L02-1

6.5930/1
Hardware Architectures for Deep Learning

Overview of Deep Neural Network
Components

February 7, 2024

Joel Emer and Vivienne Sze

Massachusetts Institute of Technology
Electrical Engineering & Computer Science

|||il- Sze and Emer

L02-2

Goals of Today’s Lecture

« Overview of the terminology use for Neural Networks

— Research spans many fields
* Many terms for the same thing

+ Same term for many different things

— Define the terminology that we plan to use in this course
« Key building blocks in a Deep Neural Network
« Chapter 1 & 2 in book: https://doi.org/10.1007/978-3-031-01766-7

» For a more in-depth treatment, please see
— MIT’s Machine Learning Courses (63900[6036]/ 67900[6867])

- MIT’s Computer Vision Course (68301 [6.819]/6'8300[6.869])
— Class notes from Stanford’s CNN Course (cs231n)

— www.deeplearningbook.org
— https://d2l.ai/

I L
February 7, 2024 I ||| Sze and Emer

https://doi.org/10.1007/978-3-031-01766-7
http://www.deeplearningbook.org/
https://d2l.ai/

L02-3

Neural Networks: Weighted Sum

I L
February 7, 2024 I ||| Sze and Emer

DNN Terminology 101

February 7, 2024

Layer Hidden
Layer

Neurons weighted
/ v, sum
hq \
AN

activation

v/ %
“,"{ ‘4 non-lir.1ear
)A‘¢ @VAVL function
F

L02-4

Sze and Emer

L02-5

DNN Terminology 101

weighted
sum

activation

</ _/
“Vl’{ ‘4‘ n]:)n-lipear
);‘, "'«~ ‘l‘\ unction

‘/)“ \—/
NS o

@, Layer
Layer Hidden

Layer
Synapses

(weights)

I L
February 7, 2024 I ||| Sze and Emer

L02-6

DNN Terminology 101

Each synapse has a weight for neuron activation

weighted
sum activation

=

non-linear
function f(-)

February 7, 2024

L02-7

DNN Terminology 101

Weight Sharing: multiple synapses use the same weight value

weighted
sum activation

non-linear
function f(-)

February 7, 2024

L02-8

DNN Terminology 101

Layer 1 (L1) ' Layer2(L2) ' Layer 3 (L3)

)
X1 N Wi . J
% }‘(/ \"{‘H\)
SO
X NN N
X W43 \ (o
4¢ L1 O? t Activati ~

L1 Inputs
(e.g., image pixels)

I L
February 7, 2024 I I" Sze and Emer

February 7, 2024

DNN Terminology 101

Layer 1 (L1) ' Layer2(L2) ' Layer 3 (L3)

A

. ‘Wﬂ "/
- }‘(/ \"{‘H\)
/RN TNORR O\ N

X4 W43 \ @

L2 Input Activations
L2 Output Activations

L02-9

ze and Emer

L02-10

DNN Terminology 101

A layer can refer to a set activations or a set of weights.
In this class, we use layer to refer to a set of weights.

A
%&’ 1{':“\‘ (=

FARE

2-layer Neural Net 3-layer Neural Net
or or
1-hidden-layer Neural Net 2-hidden-layer Neural Net

I L
February 7, 2024 I ||| Sze and Emer

L02-11

DNN Terminology 101

Fully-Connected: all i/p neurons connected to all o/p neurons

Sparsely-Connected

Fully-Connected
A=

Hidden
February 7, 2024 iy Layer

Sze and Emer

DNN Terminology 101

Feed Forward

J & Feedback
2R
N \\/':‘\

MHRLL =K
X RN\
4'&‘/)‘{'

Hidden
Layer

FFFFFFFF , 2024 i

So Many Neural Networks!

