
L02-1

Sze and Emer

6.5930/1
Hardware Architectures for Deep Learning

Overview of Deep Neural Network
Components

Joel Emer and Vivienne Sze

Massachusetts Institute of Technology
 Electrical Engineering & Computer Science

February 7, 2024

L02-2

Sze and Emer

Goals of Today’s Lecture

• Overview of the terminology use for Neural Networks
– Research spans many fields

• Many terms for the same thing

• Same term for many different things

– Define the terminology that we plan to use in this course

• Key building blocks in a Deep Neural Network
• Chapter 1 & 2 in book: https://doi.org/10.1007/978-3-031-01766-7
• For a more in-depth treatment, please see

– MIT’s Machine Learning Courses (6.3900[6.036]/ 6.7900[6.867])

– MIT’s Computer Vision Course (6.8301[6.819]/6.8300[6.869])

– Class notes from Stanford’s CNN Course (cs231n)
– www.deeplearningbook.org
– https://d2l.ai/

February 7, 2024

https://doi.org/10.1007/978-3-031-01766-7
http://www.deeplearningbook.org/
https://d2l.ai/

L02-3

Sze and Emer

Neural Networks: Weighted Sum

February 7, 2024

yj = f wixi
i
∑ + b
⎛

⎝
⎜

⎞

⎠
⎟

w1x1

w2x2

w0x0

x0 w0 synapse
axon

dendrite

axon

neuron
yj

L02-4

Sze and Emer

DNN Terminology 101

February 7, 2024

Neurons

Input
Layer Hidden

Layer

Output
Layer

weighted
sum

non-linear
function

activation

L02-5

Sze and Emer

DNN Terminology 101

February 7, 2024

Synapses
(weights)

Input
Layer Hidden

Layer

Output
Layer

weighted
sum

non-linear
function

activation

L02-6

Sze and Emer

DNN Terminology 101
Each synapse has a weight for neuron activation

February 7, 2024

weighted
sum

non-linear
function f(・)

activation

W00

W30

x0

x1

x2

x3

y1

y0

y2
𝑦! = 𝑓 $

"#$

%

𝑊"!×𝑥"

L02-7

Sze and Emer

DNN Terminology 101

February 7, 2024

weighted
sum

non-linear
function f(・)

activation

W00

W30

x0

x1

x2

x3

y0

𝑦! = 𝑓 $
"#$

%

𝑊"!×𝑥"

Weight Sharing: multiple synapses use the same weight value

y1

y2

L02-8

Sze and Emer

DNN Terminology 101

February 7, 2024

W11

W43

x1

x2

x3

x4

y1

y2

y3

Layer 1 (L1) Layer 2 (L2) Layer 3 (L3)

L1 Inputs
(e.g., image pixels)

L1 Output Activations

L02-9

Sze and Emer

DNN Terminology 101

February 7, 2024

W11

W43

x1

x2

x3

x4

y1

y2

y3

Layer 1 (L1) Layer 2 (L2) Layer 3 (L3)

L2 Output Activations
L2 Input Activations

L02-10

Sze and Emer

DNN Terminology 101

February 7, 2024

A layer can refer to a set activations or a set of weights.
In this class, we use layer to refer to a set of weights.

2-layer Neural Net
or

1-hidden-layer Neural Net

3-layer Neural Net
or

2-hidden-layer Neural Net

L02-11

Sze and Emer

DNN Terminology 101

February 7, 2024

Input
Layer Hidden

Layer

Output
Layer

Fully-Connected
Sparsely-Connected

Fully-Connected: all i/p neurons connected to all o/p neurons

L02-12

Sze and Emer

DNN Terminology 101

February 7, 2024

Input
Layer Hidden

Layer

Output
Layer

Feed Forward
Feedback

L02-13

Sze and Emer

So Many Neural Networks!

http://www.asimovinstitute.org/neural-network-zoo/
February 7, 2024

http://www.asimovinstitute.org/neural-network-zoo/

L02-14

Sze and Emer

Popular Types of DNNs

• Fully-Connected NN
– feed forward, a.k.a.

