

Page 1 of 18

Computer System Architecture
6.5900 Quiz #3

December 13th, 2023

Name: ___________________________

This is a closed book, closed notes exam.

80 Minutes
 16 Pages (+2 Scratch)

Notes:
• Not all questions are of equal difficulty, so look over the entire exam and

budget your time carefully.
• Please carefully state any assumptions you make.
• Show your work to receive full credit.
• Please write your name on every page in the quiz.
• You must not discuss a quiz's contents with other students who have not

yet taken the quiz.
• Pages 17 and 18 are scratch pages. Use them if you need more space to

answer one of the questions, or for rough work.

 Part A ________ 28 Points
 Part B ________ 22 Points
 Part C ________ 18 Points
 Part D ________ 32 Points

TOTAL ________ 100 Points

Name ____________________________

Page 2 of 18

Part A: VLIW Processors (28 points)

In this question, we will examine the execution of the code below on a single-issue in-order
processor and a VLIW processor.

// A, X, and Y hold single-precision (32-bit)
// floating point values
float A, X[N], Y[N];
for (int i = 0; i < N; i++)
 Y[i] = Y[i] + A*X[i];

// Initial values:
// f1 = A
// x1 = &X[0]
// x2 = &Y[0]
// x3 = &X[N] (first address after vector X)

I1: loop: lw f0, 0(x1)
I2: fmul.s f2, f0, f1
I3: lw f3, 0(x2)
I4: fadd.s f4, f2, f3
I5: sw f4, 0(x2)
I6: addi x1, x1, 4
I7: addi x2, x2, 4
I8: bne x1, x3, loop

Question 1 (5 points)

The code above runs on an in-order, single-issue processor with perfect branch prediction
and full bypassing. ALU (integer) operations have a 1-cycle latency (so, thanks to
bypassing, consecutive dependent ALU operations execute without stalling), loads and
stores have a 2-cycle latency, and floating-point operations have a 3-cycle latency. How
many cycles will the processor stall per loop iteration?

Name ____________________________

Page 3 of 18

Question 2 (5 points)

If you apply software pipelining to the loop, what is the minimum number of iterations that
you would need to overlap to remove all stalls in steady-state operation? You are allowed
to reorder instructions. (Hint: You don’t need to actually software-pipeline the loop to
answer this.)

Question 3 (6 points)

Write the VLIW schedule of the instructions in one iteration of the original loop. You only
need to write instructions on the critical. (You may also write instructions off the critical
path if you want, which we will not grade). The 3-operation VLIW format is shown below.
The VLIW architecture has the same fixed delays as the in-order processor (1/2/3 cycles
for ALU/memory/floating-point operations, respectively), and has no stall logic. You may
reorder and modify instructions. For full credit, your implementation should use the
minimum number of VLIW instructions.

Inst. ALU/Branch Unit Memory Unit Floating Point Unit
1
2
3
4
5
6
7
8
9
10
11
12
13
14

Name ____________________________

Page 4 of 18

Question 4 (6 points)

Apply loop unrolling to the VLIW code in Question 3. Unroll the fewest number of
iterations required to eliminate all stalls. Whatever degree of unrolling you choose, assume
it divides the total number of loop iterations exactly. Again, you only need to write
instructions on the critical path.

Inst. ALU/Branch Unit Memory Unit Floating Point Unit
1
2
3
4
5
6
7
8
9
10
11
12
13
14

Question 5 (6 points)

What is the maximum throughput, in floating-point operations per cycle, that the VLIW
processor can achieve by applying software pipelining to the original loop? How much
better is this throughput, roughly, than the best throughput of the in-order, single-issue
processor? Please explain your answer. (To answer this, it’s sufficient to give the nearest
integer factor, e.g., about 5x better.)

Name ____________________________

Page 5 of 18

Part B: Transactional Memory & Reliability (22 points)

In this part you will analyze the operation of different hardware TM (HTM) designs, and
the concurrency they achieve for different transaction schedules on a 2-core system as
described in the handout.

The system runs a program consisting of the following two transactions.