L02-13

February 7, 2024

O Backfed Input Cell
Input Cell
5 Noisy Input Cell
@ Hidden Cell
. Probablistic Hidden Cell
@ spiking Hidden Cell
. Output Cell
. Match Input Output Cell
. Recurrent Cell
. Memory Cell
. Different Memory Cell
~ Kernel

QO Convolution or Pool

A mostly complete chart of

Neural Networks

©2016 Fjodor van Veen - asimovinstitute.org

TANAY

A
000

Perceptron (P) Feed Forward (FF) Radial Basis Network (RBF) AN
; ; ; RORCS
. 8) R

Recurrent Neural Network (RNN) Long / Short Term Memory (LSTM) Gated Recurrent Unit (GRU)
0 0 R [[. 0 0

BB
e %

Auto Encoder (AE) Variational AE (VAE) Denoising AE (DAE) Sparse AE (SAE)

X5

Markov Chain (MC) Hopfield Network (HN) Boltzmann Machine (BM) Restricted BM (RBM) Deep Belief Network (DBN)

o
S o
- SN L8 0
0 00 0 0 8
g .

O

http://www.asimovinstitute.org/neural-network-zoo/

Sze and Emer

http://www.asimovinstitute.org/neural-network-zoo/

L02-14

Popular Types of DNNs

Sparsely-Connected
Fully-Connected P y \'

* Fully-Connected NN -

— feed forward, a.k.a.
multilayer perceptron (MLP)

« Convolutional NN (CNN)

— feed forward, sparsely-
connected w/ weight sharing

Hidden
Layer

L
February 7, 2024 I|||| Sze and Emer

L02-15

Popular Types of DNNs

 Recurrent NN (RNN) Feed Forward
_ feedback j \ Feedback
* Long Short-Term Memory (LSTM)

— feedback + storage

Encoders

— output smaller than input

 Decoders
— output larger than input
Layer : Layer
 Transformers Hidden
Layer

— “attention” mechanism

L
February 7, 2024 I|||| Sze and Emer

L02-16

Applications of CNN

Computer Vision Speech Recognition

044 045 0.6 0+7 0+8 0+9 1
10

Spectrogram I

-40

L
February 7, 2024 I|||| Sze and Emer

L02-17

Convolutional Neural Networks

Modern Deep CNN: 5 — 1000 Layers
A

))
Low-Level High-Level
Features > % Features &Classes
A

1 -3 Layers

I L
February 7, 2024 I I" Sze and Emer

L02-18

Depth of Network

Low Level Features High Level Features

Output:
“Volvo XC90”

Modified Image Source: [Lee, CACM 2011]

L
February 7, 2024 i Sze and Emer

L02-19

Convolutional Neural Networks

Low-Level
Features >

High-Level
Features &Classes

Convolution| | Activation

A

I L
February 7, 2024 I I" Sze and Emer

L02-20

Convolutional Neural Networks

Low-Level High-Level
Features > % Features
)

P \

Fully Activation

Connected
= [|l-U%

I L
February 7, 2024 I ||| Sze and Emer

Convolutional Neural Networks

L02-21

February 7, 2024

Optional layers in between

CONV and/or FC layers

Normalization

LR 2

High-Leve

Features

Pooling

S

I
&Classes

Sze and Emer

L02-22

Convolutional Neural Networks

FC
Layer

CONV @ NORM § POOL @ CONV
Layer Layer |@ Layer |@ Layer

Convolutions account for more
than 90% of overall computation,
dominating runtime and energy
consumption

L
February 7, 2024 i Sze and Emer

L02-23

Convolution (CONV) Layer

a plane of input activations
a.k.a. input feature map (fmap)

filter* (weights)
)
|

* also referred to as kernel

L
February 7, 2024 i Sze and Emer

Convolution (CONV) Layer

input fmap

filter (weights)

T
! NS
<~ § — < W >
Element-wise
Multiplication

February 7, 2024 |||il-

L02-24

Sze and Emer

Convolution (CONV) Layer

input fmap output fmap
filter (weights) [~ = = an output

l
<SS < w > «— Q—

Element-wise Partial Sum (psum)
Multiplication Accumulation

February 7, 2024 |||il-

L02-25

Sze and Emer

February 7, 2024

Convolution (CONV) Layer

input fmap output fmap
filter (weights) an output
=| activation
!
<S8 < w > — Q—

Sliding Window Processing

L02-26

Sze and Emer

L02-27

2D Convolution Example

Convolution (Stride 1)