multilayer perceptron (MLP)

• Convolutional NN (CNN)
– feed forward, sparsely-

connected w/ weight sharing

February 7, 2024

Input
Layer Hidden

Layer

Output
Layer

Fully-Connected
Sparsely-Connected

L02-15

Sze and Emer

Popular Types of DNNs

• Recurrent NN (RNN)
– feedback

• Long Short-Term Memory (LSTM)
– feedback + storage

• Encoders
– output smaller than input

• Decoders
– output larger than input

• Transformers
– “attention” mechanism

February 7, 2024

Input
Layer Hidden

Layer

Output
Layer

Feed Forward
Feedback

L02-16

Sze and Emer

Applications of CNN

February 7, 2024

Computer Vision Speech Recognition

Game Play Medical

Spectrogram

L02-17

Sze and Emer

Convolutional Neural Networks

Modern Deep CNN: 5 – 1000 Layers

ClassesFC
Layer

CONV
Layer

Low-Level
Features CONV

Layer

High-Level
Features…

1 – 3 Layers

February 7, 2024

L02-18

Sze and Emer

Depth of Network

February 7, 2024

Input:
Image

Output:
“Volvo XC90”

Modified Image Source: [Lee, CACM 2011]

Low Level Features High Level Features

L02-19

Sze and Emer

Convolutional Neural Networks

ClassesFC
Layer

CONV
Layer

Low-Level
Features CONV

Layer

High-Level
Features…

Convolution Activation

×

February 7, 2024

L02-20

Sze and Emer

Convolutional Neural Networks

ClassesFC
Layer

CONV
Layer

Low-Level
Features CONV

Layer

High-Level
Features…

Fully
Connected

Activation

×

February 7, 2024

L02-21

Sze and Emer

Convolutional Neural Networks

ClassesFC
Layer

CONV
Layer

CONV
Layer

High-Level
Features

Optional layers in between
CONV and/or FC layers

NORM
Layer

POOL
Layer

Normalization Pooling

February 7, 2024

L02-22

Sze and Emer

Convolutional Neural Networks

Classes
High-Level
Features FC

Layer
CONV
Layer

CONV
Layer

NORM
Layer

POOL
Layer

Convolutions account for more
than 90% of overall computation,
dominating runtime and energy
consumption

February 7, 2024

L02-23

Sze and Emer

Convolution (CONV) Layer

R

S

H

a plane of input activations
a.k.a. input feature map (fmap)

filter* (weights)

W

February 7, 2024

* also referred to as kernel

L02-24

Sze and Emer

R

filter (weights)

Convolution (CONV) Layer

input fmap

S
Element-wise
Multiplication

H

W

February 7, 2024

L02-25

Sze and Emer

R

filter (weights)

S

Convolution (CONV) Layer

P

Q
Partial Sum (psum)

Accumulation

input fmap output fmap

Element-wise
Multiplication

H

W

an output
activation

February 7, 2024

L02-26

Sze and Emer

H
R

filter (weights)

S

Convolution (CONV) Layer

P

Sliding Window Processing

input fmap
an output
activation

output fmap

W Q

February 7, 2024

L02-27

Sze and Emer

2D Convolution Example

0 1 0
1 1 1
0 1 0

February 7, 2024

Filter
(3x3)

Input
Feature

Map
(5x5)

Output
Feature

Map

0 1 2 3 2
1 2 2 2 0
0 1 0 1 3
1 2 2 1 0
0 1 0 3 1

Convolution (Stride 1)

Filter support: 3x3
Also referred to as the receptive field

(each output requires 9 multiplications*)

*assume no optimization for zeros

L02-28

Sze and Emer

2D Convolution Example

0 1 0
1 1 1
0 1 0

February 7, 2024

0 1 2 3 2
1 2 2 2 0
0 1 0 1 3
1 2 2 1 0
0 1 0 3 1

Filter
(3x3)

