
 

Page 1 of 19 
  

Computer System Architecture  
6.5900 Quiz #2 

November 17th, 2023 
 
 
 

 
Name: ___________________________        

 
This is a closed book, closed notes exam. 

80 Minutes 
 17 Pages (+2 Scratch) 

 
Notes: 
• Not all questions are of equal difficulty, so look over the entire exam and 

budget your time carefully. 
• Please carefully state any assumptions you make. 
• Show your work to receive full credit. 
• Please write your name on every page in the quiz. 
• You must not discuss a quiz's contents with other students who have not 

yet taken the quiz. 
• Pages 18 and 19 are scratch pages. Use them if you need more space to 

answer one of the questions, or for rough work. 
 

     
    

   Part A  ________     16 Points     
   Part B  ________     30 Points 
   Part C  ________     24 Points 
   Part D  ________     30 Points 

    
TOTAL          ________  100 Points 



Name ____________________________ 
 

Page 2 of 19 
 

Part A: Multithreading (16 points)  
 
Consider the following code which repeatedly operates on array A. Array A consists of 
256 4B integers (so the total size is 1KB). Assume N is very large. 
 
  int A[256]; 
  int sum = 0; 
 
  for (int i = 0; i < N; i++) { 
      for (int j = 0; j < 256; j++) { 
     sum += A[j] + 8; 
      } 
  } 
 
The following is the equivalent RISC-V assembly just for the inner loop: 
 
  # Assume the following: 
  # x1 holds sum 
  # x2 holds base address of A 
  # x3 holds j  
  # x10 holds 1024 (the loop bound) 
 
  _iloop:      ADD    x5, x2, x3       # Calculate address A[j] 
      LW     x4, 0(x5)        # A[j] 
               ADDI   x4, x4, 8        # A[j] + 8 
      ADD    x1, x1, x4       # sum += A[j] + 8 
               ADDI   x3, x3, 4 
               BNE    x3, x10, _iloop 
  _iloop_done:  
 
Ben runs this code on an in-order pipelined processor with the following characteristics: 

• The processor has a 2-way set-associative 1KB data cache with 16B blocks. 
• Memory operations take 5 cycles if they hit in the cache, and 100 cycles if they 

miss. This means that if a load is issued on cycle N and it hits in the cache, the 
value is available for the dependent instruction on cycle N + 5. 

• Integer operations take 1 cycle, i.e., their results are immediately usable by the 
following instruction via bypassing. 

• Assume that instruction fetches cause no stalls and all branches are predicted 
perfectly. 

 
  



Name ____________________________ 
 

Page 3 of 19 
 

Question 1 (4 points) 
 
In steady state, how many cycles does the processor stall waiting for loads per iteration of 
the inner loop? 
 
In steady state, the whole array is cached, so each load takes 5 cycles. This means there 
are 4 cycles worth of load stalls each iteration since there's one load. 
 
 
 
 
 
 
 
 
 
 
 
Question 2 (6 points) 
 
Ben Bitdiddle modifies his processor to support fine-grain round-robin multithreading. The 
processor now supports 2 threads, and threads are switched every cycle using a fixed round-
robin schedule. If a thread cannot be scheduled because it is stalled on an instruction, the 
processor inserts a pipeline bubble and switches to schedule the other thread for the next 
cycle. 
 
Each thread now works on its own 1KB-sized array, calculating the sum independently 
(i.e., there is no data sharing between threads).  
 
Alyssa P. Hacker points out that this multithreaded implementation will reduce the number 
of summations done per cycle compared to the single-threaded version. Is she correct? 
Briefly explain why or why not. 
 
Yes, she is correct. Since it's impossible to fit both arrays now, and they are switched 
round-robin, only half of each array will fit in the cache. Since load misses take 100 
cycles to resolve, this will severely degrade the summation throughput. 
 
 
 
  



Name ____________________________ 
 

Page 4 of 19 
 

Question 3 (6 points) 
 
Devise a simple modification to the C code to make the multithreaded implementation 
faster. Write the modified C code below, and briefly explain why it improves performance. 
 