0 10 Filter support: 3x3

Filter 1T 1 1 Also referred to as the receptive field

(3x3) 0 1 0 (each output requires 9 multiplications®)
0O 1 2 3 2

Input 1.2 2 20 Output

Feature O 1 0 1 3 Feature
Map 12 2 10 Map
(5x5) O 1 0 3 1

*assume no optimization for zeros

I L
February 7, 2024 I ||| Sze and Emer

L02-28

2D Convolution Example

Convolution (Stride 1)

Filter 11 1
3x3) 0 10

0 1 2|3 2 7
Input 1 2 2 | 2 0 Output
Feature O 1 011 3 Feature
Map 1 2 2 1 0 Map
(5x5) 0 1 0 3 1

L
February 7, 2024 I|||| Sze and Emer

2D Convolution Example

L02-29

Filter
(3x3)

Input
Feature
Map
(5x5)

February 7, 2024

(@)

o =~ O -~ O

Convolution (Stride 1)

10
1 1
10
1 2 3
2 2 2
1.0 1
23|
1 0 3

- O W O N

Feature

Output

Map

Sze and Emer

2D Convolution Example

L02-30

Filter
(3x3)

Input
Feature
Map
(5x5)

February 7, 2024

(@)

o =~ O -~ O

= N = N -

Convolution (Stride 1)

(@2 \)

W == N W

o NN o -~ O
- O |W O N

Feature

Output

Map

8

Sze and Emer

2D Convolution Example

L02-31

Filter
(3x3)

Input
Feature
Map
(5x5)

February 7, 2024

Convolution (Stride 1)

0O 1 0
1 1 1
0O 1 0
O 1 2 3
1 2 2|2
0O 1 01
1. 2 211
0O 1 0 3

- O W O N

Feature

Output

Map

/7 8 8
5

Sze and Emer

2D Convolution Example

L02-32

Filter
(3x3)

Input
Feature
Map
(5x5)

February 7, 2024

(@)

o =~ O -~ O

Convolution (Stride 1)

1 0
1 1
1 0
1 2 3
2 2 2
1 0 1
2 2 1
1 0 3

- O W O N

Feature

Output

Map

7
S}

8
6

8

Sze and Emer

2D Convolution Example

L02-33

Filter
(3x3)

Input
Feature
Map
(5x5)

February 7, 2024

(@)

o =~ O -~ O

= N = N -

Convolution (Stride 1)

0
1
0
2 3 2
2 2 0
0O 1 3
2 1 0
0 3 1

Output
Feature

Map

7
S}

8
6

8
7

Sze and Emer

L02-34

2D Convolution Example

Convolution (Stride 1)

010
Filter T 1 1
(3x3) 0 1 0

01 2 3 2 7 8 8
Input 1.2 2 20 Output 5 6 7
Feature o1 0 1 3 Feature 6 5 7
Map 1 2 2 1 0 Map
(5%5) 0 10 3 1 (3x3)

Size of Size of Size of

Output Feature Map = (Input Feature Map — Filter + Stride) / Stride
of multiplications?

L
February 7, 2024 I|||| Sze and Emer

L02-35

2D Convolution Example

Convolution (Stride 2)

Filter 11 1
3x3) 0 10

0 1 2|3 2 7
Input 1 2 2 | 2 0 Output
Feature O 1 011 3 Feature
Map 1 2 2 1 0 Map
(5x5) 0 1 0 3 1

L
February 7, 2024 I|||| Sze and Emer

2D Convolution Example

L02-36

Filter
(3x3)

Input
Feature
Map
(5x5)

February 7, 2024

(@)

o =~ O -~ O

= N = N -

Convolution (Stride 2)

(@2 \)

W == N W

o NN o -~ O
- O |W O N

Feature

Output

Map

Sze and Emer

2D Convolution Example

L02-37

Filter
(3x3)

