
L19-1

Sze and Emer

6.5930/1
Hardware Architectures for Deep Learning

Co-Design of DNN Models and
Hardware: Precision

Joel Emer and Vivienne Sze

Massachusetts Institute of Technology
 Electrical Engineering & Computer Science

April 17, 2024

L19-2

Sze and Emer

Goals of Today’s Lecture
• Lectures on the co-design of the DNN models and the hardware

– Better than what each could achieve alone
– Unlike previously discussed approaches, these approaches can affect accuracy! à

Evaluate tradeoff between accuracy and other metrics

• Co-design approaches can be loosely grouped into two categories:
– Reduce number of operations for storage/compute (Sparsity [Ch. 8] and Efficient

Network Architectures [Ch. 9])
– Reduce size of operands for storage/compute (Reduced Precision [Ch. 7])

• Hardware support required to maximize savings in latency & energy
– Ensure that overhead of hardware support does not exceed benefits

April 17, 2024

L19-3

Sze and Emer

Benefits of Reduced Precision

[Horowitz, ISSCC 2014]

Operation: Energy
(pJ)

8b Add 0.03
16b Add 0.05
32b Add 0.1
16b FP Add 0.4
32b FP Add 0.9
8b Mult 0.2
32b Mult 3.1
16b FP Mult 1.1
32b FP Mult 3.7
32b SRAM Read (8KB) 5
32b DRAM Read 640

Area
(µm2)

36
67
137
1360
4184
282
3495
1640
7700
N/A
N/A

Relative Energy Cost

1 10 102 103 104

Relative Area Cost

1 10 102 103

April 17, 2024

L19-4

Sze and Emer

Benefits of Reduced Precision

• Reduced Precision à Reduced Bit Width
• Reduce data movement and storage cost for inputs and outputs

of MAC operation
– Store more data (e.g., weights, activation) on chip
– Smaller memory à lower energy

• Reduce cost of MAC operation
– Cost of multiplication increases with bit width (n)

• Energy and area by O(n2)
• Delay by O(n)

April 17, 2024

L19-5

Sze and Emer

Fixed Point Arithmetic

x

+

Partial products

Multiplicand

Multiplier

Result

1 0 1 0 1 0

1 0 1 0 1 0

1 0 1 0 1 0

0 0 0 0 0 0

1 0 1 0 1 0

1 0 1 1

Binary Multiplication

Image source: 6.6010[6.374] April 17, 2024

L19-6

Sze and Emer

Binary Multiplication

Ø Partial product computation
is simple (single and gate)

HA

x3

FA

x2

FA

x1

FA

x2

FA

x1

HA

x0

FA

x1

HA

x0

HA

x0

FA

x3

FA

x2

FA

x3

x3 x2 x1 x0

z0

z1

z2

z3z4z5z6z7

y3

y2

y1

y0

n1-bits
n2-bits

April 17, 2024 tmult ≈ [(n1 -1)+(n2 -2)]tcarry+(n2 -1)tsum+tand
Image source: 6.6010[6.374]

L19-7

Sze and Emer

Various Bit Widths Within a MAC

Accumulate+

Weight
(nf-bits)

Input
Activation
(ni-bits)

nf x ni
multiply

(nf+ni)-bits Output
(ni-bits)Quantize

How many additional bits are
required for partial sum to

ensure no loss in precision?

Precision of internal values of MAC higher than inputs or outputs

April 17, 2024

(nf + ni + ⌈log2(RSC)⌉)- bits

Example assumes integer format

L19-8

Sze and Emer

Popular DNNs
Metrics AlexNet VGG-16 GoogLeNet (v1)
Input Size 227x227 224x224 224x224
of CONV Layers 5 16 21 (depth)
Filter Sizes 3, 5,11 3 1, 3 , 5, 7
of Channels 3 - 256 3 - 512 3 - 1024
of Filters 96 - 384 64 - 512 64 - 384
of Weights 2.3M 14.7M 6.0M
of MACs 666M 15.3G 1.43G
of FC layers 3 3 1
of Weights 58.6M 124M 1M
of MACs 58.6M 124M 1M
Max Weights per Filter (RSC) 9216 25088 1728
Minimum additional bits ⌈log2(RSC)⌉ 14 15 11

For no loss in precision, ⌈log2(RSC)⌉ is determined based on largest filter size
April 17, 2024

L19-9

Sze and Emer

Determining the Bit Width

How do we determine the number of bits for the input activations (ni),
weights (nf), and partial sums?

April 17, 2024

L19-10

Sze and Emer

Quantization

Map data to a small set of quantization levels (e.g., L = 4)

qi = quantization values
di = decision boundaries

April 17, 2024

d0 d1 d2 d3 d4
q0 q1 q2 q3

0 2 4 6 8 10 12 14 16
!

Quantization
Q(�) !"	= 2, 2, 6, 8, 10, 14, 6, 2!	= 1, 3, 7, 8, 9, 15, 6, 2 10,

L19-11

Sze and Emer

Quantization
Goal: Minimize the error between the reconstructed data
from the quantization levels and the original data.