Simply divide the A array into two equal haves, and work on each half to completion 
before moving on to the next one. 
 
  for (int i = 0; i < N; i++) { 
      for (int j = 0; j < 128; j++) { 
     sum += A[j] + 8; 
      } 
  } 
 
  for (int i = 0; i < N; i++) { 
      for (int j =128; j < 256; j++) { 
     sum += A[j] + 8; 
      } 
  } 
 
 
 
 
 
 
  



Name ____________________________ 
 

Page 5 of 19 
 

Part B: Cache Coherence (30 points) 
 
Ben wants to design a directory-based MSI coherence protocol where the directory uses a 
bit vector to store each sharer set. Given an N-core system, the directory keeps a N-bit wide 
bit vector for each line it tracks. If the i-th bit of the bit vector is set, it means that core i's 
cache holds a copy of the line in either S or M state.  
 
Question 1 (4 points) 
 
Suppose that the processor has N cores, each of which has a 1KB private cache with 32B 
lines.  
 
a) How many entries does the directory need to have to keep track of all cache lines in the 
private caches? 
 
32 private lines * N cores = 32N 
 
 
b) In this directory, what is the total size of all the sharer sets in bits? 
 
32N entries * N bits/entry = 32N^2 
 
 
Question 2 (5 points) 
 
Ben changes the design of the sharer sets by replacing the bit vector with a set of sharer 
pointers. Each pointer now keeps track of one sharer by storing the sharer’s core id. For 
example, if cores 10 and 12 hold the line in S state, the sharer set for this line in the directory 
will consist of two pointers, "10" and "12". Each sharer set can store at most 16 sharer 
pointers. 
 
Given an N-core system where N is a power of 2, what is the total number of bits needed 
for all sharer pointers in a sharer set? 
 
16 pointers * logN bits / pointer = 16logN 
  



Name ____________________________ 
 

Page 6 of 19 
 

Question 3 (8 points) 
 
To design the coherence protocol with sharer pointers, Ben starts with the basic MSI 
protocol described in the quiz handout. Because the number of sharer pointers is less than 
the number of potential sharers (assume N > 16 cores), Ben introduces an all-sharers bit 
to each line in the directory. When this bit is set, the directory conservatively considers all 
private caches as sharers of this line.  
 
For the following questions, consider only transitions between stable states. 
 
a) What additional transitions does Ben need for each of the 3 processor states (M, S, and 
I)? Show the transition(s) below with an arrow between the source and destination states, 
clearly denoting it with the triggering action and the action taken during the transition. Do 
not introduce new messages. 
 

 
 
  

M

S

I

InvReq/
InvResp
w/o data



Name ____________________________ 
 

Page 7 of 19 
 

b) What additional transitions does Ben need for each of the 3 directory states (Ex, Sh, and 
Un)? Show the transition(s) below with an arrow between the source and destination states, 
clearly denoting it with the triggering action and the action taken during the transition. Do 
not introduce new messages. We've added an additional transition due to a WbReq to get 
you started. 
 

                                
 
 
 

       
 
 
 
 
 
 
  

Ex

Sh

Un

ShReq && |Sharers| == 16 /
all-sharers = 1 && ShResp

WbReq && all-sharers == 1 /
WbResp

ExReq && all-sharers == 1 /
all-sharers = 0
Sharers = {C_i}
ExResp

ShReq && all-sharers == 1 /
ShResp



Name ____________________________ 
 

Page 8 of 19 
 

Question 4 (6 points) 

So far, we assumed that each coherence transaction completes before the next transaction 
begins. Alyssa P. Hacker points out that Ben’s modification to the coherence protocol 
introduces additional races that he must now deal with when transient states are considered.  

To see this, consider the following 2-core scenario where a line is in shared state, with the 
all-sharers bit set in the directory, but only Core 1 has an actual copy of the line in its cache. 
Core 1 attempts to write to the line, triggering the directory to send an InvReq to Core 0's 
cache. However, before the InvReq arrives at Core 0’s cache, Core 0 writes to the same 
cache line, sending an ExReq to the directory. Specifically, Core 0 sends an ExReq before 
it receives an InvReq. 