Transaction X Transaction Y
Begin Begin
Read A Read A
Write A Read B
Read B Write B
End End

In the following questions, for timing, assume conflict detection and coherence actions all
happen in the same cycle when a memory access executes.

Name ____________________________

Page 6 of 18

Question 1 (6 points)

Suppose transaction X starts at cycle 0 and transaction Y starts at cycle 5, and they would
produce the following schedule.

Cycle 0 5 10 15 20 25 30 35 40 45
Transaction X Begin Rd A Wr A Rd B End
Transaction Y Begin Rd A Rd B Wr B End

(a) In the absence of conflict detection (i.e., no HTM), if the memory operations

interleaved in the given order, would the transactions be serializable? If so, circle what
would be the apparent commit order of the transactions, or circle “Not serializable”. (2
points)

X before Y Y before X Not serializable

(b) Given the two HTM designs described in the handout, indicate in the following table
at what cycle a conflict is detected, if any, and which transaction aborts (or neither). (4
points)

 Conflict cycle Aborted Transaction
(X, Y, or Neither)

Eager &
Pessimistic

Lazy &
Optimistic

Name ____________________________

Page 7 of 18

Question 2 (10 points)

We now study reliability in the context of HTM, specifically the ACEness of the read and
write bits of each cache line.

Note that needless transaction aborts that do not lead to incorrect computation results are
architecturally correct execution. Thus, if flipping a bit only causes needless transaction
aborts, and the final computation outcome is still architecturally correct, this bit is un-ACE.

Consider the lazy & optimistic HTM implementation described the handout, running
transactions X and Y shown below (these are a simplified version of the transactions in
Question 1, with the same timings and accesses to A, but no accesses to B).

Mark the cells in the following table that correspond to cycles at which the read and write
bits of the cache line storing A are ACE, for transactions X and Y. (If you prefer, you can
instead list the specific cycles for each of these four bits below the table.)

Cycle 0 5 10 15 20 25 30 35 40 45
Transaction X Begin Rd A Wr A End
Transaction Y Begin Rd A End

Txn X

Write
bit

Read
bit

Txn Y

Write
bit

Read
bit

Name ____________________________

Page 8 of 18

Question 3 (6 points)

Assume that the HTM implementation includes an error detection mechanism for the read
and write bits. Each private cache is extended with an error detection code that is able to
reliably inform when a bit flip has happened on at least one of the read/write bits in the
cache. However, the mechanism does not tell which of the bits has suffered a flip.

Assuming lazy & optimistic HTM implementation from the handout, can you modify the
HTM design to eliminate reliability errors due to bit flips in read/write bits using this
mechanism? Your modifications cannot introduce additional state or error-detection
mechanisms. If yes, describe these modifications. If not, explain why not.

Name ____________________________

Page 9 of 18

Part C: Security (18 points)

Consider the C code with labeled line numbers:

L0: bool checkPassword(int* password, int* guess, int size) {
L1: for (int i = 0; i < size; i++) {
L2: if (password[i] != guess[i]) {
L3: return false;
L4: }
L5: }
L6: return true;
L7:}

The C code roughly produces the following RISC-V 32 assembly:

// Initial register values:
// a0 = &password[0]
// a1 = &guess[0]
// a2 = size (assumed > 0 in the code)

loop:
 lw t0, 0(a0)
 lw t1, 0(a1)
 bne t0, t1, retFalse
 addi a0, a0, 4
 addi a1, a1, 4
 addi a2, a2, -1
 bgt a2, x0, loop
retTrue:
 li a0, 1 // loads constant 1 into register a0
 ret
retFalse:
 li a0, 0
 ret

Name ____________________________

Page 10 of 18

Question 1 (10 points)

(a) How can an attacker learn the password faster than brute force search? (7 points)

(b) Which line(s) is/are the transmitter in the C code? (3 points)

Name ____________________________

Page 11 of 18

Question 2 (8 points)

Rewrite the relevant lines in the assembly code to eliminate micro-architectural side-
channels. You can also write C code instead of assembly; if you write C code, we will
grade your answer based on the assembly produced by compiling with clang 17.0.0 with
no compiler flags.