Input
Feature

Map
(5x5)

Output
Feature

Map

7

Convolution (Stride 1)

L02-29

Sze and Emer

2D Convolution Example

0 1 0
1 1 1
0 1 0

February 7, 2024

Filter
(3x3)

Input
Feature

Map
(5x5)

Output
Feature

Map

7 80 1 2 3 2
1 2 2 2 0
0 1 0 1 3
1 2 2 1 0
0 1 0 3 1

Convolution (Stride 1)

L02-30

Sze and Emer

2D Convolution Example

0 1 0
1 1 1
0 1 0

February 7, 2024

0 1 2 3 2
1 2 2 2 0
0 1 0 1 3
1 2 2 1 0
0 1 0 3 1

Filter
(3x3)

Input
Feature

Map
(5x5)

Output
Feature

Map

7 8 8

Convolution (Stride 1)

L02-31

Sze and Emer

2D Convolution Example

0 1 0
1 1 1
0 1 0

February 7, 2024

Filter
(3x3)

Input
Feature

Map
(5x5)

Output
Feature

Map

7 8 8
5 6 7

0 1 2 3 2
1 2 2 2 0
0 1 0 1 3
1 2 2 1 0
0 1 0 3 1

Convolution (Stride 1)

L02-32

Sze and Emer

2D Convolution Example

0 1 0
1 1 1
0 1 0

February 7, 2024

Filter
(3x3)

Input
Feature

Map
(5x5)

Output
Feature

Map

7 8 8
5 6 7

0 1 2 3 2
1 2 2 2 0
0 1 0 1 3
1 2 2 1 0
0 1 0 3 1

Convolution (Stride 1)

L02-33

Sze and Emer

2D Convolution Example

0 1 0
1 1 1
0 1 0

February 7, 2024

Filter
(3x3)

Input
Feature

Map
(5x5)

Output
Feature

Map

7 8 8
5 6 7

0 1 2 3 2
1 2 2 2 0
0 1 0 1 3
1 2 2 1 0
0 1 0 3 1

Convolution (Stride 1)

L02-34

Sze and Emer

2D Convolution Example

0 1 0
1 1 1
0 1 0

February 7, 2024

Filter
(3x3)

Input
Feature

Map
(5x5)

Output
Feature

Map
(3x3)

7 8 8
5 6 7
6 5 7

0 1 2 3 2
1 2 2 2 0
0 1 0 1 3
1 2 2 1 0
0 1 0 3 1

Convolution (Stride 1)

Output Feature Map = (Input Feature Map – Filter + Stride) / Stride
of multiplications?

Size of Size of Size of

L02-35

Sze and Emer

2D Convolution Example

0 1 0
1 1 1
0 1 0

February 7, 2024

Filter
(3x3)

Input
Feature

Map
(5x5)

Output
Feature

Map

0 1 2 3 2
1 2 2 2 0
0 1 0 1 3
1 2 2 1 0
0 1 0 3 1

Convolution (Stride 2)

7

L02-36

Sze and Emer

2D Convolution Example

0 1 0
1 1 1
0 1 0

February 7, 2024

Filter
(3x3)

Input
Feature

Map
(5x5)

Output
Feature

Map

0 1 2 3 2
1 2 2 2 0
0 1 0 1 3
1 2 2 1 0
0 1 0 3 1

Convolution (Stride 2)

7 8

L02-37

Sze and Emer

2D Convolution Example

0 1 0
1 1 1
0 1 0

February 7, 2024

Filter
(3x3)

Input
Feature

Map
(5x5)

Output
Feature

Map

0 1 2 3 2
1 2 2 2 0
0 1 0 1 3
1 2 2 1 0
0 1 0 3 1

Convolution (Stride 2)

7 8
6 6

L02-38

Sze and Emer

2D Convolution Example

0 1 0
1 1 1
0 1 0

February 7, 2024

Filter
(3x3)

Input
Feature

Map
(5x5)