Input
Feature
Map
(5x5)

February 7, 2024

Convolution (Stride 2)

0O 1 0
1 1 1
0O 1 0
0O 1 2 3
1 2 2 2
0O 1 01
1 2 2|1
0O 1 0)3

- O W O N

Feature

Output

Map

7
6

8

Sze and Emer

2D Convolution Example

L02-38

Filter
(3x3)

Input
Feature
Map
(5x5)

February 7, 2024

(@)

o =~ O -~ O

= N = N -

Convolution (Stride 2)

0
1
0
2 3 2
2 2 0
0O 1 3
2 1 0
0 3 1

Output
Feature

Map

6

7

Sze and Emer

L02-39

2D Convolution Example

Convolution (Stride 2)

0 1 0
Filter 1T 1 1
(3x3) 0 10
01 2 3 2 7 8
Input 1.2 2 2 0 Output 6 7
Feature 0O 1 0 1 3 Feature
Map 1 2 2 1 0 Map
(5x5) 0 1 0 3 1 (2x2)
Size of Size of Size of

Output Feature Map = (Input Feature Map — Filter + Stride) / Stride
of multiplications?

L
February 7, 2024 I|||| Sze and Emer

L02-40

2D Convolution Example

Convolution (Stride 3)

0 1 0
Filter 1T 1 1
(3x3) 0 10
0 1 2|3 2 7
Input 1.2 2|2 0 Output
Feature O 1 011 3 Feature
Map 1 2 2 1 0 Map
(5x5) 010 3 1 (1x1)
Size of Size of Size of

Output Feature Map = (Input Feature Map — Filter + Stride) / Stride
of multiplications?

L
February 7, 2024 I|||| Sze and Emer

L02-41

Impact of Stride on Convolution

Stride > 1 is equivalent to downsampling the
output feature map when Stride =1

Stride 1 Stride 2 Stride 3
7 8 8 8 7
Output 5 6 7 Output 6 7 Output
Feature 6 5 7 Feature Feature
Map Map Map

(3x3) (2x2) (1x1)

I L
February 7, 2024 I ||| Sze and Emer

L02-42

Zero Padding

» The size of the output shrinks relative to the input
« Use zero padding to control the size of the output

« Can set padding based on filter size such that the output size is equal to
original the input size

0 0000 OO
1412152 0012320
7 N e e 0122 2000
01013‘oo1o130
T2z s 0122100
Sl lalal 0010310

0000000

L
February 7, 2024 I|||| Sze and Emer

2D Convolution Example

L02-43

Convolution (Stride 1) + zero padding

0 1 0
Filter T 1 1
(3x3) 0 10
0 00 0O0O 0O
lnput [0 0 1 2 3 2 0 Output
Feature 0 1 2 2 2 0 0 Feature
Map 0 01 0 1 30 Map
(7x7) 0 1 2 2 1 0 0 (5x5)
0 010310
0 00 0O0O00O

February 7, 2024 |||il-

N WO W w N

W o 01 N O

o o1 O 0

OO N N 0o ©

A~ 00 B~ A O

Sze and Emer

L02-44

Zero Padding in PyTorch

« padding (python:int or tuple, optional) added to input. Default: 0

— https://pytorch.org/docs/stable/nn.html#padding-layers
— Ex: padding=1, pad 1 to the top, bottom, right, and left.

— Ex. padding=[1,2], pad 1 to the top and bottom, pad 2 to the right and left
» Default: No zero padding
— filter is RxS and input is HXW, and stride U
— output is (H-R+U)/U x (W-S+U)/U
« Padding=[(R-1)/2, (S-1)/2]: zero padding so that output remains the same for U=1
— filter is RxS and input is HXW, and stride U
— output is ceil(H/U) x ceil(W/U)
« Padding is not always explicitly defined, but can be inferred from the size of the feature map

— Deep networks use padding to prevent feature maps from shrinking

Different frameworks can use different types of padding

I L
February 7, 2024 I ||| Sze and Emer

https://pytorch.org/docs/stable/nn.html

L02-45

Signal Processing Perspective

/ Cross-Correlation rather than Convolution \

Recall from 6.3000¢ 003; and 6.70106 344;, the filter needs to be flipped for a convolution.

y(n17 n2) — (nla n?) * h(nla n2)

zzzx k’l,kQ h(1_k19n2_k2)

ki1 ko

For CNN, the filter is combined with an input window without reversing the filter.
Strictly speaking, this is a cross-correlation.

