) has the value of 4.  
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(i) The instruction VADD V3, V1, V2 (Inum:99) is executed and committed.  
 

 
  
(ii) The instruction VST V4, 0x2000 (Inum:100) is executed.   
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(iii) An arithmetic exception occurs at the instruction with the Inum of 81, and the 
recovery process takes place. (Do not worry about the vector register 
recovery.)  

  

 
  
  
Problem M9.2.D                        
  
For this machine with store logs, when will the processor clear the log entry, other than on 
exceptions?  
  
  
When the store instruction for that log entry commits.  
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Ben still did not like the fact that the store log requires so much extra storage. Thus, he decided to 
eliminate the store log and instead, use a direct-mapped writeback cache to hold the values. On a 
store operation that hits in the cache, the data is written only into the cache. On a cache miss, the 
data block is first fetched into the cache, and then the new value is written in the cache (write 
allocate policy). Memory is written only when the entry is evicted. Two new status bits are added 
in each cache line – “dirty” and “committed”.  
  
• A new bit “dirty” is 0 when the cache line has a clean copy (same with memory), and is set to 

1 when the cache line is written so that it has a different copy than memory (i.e., memory has 
a stale copy).  

  
• A new bit “committed” is 0 while the instruction that wrote the cache line has not been 

committed, and is set to 1 when the corresponding store instruction is committed.  
  
As described in the beginning, this machine executes memory operations (both load and store) “in 
order”, although other instructions can be executed out-of-order. (All the instructions are 
committed “in order”.) There is a load/store issue queue to maintain the execution order of all the 
memory operations.   
  
Now suppose the following signals are given.  
  

Signal  Description  
cache(address).tag  

Returns the tag stored in the cache for the 
corresponding address  

cache(address).dirty  

0: the corresponding cache line has a clean 
copy (same with memory) /  
1: the corresponding cache line has a dirty 
copy (i.e., memory has a stale copy)  

cache(address).committed  

0: the instruction that wrote the  
corresponding cache line is not committed /  
1: the instruction that wrote the 
corresponding cache line is committed   

QHead.OpCode  LD / ST  (Opcode of the instruction at the 
head of the load/store issue queue)  

QHead.memAddr  
the effective memory address of the 
instruction at the head of the load/store 
issue queue  

TAG(address)  A function that returns the tag of address  

  
 For this part, assume the cache always hits.   
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Problem M9.2.E                        
  
Under what state of the cache line can you writeback the line at the address A to memory?  
  
cache(A).dirty AND cache(A).committed  
  
  
  
Problem M9.2.F                        
  
How should the dirty bit and the committed bit be updated after writeback of the block at address 
A?  
  
Both should be cleared to 0.  
  
  
Problem M9.2.G                        
  
Alice P Hacker warns Ben that the machine may stall if it finds that it cannot use the cache block. 
Thus, in order to make progress, the machine may need to explicitly evict and writeback the 
corresponding cache line.  
  
Write down the Boolean equation for the stall signal for the load/store issue queue.  
  

Stall =   
  

(QHead.OpCode == (ST))   
AND (!cache(QHead.memAddr).committed)  
AND (cache(QHead.memAddr).dirty)  
  
  
Problem M9.2.H                        
  
Write down the Boolean equation for the signal to force eviction (equivalently, writeback) of the 
cache line so that the machine gets unstalled.  
   

Evict(writeback) =   
  

(QHead.OpCode == (ST))    