Output
Feature

Map

0 1 2 3 2
1 2 2 2 0
0 1 0 1 3
1 2 2 1 0
0 1 0 3 1

Convolution (Stride 2)

7 8
6 7

L02-39

Sze and Emer

2D Convolution Example

0 1 0
1 1 1
0 1 0

February 7, 2024

Filter
(3x3)

Input
Feature

Map
(5x5)

Output
Feature

Map
(2x2)

0 1 2 3 2
1 2 2 2 0
0 1 0 1 3
1 2 2 1 0
0 1 0 3 1

Convolution (Stride 2)

7 8
6 7

Output Feature Map = (Input Feature Map – Filter + Stride) / Stride
of multiplications?

Size of Size of Size of

L02-40

Sze and Emer

2D Convolution Example

0 1 0
1 1 1
0 1 0

February 7, 2024

Filter
(3x3)

Input
Feature

Map
(5x5)

Output
Feature

Map
(1x1)

0 1 2 3 2
1 2 2 2 0
0 1 0 1 3
1 2 2 1 0
0 1 0 3 1

Convolution (Stride 3)

7

Output Feature Map = (Input Feature Map – Filter + Stride) / Stride
of multiplications?

Size of Size of Size of

L02-41

Sze and Emer

Impact of Stride on Convolution

February 7, 2024

Stride 2

Output
Feature

Map
(2x2)

7 8
6 7Output

Feature
Map
(3x3)

7 8 8
5 6 7
6 5 7

Stride 1

Stride > 1 is equivalent to downsampling the
output feature map when Stride =1

Stride 3

Output
Feature

Map
(1x1)

7

L02-42

Sze and Emer

Zero Padding

• The size of the output shrinks relative to the input

• Use zero padding to control the size of the output
• Can set padding based on filter size such that the output size is equal to

original the input size

February 7, 2024

0 1 2 3 2
1 2 2 2 0
0 1 0 1 3
1 2 2 1 0
0 1 0 3 1

0 0 0 0 0 0 0
0 0 1 2 3 2 0
0 1 2 2 2 0 0
0 0 1 0 1 3 0
0 1 2 2 1 0 0
0 0 1 0 3 1 0
0 0 0 0 0 0 0

L02-43

Sze and Emer

2D Convolution Example

0 1 0
1 1 1
0 1 0

February 7, 2024

Filter
(3x3)

Input
Feature

Map
(7x7)

Output
Feature

Map
(5x5)

Convolution (Stride 1) + zero padding

0 0 0 0 0 0 0
0 0 1 2 3 2 0
0 1 2 2 2 0 0
0 0 1 0 1 3 0
0 1 2 2 1 0 0
0 0 1 0 3 1 0
0 0 0 0 0 0 0

2 5 8 9 5
3 7 8 8 4
3 5 6 7 4
3 6 5 7 5
2 3 6 5 4

L02-44

Sze and Emer

Zero Padding in PyTorch
• padding (python:int or tuple, optional) added to input. Default: 0

– https://pytorch.org/docs/stable/nn.html#padding-layers
– Ex: padding=1, pad 1 to the top, bottom, right, and left.
– Ex. padding=[1,2], pad 1 to the top and bottom, pad 2 to the right and left

• Default: No zero padding
– filter is RxS and input is HxW, and stride U
– output is (H-R+U)/U x (W-S+U)/U

• Padding=[(R-1)/2, (S-1)/2]: zero padding so that output remains the same for U=1
– filter is RxS and input is HxW, and stride U

– output is ceil(H/U) x ceil(W/U)
• Padding is not always explicitly defined, but can be inferred from the size of the feature map

– Deep networks use padding to prevent feature maps from shrinking

• Different frameworks can use different types of padding

February 7, 2024

https://pytorch.org/docs/stable/nn.html

L02-45

Sze and Emer

Signal Processing Perspective

February 7, 2024

Recall from 6.3000[6.003] and 6.7010[6.344], the filter needs to be flipped for a convolution.