4 Size of Output after Filtering)

Recall from 6.30006 93 and 6.70106 344, if filter size is M and input is N, output is N+M-1.
No restriction on zero padding.

For CNN, the amount of zero padding can be varied to control the output size.
\ The output size is typically equal or smaller than the input size. J

I L
February 7, 2024 I ||| Sze and Emer

L02-46

Depth of Network: Convolution

As you go deeper into the network, more pixels contribute to each activation.

Example: 3x3 filter

o[1f2]3]2
112|2]2|o0 7|88
of1]0]1]3 567 31
112|2]1]o0 6 (5|7
o[1]0]3]1

Input to Layer 1 Layer 2 Layer 3

Feature maps of deep layers typically give higher level features

I L
February 7, 2024 I ||| Sze and Emer

L02-47

Convolution (CONV) Layer

input fmap

output fmap

<SS < w > «— Q—

Many Input Channels (C)

e.g., For Layer 1, C=3 for the red, green, and blue components of an image

I L
February 7, 2024 I ||| Sze and Emer

L02-48

Convolution (CONV) Layer

input fma
_many " P output fmap
filters (M) ,Cﬂ
if | ® o’
Rl P

«~— Q—

)

)
!

=

Many
Output Channels (M)*

e.g., # of output channels (M,) of Layer 1 becomes # of
M input channels (C,) of Layer 2
Note: # of filters often referred to as width of network

February 7, 2024 Nir
ebruary 7, 20 I'lii *some works use K rather than M Sze and Emer

L02-49

Convolution (CONV) Layer

Many
Input fmaps (N) Many
flters \k/cq. Outpn;’t fmaps (N)

/C” : Y '
) H T
R A
) ! 1

<SS < w > «— Q—

N

v o «— Q—

February 7, 2024 |||i|- Batch Size (N) Sze and Emer

L02-50

CNN Decoder Ring

* N — Number of input fmaps/output fmaps (batch size)

 C — Number of channels in input fmaps (activations) & filters (weights)
* H - Height of input fmap (activations)

« W — Width of input fmap (activations)

* R - Height of filter (weights)

* S — Width of filter (weights)

* M - Number of channels in output fmaps (activations)

* P - Height of output fmap (activations)

« Q- Width of output fmap (activations)

« U - Stride of convolution

I L
February 7, 2024 I ||| Sze and Emer

L02-51

Tensors

Rank-0: Scalar Rank-1: Vector
Rank-2: Matrix Rank-3: Cube

February 7, 2024 hr

Sze and Emer

February 7, 2024

Input Feature Map (fmap)

Input fmap (activations)

I[CI[R][W]

L02-52

Sze and Emer

L02-53

CONYV Layer Tensor Computation

Output fmap (O) Input fmap (1)
Biases (B) Filter weights (W)
w C-1R-15-1 v
ofn][m]pllg) = blm] + Y Y ¥ iln][c][Up +7][Uq + 5] x £[m][c][r][s].

c=0 r=0 s=0
0<n< NO<m<MO<p<P0<qg<Q,
P=(H-R+U)/UQ=(W-5+U)/U.