 

To maintain coherence, what action should Cache 0 take in response to the InvReq while 
in the I->M transient state? Pick one of the following three answers: 

A: Acknowledge the InvReq by sending an InvResp and remain in the I->M 
transient state to wait for a later ExResp. Meanwhile, the directory will buffer and 
serve ExReqs in the order of receiving these requests.  

B: Buffer or NACK the InvReq, wait for an ExResp from the directory, and then 
proceed to performing the invalidation. Meanwhile, the directory will buffer and 
serve ExReqs in the reverse order of receiving these requests i.e., it will first 
respond to Cache 0's request with an ExResp, then respond to Cache 1 with an 
ExResp when Cache 0's InvResp arrives. 

 C: Performing either of A or B will result in correct behavior. 

 
 
 
  

Processor write,
Transition to SàM

ExReq

ExReq

DirectoryCache 0 Cache 1

InvReq
Processor write,
Transition to IàM



Name ____________________________ 
 

Page 9 of 19 
 

Question 5 (7 points) 
 
Alyssa P. Hacker proposes an alternative solution that works as follows. Instead of using 
an all-sharers bit when the number of sharers exceeds the size of the sharer set, the directory 
evicts an existing sharer pointer and sends an InvReq to the corresponding cache. After the 
InvResp comes back, the directory replaces the pointer with the new sharer. 
 
Describe two scenarios, one where you would prefer using the all-sharers bit, and another 
where you would prefer evicting a sharer pointer entry. You can either describe them in 
words or write code snippets that describe these scenarios. 
 
Lots of possible answers here. Key point is the number of extra invalidations you have to 
do. The following are just some examples. 
 
All-sharer preferred: Data frequently read repeatedly between all cores 
 
Eviction preferred: Producer-consumer relation where one core writes to a value that a 
subset of cores (16 < # cores sharing << N) consume. Keeping a restricted set of sharers 
will avoid sending N InvReqs. 
  



Name ____________________________ 
 

Page 10 of 19 
 

Part C: Memory Consistency (24 points) 
 
The following questions deal with memory accesses from multiple cores in a cache-
coherent shared memory machine. For each question, you will consider the possible 
outcomes for the following memory consistency models: 

• Sequential Consistency (SC) 
• Total Store Order, IBM370-style (TSO-IBM370): Stores can be reordered after 

later loads, but store-to-load forwarding is disallowed until the value is globally 
visible to other cores. 

• Total Store Order, x86-style (TSO-x86): Stores can be reordered after later loads, 
and stores from the same core are visible in the same order. Store-to-load 
forwarding within the same core is allowed. 

• Relaxed Memory Order (RMO): Loads and stores can be reordered after later loads 
and stores, and store-to-load forwarding is allowed. 

 
Assume that all registers (r1, r2, ...) and memory locations (a, b, ...) initially contain 0. 
 
Question 1 (8 points) 
 
Consider a cache-coherent shared-memory machine that executes the following two 
threads on two different cores. Assume that memory locations a, b, and c contain initial 
value 0. 
 

T1 T2 
ST (a) ß 1 
LD r1 ß (a) 
LD r2 ß (b) 
 

ST (b) ß 1 
ST (a) ß 2 

 
Circle the consistency models for which the final values r1 = 1, r2 = 0, and (a) = 1 are 
possible.  
 
 

SC TSO-IBM370 TSO-x86 Relaxed 

 
  



Name ____________________________ 
 

Page 11 of 19 
 

Question 2 (8 points) 
 
T1 T2 T3 T4 
ST (a) ß 1 
 

ST (a) ß 2 
 

LD r1 ß (a) 
LD r2 ß (a) 
 

LD r3 ß (a) 
LD r4 ß (a) 
 

 
Circle the consistency models for which the final values r1 = 1, r2 = 2, r3 = 2, and r4 = 1 
are possible 
 

SC TSO-IBM370 TSO-x86 Relaxed 

 
 
 
 
 
Question 3 (8 points) 
 

T1 T2 T3 
ST (a) ß 1 
LD r1 ß (a) 
LD r2 ß (b) 
 

ST (b) ß 1 
 

LD r3 ß (b) 
LD r4 ß (a) 
 

 
Circle the consistency models for which the final values r1 = 1, r2 = 0, r3 = 1, r4 = 0 are 
possible. 
 