For CNN, the filter is combined with an input window without reversing the filter.
Strictly speaking, this is a cross-correlation.

Cross-Correlation rather than Convolution

Size of Output after Filtering
Recall from 6.3000[6.003] and 6.7010[6.344], if filter size is M and input is N, output is N+M-1.

No restriction on zero padding.
For CNN, the amount of zero padding can be varied to control the output size.

The output size is typically equal or smaller than the input size.

L02-46

Sze and Emer

Depth of Network: Convolution

As you go deeper into the network, more pixels contribute to each activation.

February 7, 2024

0 0 0 0 0 0 0

0 0 1 2 3 2 0

0 1 2 2 2 0 0

0 0 1 0 1 3 0

0 1 2 2 1 0 0

0 0 1 0 3 1 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 1 2 3 2 0

0 1 7 8 8 0 0

0 0 5 6 7 3 0

0 1 6 5 7 0 0

0 0 1 0 3 1 0

0 0 0 0 0 0 0

Example: 3x3 filter
0 0 0 0 0 0 0

0 0 1 2 3 2 0

0 1 2 2 2 0 0

0 0 1 31 1 3 0

0 1 2 2 1 0 0

0 0 1 0 3 1 0

0 0 0 0 0 0 0

Input to Layer 1 Layer 2 Layer 3

Feature maps of deep layers typically give higher level features

L02-47

Sze and Emer

H

Convolution (CONV) Layer

R

S

… …

…

C

input fmap

output fmap

…

…

……C…filter
…

Many Input Channels (C)

P

W Q

February 7, 2024

e.g., For Layer 1, C=3 for the red, green, and blue components of an image

L02-48

Sze and Emer

Convolution (CONV) Layer

…

P

output fmap

…

…

many
filters (M)

Many
Output Channels (M)*

M
…

R

S
1

R

S

… …

…

C …

M

H

input fmap

…

…

……C…

C …

…

…

W Q

February 7, 2024

e.g., # of output channels (M1) of Layer 1 becomes # of
input channels (C2) of Layer 2
Note: # of filters often referred to as width of network

*some works use K rather than M

L02-49

Sze and Emer

Convolution (CONV) Layer

…

M

…

Many
Input fmaps (N) Many

Output fmaps (N)

…
R

S

R

S

… …

…

C …

C …

…

…

filters

…

P

Q
…

…

H

…

…C…

H

W

…

…

……C…

…

P
…

…

1 1

N N

W Q

February 7, 2024 Batch Size (N)

1

M

L02-50

Sze and Emer

CNN Decoder Ring

• N – Number of input fmaps/output fmaps (batch size)
• C – Number of channels in input fmaps (activations) & filters (weights)
• H – Height of input fmap (activations)
• W – Width of input fmap (activations)
• R – Height of filter (weights)
• S – Width of filter (weights)
• M – Number of channels in output fmaps (activations)
• P – Height of output fmap (activations)
• Q – Width of output fmap (activations)
• U – Stride of convolution

February 7, 2024

L02-51

Sze and Emer

Tensors

February 7, 2024

Rank-0: Scalar Rank-1: Vector

Rank-2: Matrix Rank-3: Cube

L02-52

Sze and Emer

Input Feature Map (fmap)

February 7, 2024

I[C][H][W]

H

Input fmap (activations)

C

W

L02-53

Sze and Emer

CONV Layer Tensor Computation
Input fmap (I)

Filter weights (W)
Output fmap (O)

Biases (B)

February 7, 2024

L02-54

Sze and Emer

Einstein Notation (Einsum)

February 7, 2024

𝑂!,#,$,% =	𝐵# + 𝐼!,&,'$(),'%(*×	𝐹#,&,),*	

[Einstein, Annalen der Physike 1916], [Kjolstad, TACO, OOPSLA 2017], [Parashar, Timeloop, ISPASS 2019]