Shape Parameter | Description
N batch size of 3-D fmaps
M # of 3-D filters / # of ofmap channels
C # of ifmap/filter channels
H/W ifmap plane height/width
R/S filter plane height/width (= H or W in FC)
P/Q ofmap plane height/width (= 1 in FC)

February 7, 2024 1"l Sze and Emer

L02-54

Einstein Notation (Einsum)

Algebraic Notation
C-1R-15-1

o[n][m][pllg] = blm] + Y > > iln]lc][Up +r][Uq+ s] x f[m][c][r][s]

c=0 r=0 s=0

Einsum Notation

On,m,p,q — Bm + In,c,Up+r,Uq+sx m,c,r,S

Einsum does not enforce any computational order

[Einstein, Annalen der Physike 1916], [Kjolstad, TACO, OOPSLA 2017], [Parashar, Timeloop, ISPASS 2019]

I L
February 7, 2024 I ||| Sze and Emer

L02-55

CONYV Layer Implementation

Naive 7-layer for-loop implementation:

for n in [@..N):

f in [0..M):
o gorl‘nq[in [%. .0): for each output fmap value

for p in [0..P):

~ o[nl[m][pllal = B[m];

convolve for ¢ in [0@..C):

a window for 1r:‘ in [OF[% .

and apply =t or s in ..S):

o o[n][m]lpllql += I[n][c][Up+r][Ug+s]

activation < EmI[cI[r][s];

- Oo[n][m][pllal = Activation(O[n][m][p][ql);
February 7, 2024 I||i|- Sze and Emer

Traditional Activation Functions

L02-56

Sigmoid Hyperbolic Tangent
0 0 ’
-1 -1

-1 0 1 -1 0 1

y=1/(1+eX) y=(ex-ex)/(ex+eX)

Note: Also referred to as the non-linearity

February 7, 2024 |||II Image Source: Caffe Tutorial

Sze and Emer

L02-57

Modern Activation Functions

Rectified Linear Unit Exponential LU _
(ReLU) Leaky RelLU (ELU) Swish
0 0 0 0
0 0 0
X20 .]
y=max(0,Xx) y=max (ax, X) y= {a(ex 1),x<0 y=x*sigmoid(ax)

Variants: e.g., ReLU®6 (clipped max value to 6) and h-swish (replace sigmoid with piecewise linear function)

February 7, 2024 I'ii Image Source: Caffe Tutorial Sze and Emer

Comparison of Activations

L02-58

Sigmoid/Hyperbolic Tangent

Difficult to train due to vanishing
gradient problem

— Small gradient at high and low

activation values \

t+1 _ .t . 0L
Wij = Wi — Q%

Not easy to implement
— Typically use a look up table (LUT)

RelLU

Gradient does not vanish at high
activation values - faster training
Easy to implement

Leads to sparsity in activations,
which has additional
implementation benefits

February 7, 2024

Sze and Emer

Training Speed: tanh vs. RelLU

L02-59

February 7, 2024

RelLU reaches a 25% training error rate on CIFAR-
10 six times faster than tanh

Training error rate

0.75 1

0.54

0.251

\
\
~
S~
- tanh
— - -
- - _ -
RelLU
0 5 10 1I5 20 215 SIO 3I5 40
Epochs

[Krizhevsky, NeurlPS 2012]

Sze and Emer

Fully-Connected (FC) Layer

Fully-Connected: all i/p neurons connected to all o/p neurons

Sparsely-Connected

Fully-Connected
A=

Hidden
February 7, 2024 iy Layer

L02-60

Sze and Emer

L02-61

FC Layer — from CONV Layer POV

filters input fmaps
c 7 output fmaps
A= N
: il
1 I D

February 7, 2024 Sze and Emer

L02-62

Pooling (POOL) Layer

* Reduce resolution of each channel independently

» Specifically, for shape parameters: P<H, Q<W,M=C

« QOverlapping or non-overlapping - depending on stride

2x2 pooling, stride 2

A
23 7 7 8

H 10 a1l 8 0

February 7, 2024

Max pooling

23 9

Average pooling
i

Increases translation-invariance
and noise-resilience

Used in encoder DNN models

Image Source: Caffe Tutorial Sze and Emer

L02-63

POOL Layer Implementation

Naive 6-layer for-loop max-pooling implementation:

for n in [@..N):
for m in [0..M): for each pooled value
for g in [0..Q):

for p in [0..P):

max = -Inf
for r in [@..R): find the
for s in [@..S): maxina

if I[n][m][Up+r][Ug+s] > max: window

max = I[n][m][Up+r][Ug+s];