SC TSO-IBM370 TSO-x86 Relaxed 

 
 
 



Name ____________________________ 
 

Page 12 of 19 
 

Part D: On-Chip Networks (30 points)  
 
Question 1 (6 points) 
 
Consider the following Benes network topology for 4 processor cores. The set of source 
cores are shown on the left column and the destination cores are on the right column. The 
routers all have two input and output ports. All the links connecting the cores and routers 
are unidirectional. 
 

 
 
 
Fill in the following table of topology metrics for this network. 
 
 
 Benes Network 
Diameter 
 4 

Average 
distance 4 

Bisection 
bandwidth 4 

 
 
  

Legend

Router

Core

Link



Name ____________________________ 
 

Page 13 of 19 
 

Question 2 (9 points) 
 
A Benes network for N cores can be defined recursively as a combination of two smaller 
N/2 Benes networks, as shown below: 
 

 
 
Notice that, to combine the two N/2 Benes networks, we add N/2 routers on the input side 
and another N/2 routers on the output side of the network. For the two outputs of each 
router on the input side, one is connected to the input of the top Benes network and the 
other is connected to the bottom one. The connections are such that the top router is 
connected to the topmost input of each network, the second from top to the second input 
of each network, and so forth. 
 
For example, the following is a Benes network for N=8 cores: 
 

 
 
 
 
  

......

......

N/2 Benes Network

N/2 Benes Network

......
......

......
......



Name ____________________________ 
 

Page 14 of 19 
 

Fill in the following metrics for a Benes network for N cores. 
Assume that N is a power of 2. 
 
 
 Benes Network 
Diameter 
 2logN 

Average 
distance 2logN 

Bisection 
bandwidth N 

 
 
 
  



Name ____________________________ 
 

Page 15 of 19 
 

Question 3 (8 points) 
 
Consider 3-dimensional mesh and torus networks with N nodes.  
 

 
 
 
 

 
 
Note that we pictorially describe the 3-D torus topology as a combination of 3 discrete 
sets of links, which each show the connections in a single dimension. 
 
 
  

3-D Mesh Topology

3-D Torus Topology



Name ____________________________ 
 

Page 16 of 19 
 

Assume that N = k^3 where k is an even integer. Fill in the table below as a function of the 
number of nodes in the network. The units for each cell are hops or links. For average 
distance, assume uniform random traffic (where each node sends 1/Nth of the traffic to each 
destination, including itself). You can use N and k in your formulas. 
 
You only need to provide the asymptotic growth for the number of links and average 
distance for the 3D mesh. For everything else, you need to provide the exact number to 
receive full credit, and asymptotic growth will get you partial credit. 
 
 3D Mesh 3D Torus 
Number 
of links O( N ) 3N 

Diameter 
 3(k - 1) 3k/2 

Average 
distance O( k ) 3k/4 

Bisection 
bandwidth k^2 2k^2 

 
 
 
  



Name ____________________________ 
 

Page 17 of 19 
 

Question 4 (7 points) 
 
Consider the XY dimension-order routing described in class. If a packet wants to go from 
coordinate (a,b) to (a', b'): 

• The packet is first minimally routed in the X dimension until its X-coordinate 
equals a'. 

• Next, the packet is minimally routed in the Y dimension until its Y-coordinate 
equals b'. 

 
Is the routing algorithm deadlock free for a 2D-torus topology? Explain your reasoning 
with the turn model, clearly stating which turns are allowed and which are forbidden. 
 
Just like in meshes, 2 turns are disallowed for both clockwise and counter-clockwise 
directions, so this does not result in a deadlock: 
 
 

 
 
 
 
 
  

XY Model



Name ____________________________ 
 

Page 18 of 19 
 

Scratch Space 
 
Use these extra pages if you run out of space or for your own personal notes. We will not 
grade this unless you tell us explicitly in the earlier pages. 
  



Name ____________________________ 
 

Page 19 of 19 
 

Scratch Space 
 
 
 