Einsum Notation

Algebraic Notation

Einsum does not enforce any computational order

L02-55

Sze and Emer

CONV Layer Implementation

Naïve 7-layer for-loop implementation:

for n in [0..N):
for m in [0..M):

 for q in [0..Q):
 for p in [0..P):

 O[n][m][p][q] = B[m];
 for c in [0..C):
 for r in [0..R):
 for s in [0..S):
 O[n][m][p][q] += I[n][c][Up+r][Uq+s]
 × F[m][c][r][s];

 O[n][m][p][q] = Activation(O[n][m][p][q]);

for each output fmap value

convolve
a window
and apply
activation

February 7, 2024

L02-56

Sze and Emer

Traditional Activation Functions

Image Source: Caffe Tutorial

Sigmoid
1

-1

0

0 1-1

y=1/(1+e-x)

Hyperbolic Tangent
1

-1

0

0 1-1

y=(ex-e-x)/(ex+e-x)

February 7, 2024

Note: Also referred to as the non-linearity

L02-57

Sze and Emer

Modern Activation Functions

Image Source: Caffe TutorialFebruary 7, 2024

Sigmoid

0

0
y=1/(1+e-x)

Hyperbolic Tangent

0

0
y=(ex-e-x)/(ex+e-x)

Rectified Linear Unit
(ReLU)

0

0

y=max(0,x)

Leaky ReLU

0

0

y=max(αx,x)

Exponential LU
(ELU)

0

0
x,
α(ex-1),

x≥0
x<0y=

α = small const. (e.g. 0.1)

Traditional
Nonlinear
Activation
Functions

Modern
Nonlinear
Activation
Functions

Swish

0

0

y=x*sigmoid(αx)

Variants: e.g., ReLU6 (clipped max value to 6) and h-swish (replace sigmoid with piecewise linear function)

L02-58

Sze and Emer

Comparison of Activations

Sigmoid/Hyperbolic Tangent
• Difficult to train due to vanishing

gradient problem
– Small gradient at high and low

activation values

• Not easy to implement
– Typically use a look up table (LUT)

February 7, 2024

ReLU
• Gradient does not vanish at high

activation values à faster training

• Easy to implement
• Leads to sparsity in activations,

which has additional
implementation benefits

L02-59

Sze and Emer

Training Speed: tanh vs. ReLU

February 7, 2024 [Krizhevsky, NeurIPS 2012]

ReLU

tanh

ReLU reaches a 25% training error rate on CIFAR-
10 six times faster than tanh

L02-60

Sze and Emer

Fully-Connected (FC) Layer

February 7, 2024

Input
Layer Hidden

Layer

Output
Layer

Fully-Connected
Sparsely-Connected

Fully-Connected: all i/p neurons connected to all o/p neurons

L02-61

Sze and Emer

H

W

…

…

…C…

N

FC Layer – from CONV Layer POV

… …

input fmaps
output fmaps

…

H

W

… …

…

C …

H

…

…C…

1
W

M…

1
…

…

1
1

H

C …

…

…

filters

W

…

…

…
1

1
N

February 7, 2024

1

M

L02-62

Sze and Emer

Pooling (POOL) Layer

• Reduce resolution of each channel independently
• Specifically, for shape parameters: P ≤ H, Q ≤ W, M = C

• Overlapping or non-overlapping à depending on stride

February 7, 2024 Image Source: Caffe Tutorial

Increases translation-invariance
and noise-resilience

Used in encoder DNN models

H

W

P

Q

P

L02-63

Sze and Emer

POOL Layer Implementation

Naïve 6-layer for-loop max-pooling implementation:

for n in [0..N):
for m in [0..M):

 for q in [0..Q):
 for p in [0..P):

 max = -Inf
 for r in [0..R):
 for s in [0..S):
 if I[n][m][Up+r][Uq+s] > max:
 max = I[n][m][Up+r][Uq+s];