O[n][m]lplla] = max -

I L
February 7, 2024 I ||| Sze and Emer

L02-64

Pooling Einsums

Average Pooling

0 . In,m,Up+r,Uq+s
n;m;p;q e UZ

Maximum Pooling

On,m,p,q = Max (In,m,Up+r,Uq+s)

L
February 7, 2024 I|||| Sze and Emer

L02-65

Upsampling Layer

 Increase resolution of each channel independently

« Specifically, for shape parameters: P >H, Q>W, M=C

Zero insertion

A

0

B

0

[ON Nal N

[N BN N

[ON Rwl N

[N NN N

nlx=|>

Nnlrx=|>

O|®|®

C

C

D

O|J]C|®@]|®

Interpolation

(e.g., nearest neighbors)

February 7, 2024

Used in decoder DNN models

|||il- Sze and Emer

L02-66

Upsampling Einsums

Zero insertion

Om,n,U Xh,UXw — Im,n,h,w

Interpolation
0m,n,h+r,w+s — Imnhw

where r & s vary over a range of [0,U)

I L
February 7, 2024 I ||| Sze and Emer

L02-67

Normalization (NORM) Layer

« Batch Normalization (BN)

— Normalize activations towards mean=0 and std. dev.=1 based on
the statistics of the training dataset

— put in between CONV/FC and Activation function

Activation

A

Believed to be key to getting high accuracy and
faster training on very deep neural networks.

February 7, 2024 hr [loffe, ICML 2015] Sze and Emer

L02-68

Impact of Batch Normalization

Less Noisy Activations

Faster Training o WihowsN with o
Batch Normalization Accurac >
100 e meEeon ey, a0
35
30
25
20
0.95 15 :
1'00 160 260 30‘_0 460 560 EOIO 760 3)0_1'0 0 160 260 30‘0,40‘0 560 660 760 800
=55 - W'Ithovut BiN 0.0 — “Nlth BNv —T
a -0.2
© -0.4
é 0.90 06
-0.8
& -1.0
-1.2
085 el Tl
R "0 100 200 300 400 500 600 700 800 ~ O 100 200 300 400 500 €00 700 800
— Without BN 10 W|thqut ?N 14— YVlth BN ‘
— With BN - 12
10
0.80 L L L L L I n 15 08
0 5000 10000 15000 20000 25000 30000 35000 40000 10 06
Training steps 33 04
-05 0.2
-1.0 0.0

-15 T S S R Y -0.2 P R S S S
0100 200,300, 400,500 600 700 800 0 100 200 300 400_500 600 700 800

time time

L
February 7, 2024 ||||| Image Source: r2rt.com Sze and Emer

BN Layer Implementation

The normalized value is further scaled and shifted, the parameters of
which are learned from training

data mean
learned scale factor

ﬂ ¢ learned shift factor

data std. dev. small const. to avoid
numerical problems

For inference, computation can be folded into the weights of the CONV or FC

February 7, 2024 |||il-

L02-69

Sze and Emer

High-Performance Large-Scale Image Recognition Without Normalization

102.06171v1 [cs.CV] 11 Feb 2021

)
.

February 7, 2024

Andrew Brock! Soham De! Samuel L. Smith! Karen Simonyan !