Name ____________________________

Page 12 of 18

Part D: Accelerators (32 points)

Axel is building a linear algebra accelerator called the Axelerator. It can do 3 multiplies
per cycle and has 0.1 words/cycle memory bandwidth. Ryan is a CEO of a laptop
manufacturing company; he makes the audacious claim that his second-tier laptop model,
the RyanAir, outperforms the Axelerator on some workloads despite having 3x fewer
multipliers. The RyanAir has 0.5 words/cycle memory bandwidth. Both machines have a
multiplier FU latency of 1 cycle and run at the same clock frequency.

Question 1 (4 points)

In the plot below, draw the rooflines for the Axelerator and the RyanAir. For each of the
two rooflines, label the (x, y) coordinates of the corner of the roofline, i.e., the point where
the system goes from memory bandwidth-bound to compute-bound.

Note: Remember that a multiply has two inputs.

Name ____________________________

Page 13 of 18

We will analyze the performance of three kernels on the Axelerator and the RyanAir. For
all the remaining the questions, assume the following:
• Ignore the cost of all operations but multiplications and loads from main memory. Also

ignore dependencies on the loop indices i, j, and k.
• Assume instructions are executed in program order. Assume that at each cycle all

multiplications that have their dependencies satisfied are issued (up to the number of
multiplier functional units).

• Assume an unbounded on-chip cache.
• Ignore stores (the results of each computation stay on-chip and are not written back to

main memory).
• All kernels are assumed to run many times on different inputs. All questions concern

only steady-state behavior.
• Assume kernel computation and kernel operand loading are decoupled, i.e., the

operands for each run of the kernel are loaded far enough in advance to ensure that they
will be available when the kernel computation starts. Therefore, load latency does not
matter (but throughput does!).

• On both systems, at any point in time at most one kernel is being computed on.

Name ____________________________

Page 14 of 18

Question 2 (4 points)

The code below performs matrix-vector multiply of an NxN matrix and an N-element
vector.

for (int j = 0; j < N; j++)
 for (int i = 0; i < N; i++)
 result[i] += matrix[i][j] * vector[j];

What is the operational intensity of matrix-vector multiply as a function of N? Give your
result in multiplies per word loaded from main memory.

Question 3 (4 points)

Which machine performs better on matrix-vector multiply as a function of N? Can you
use the roofline model to answer this question? If yes, how? If no, why?

Name ____________________________

Page 15 of 18

Question 4 (4 points)

The code below performs matrix-matrix multiply of two NxN-element matrices.

for (int k = 0; k < N; k++)
 for (int i = 0; i < N; i++)
 for (int j = 0; j < N; j++)
 C[i][j] += A[i][k] * B[k][j];

What is the operational intensity of matrix-matrix multiply as a function of N?

Question 5 (4 points)

Which machine performs better on matrix-matrix multiply as a function of N? Can you
use the roofline model to answer this question? If yes, how? If no, why?

Name ____________________________

Page 16 of 18

Question 6 (4 points)

The code below computes the N-th factorial (since the code uses an unsigned 32-bit
integer, the result is actually the N-th factorial modulo 232).

unsigned result = 1; // constants don’t come from main memory
for (unsigned i = 1; i < N; i++)
 result = result * i;

What is the operational intensity of computing the N-th factorial, as a function of N?

Question 7 (4 points)

Which machine performs better on computing the N-th factorial as a function of N? Can
you use the roofline model to answer this question? If yes, how? If no, why?

Question 8 (4 points)

How can Axel change the Axelerator so that it at least matches the performance of the
RyanAir on all the kernels above for all N?

Name ____________________________

Page 17 of 18

Scratch Space

Use these extra pages if you run out of space or for your own personal notes. We will not
grade this unless you tell us explicitly in the earlier pages.

Name ____________________________

Page 18 of 18

Scratch Space

Use these extra pages if you run out of space or for your own personal notes. We will not
grade this unless you tell us explicitly in the earlier pages.