 O[n][m][p][q] = max

for each pooled value

find the
max in a
window

February 7, 2024

L02-64

Sze and Emer

Pooling Einsums

February 7, 2024

𝑂!,#,$,% =
𝐼!,#,'$(),'%(*

𝑈+

Average Pooling

Maximum Pooling

𝑂!,#,$,% = 𝑀𝑎𝑥 𝐼!,#,'$(),'%(*

L02-65

Sze and Emer

Upsampling Layer

• Increase resolution of each channel independently
• Specifically, for shape parameters: P ≥ H, Q ≥ W, M = C

February 7, 2024

Used in decoder DNN models

A 0 B 0

0 0 0 0

C 0 D 0
0 0 0 0A B

C D
A A B B
A A B B

C C D D
C C D D

Zero insertion

Interpolation
(e.g., nearest neighbors)

L02-66

Sze and Emer

Upsampling Einsums

February 7, 2024

𝑂#,!,'×-,'×. = 𝐼#,!,-,.
Zero insertion

𝑂#,!,-(),.(* = 𝐼#,!,-,.
Interpolation

where 𝑟 & 𝑠 vary over a range of [0,U)

L02-67

Sze and Emer

Normalization (NORM) Layer

• Batch Normalization (BN)
– Normalize activations towards mean=0 and std. dev.=1 based on

the statistics of the training dataset

– put in between CONV/FC and Activation function

February 7, 2024 [Ioffe, ICML 2015]

CONV
Layer

Convolution Activation

×
BN

Believed to be key to getting high accuracy and
faster training on very deep neural networks.

L02-68

Sze and Emer

Impact of Batch Normalization

February 7, 2024

Faster Training
Less Noisy Activations

timetime

Image Source: r2rt.com

L02-69

Sze and Emer

BN Layer Implementation
The normalized value is further scaled and shifted, the parameters of
which are learned from training

February 7, 2024

data mean

data std. dev.

learned scale factor

learned shift factor
small const. to avoid
numerical problems

For inference, computation can be folded into the weights of the CONV or FC

L02-70

Sze and Emer

Normalization-Free Nets: No Need for Batch Norm!

February 7, 2024 [Brock, ICML 2021]

State-of-the-art accuracy
without batch normalization!

L02-71

Sze and Emer

Relevant Components for Class

• Typical operations that we will use:
– Convolution (CONV)

– Fully-Connected (FC)
– Max Pooling
– ReLU

February 7, 2024 Image Source: Stanford

L02-72

Sze and Emer

Training versus Inference

Training
(determine weights)

Weights
Large Datasets

Inference
(use weights)

February 7, 2024

L02-73

Sze and Emer

Training DNN

February 7, 2024

Forward propagation*

Back propagation

Input
Class

Scores

Loss

Gradient

* inference also uses
forward propagation

Loss
Function

∂L
∂wij

L02-74

Sze and Emer

Summary
• Terminology for Deep Neural Networks (DNN)

– synapse à weights, neuron output à activations
– filter = set of weights; feature map = set of activations

• Different layers in a DNN
– Convolution (CONV), Pooling (POOL), Activation (RELU), Normalization

(NORM), Fully Connected (FC)
– Configuration Options: filter shapes (R,S,C,M), zero padding, avg/max

pooling, activation function, etc.

• Training with forward and backward propagation

February 7, 2024

L02-75

Sze and Emer

References

• Textbook: Chapter 1 & 2
– https://doi.org/10.1007/978-3-031-01766-7

• Stanford cs231n
– http://cs231n.github.io/convolutional-networks/

• http://www.deeplearningbook.org/
– Chapter 9 http://www.deeplearningbook.org/contents/convnets.html

• Other Works Cited in Lecture
– Ioffe, Sergey, and Christian Szegedy. "Batch normalization: Accelerating

deep network training by reducing internal covariate shift," ICML 2015.

February 7, 2024

https://doi.org/10.1007/978-3-031-01766-7
http://cs231n.github.io/convolutional-networks/
http://www.deeplearningbook.org/
http://www.deeplearningbook.org/contents/convnets.html