Abstract

Batch normalization is a key component of most
image classification models, but it has many unde-
sirable properties stemming from its dependence
on the batch size and interactions between ex-
amples. Although recent work has succeeded
in training deep ResNets without normalization
layers, these models do not match the test ac-
curacies of the best batch-normalized networks,
and are often unstable for large learning rates
or strong data augmentations. In this work, we
develop an adaptive gradient clipping technique
which overcomes these instabilities, and design a
significantly improved class of Normalizer-Free
ResNets. Our smaller models match the test ac-
curacy of an EfficientNet-B7 on ImageNet while
being up to 8.7 x faster to train, and our largest
models attain a new state-of-the-art top-1 accu-
racy of 86.5%. In addition, Normalizer-Free mod-
els attain significantly better performance than
their batch-normalized counterparts when fine-
tuning on ImageNet after large-scale pre-training
on a dataset of 300 million labeled images, with
our best models obtaining an accuracy of 89.2%.2

1 Tobmndunnéine.

Fa NFNet-F5

LambdaNet-420 .
- BoThet-128-T7 _ EfNetp7

Lambdaflet-152
8 " 4" *DelT-384

8 DeIT.-224
¢" BoTNet-59

ImageNet Top-1 Accuracy (%)

EffNet-B2

80 U

El'urainingnlfatencyu(AS/step)D;n TPU\:g, Batc}:nSize pelrQDevice‘; 32

Figure 1. ImageNet Validation Accuracy vs Training Latency.
All numbers are single-model, single crop. Our NFNet-F1 model
achieves comparable accuracy to an EffNet-B7 while being 8.7 x
faster to train. Our NFNet-F5 model has similar training latency to
EffNet-B7, but achieves a state-of-the-art 86.0% top-1 accuracy
on ImageNet. We further improve on this using Sharpness Aware
Minimization (Foret et al., 2021) to achieve 86.5% top-1 accuracy.

However, batch normalization has three significant practical
disadvantages. First, it is a surprisingly expensive computa-
tional primitive, which incurs memory overhead (Rota Bulo

At al ANTON and nlmniBficnnéle fnnvannan tha tona cammsiea An

[Brock, ICML 2021] Ui

Normalization-Free Nets: No Need for Batch Norm!

State-of-the-art accuracy
without batch normalization!

Sze and Emer

L02-71

Relevant Components for Class

 Typical operations that we will use:
— Convolution (CONV)

- FUIly'ConneCted (FC) ELU RELU RELU RELU RELU RELU

. CONV [CONV CONV | CONV CONV | CONV
— Max Pooling l l l | l
— RelLU

=
=
=
= filick
g gifplane
..g .

ship

horse

J
=
-
-
e
-
-
=1

-
February 7, 2024 IIIII Image Source: Stanford Sze and Emer

L02-72

Training versus Inference

Training Inference
(determine weights) (use weights)

Weights

L
February 7, 2024 I||" Sze and Emer

L02-73

Training DNN

Forward propagation*®

Class
nput I S corcs
A

XIS
§,«‘§ Al“

Q
N\
Gradient _/

L (. oss

awij Back propagation * inference also uses
forward propagation

7,
‘:I‘:‘
4"‘('

Loss
Function

)

L
February 7, 2024 i Sze and Emer

L02-74

Summary

« Terminology for Deep Neural Networks (DNN)

— synapse > weights, neuron output - activations

— filter = set of weights; feature map = set of activations
 Different layers in a DNN

— Convolution (CONV), Pooling (POOL), Activation (RELU), Normalization
(NORM), Fully Connected (FC)

— Configuration Options: filter shapes (R,S,C,M), zero padding, avg/max
pooling, activation function, etc.

» Training with forward and backward propagation

L
February 7, 2024 I|||| Sze and Emer

L02-75

References

Textbook: Chapter 1 & 2
— https://doi.org/10.1007/978-3-031-01766-7

Stanford ¢s231n

— http://cs231n.qgithub.io/convolutional-networks/

http://www.deeplearningbook.org/

— Chapter 9 http://www.deeplearningbook.org/contents/convnets.html
Other Works Cited in Lecture

— loffe, Sergey, and Christian Szegedy. "Batch normalization: Accelerating
deep network training by reducing internal covariate shift," ICML 2015.

L
February 7, 2024 I|||| Sze and Emer

https://doi.org/10.1007/978-3-031-01766-7
http://cs231n.github.io/convolutional-networks/
http://www.deeplearningbook.org/
http://www.deeplearningbook.org/contents/convnets.html