Image source: 6.344 April 17, 2024

qi = quantization values
di = decision boundaries

L= number of quantization levels
px(xo): probability density function of x

error
(quantization noise)

Optimally choose qi and di

𝑞!, 𝑑!

L19-12

Sze and Emer

Example

April 17, 2024

!"

#$(!")

q0 q1 q2 q3

!

q0 q1 q2 q3

!

Uniform
Quantization

Non-Uniform
Quantization

-5 5

-3.75 -1.25 1.25 3.75

-1.1503 -0.3186 0.3186 1.1503

quantization error
0.5477

quantization error
0.1467

L19-13

Sze and Emer

Precision

• The number of quantization levels reflects the precision and ultimately the
number of bits required to represent the data
– Usually, log2 of the number of levels

• “Reduced precision” refers to reducing the number of levels (values), and thus
the number of bits
– The benefits of reduced precision include reduced storage cost and/or reduced

computation requirements

– Can also increase throughput (recall vector lecture)

• Range of values also matters
– Ratio of the largest and smallest non-zero value (magnitude) (i.e., xmax/xmin)

– To support a wide range, can increase the number of quantization levels or add scale factor
(a form of non-uniform quantization)

April 17, 2024

L19-14

Sze and Emer

Example: Uniform vs. Scale factor

April 17, 2024 See section 7.2.1. in book for more details

Uniform: qi = 44000×i/16
Scale factor: qi = (4i/2+1 − 4i/2) × (i%2)/8 + 4i/2 − 1

L19-15

Sze and Emer

Range Selection

• Symmetric mode vs. Asymmetric mode

• Clip range (saturation)
– DoReFa (clip act to [0,1])
– ReLU6 (clip act to [0,6])
– PACT (clip act to [0, ⍺], where ⍺ is learned)

April 17, 2024

Source: https://intellabs.github.io/distiller/algo_quantization.html

Easier to implement Better utilize full range

)

Remove outliers

https://intellabs.github.io/distiller/algo_quantization.html

L19-16

Sze and Emer

Standard Components of the Bit Width
• Range of values

– e.g., nE-bits to scale values by 2(E-127)

• # of unique values per scale factor

– e.g., nM-bits to represent 2M values
• Signed or unsigned values

– e.g., signed (S) requires one bit (nS=1)
• Total bits = nS+nE+nM

• Floating point (FP) allows range to change
for each value (nE-bits)

• Fixed point (Int) has fixed range

• Default CPU/GPU is 32-bit float (FP32)

FP32

FP16

Int32

Int16

Int8

S E M
1 8 23

S E M
1 5 10

M
31

S

S M

1

1 15

S M
1 7

Range

10-38 – 1038

6x10-5 - 6x104

0 – 2x109

0 – 6x104

0 – 127

Image Source: B. Dally

Common Numerical Representations

April 17, 2024

L19-17

Sze and Emer

Fixed-Point Format

8-bit
fixed

0 1 1 0 0 1 1 0

sign mantissa (7-bits)

102

Components of a fixed-point number
Mantissa (m): number of levels

Sign (s): indicates if number is positive or negative

When range is limited, a simple fixed-point format can be used.
For instance, 8-bit fixed (-128 to 127)

Integer
Example

s = 0 m=102

April 17, 2024

binary point after
least significant bit
(fixed)

L19-18

Sze and Emer

Fixed-Point Format

8-bit
fixed

0 1 1 0 0 1 1 0

sign mantissa (7-bits)

12.75

Components of a fixed-point number
Mantissa (m): number of levels

Sign (s): indicates if number is positive or negative

When range is limited, a simple fixed-point format can be used.
For instance, 8-bit fixed (-127 to 128)

Fixed Point
Example

s = 0 m=102

April 17, 2024

binary point (fixed)

fixed

f = 3 (fixed)

L19-19

Sze and Emer

Floating-Point Format

1 0 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 032-bit float

exponent (8-bits) mantissa (23-bits)sign

To support a wide range, the default format in most CPUs
and GPUs is 32-bit float (10-38 to 1038)

Components of a floating-point number
Mantissa (m): number of levels

Exponent (e): scale to a target range (location of binary point varies)
Sign (s): indicates if number is positive or negative

Single
Precision
Example

IEEE Standard for Floating-Point Arithmetic (IEEE 754)

e = 74s = 1 m = 20484-1.112934 x 10-16

April 17, 2024

L19-20

Sze and Emer

Floating Point Arithmetic
Multiplier Example: C = A x B

eA eBsA sB mA mB

Normalizer

sC eC mC

Exp Update

April 17, 2024

L19-21

Sze and Emer

Mixed Precision

• Different precision for different data types, since different data
types have different distributions

– For inference: weights, activations, and partial sums

– For training: weights, activations, partial sums, gradients, and weight
update

April 17, 2024

L19-22

Sze and Emer

Mixed Precision for Training

April 17, 2024
Modified figure from [Narang, ICLR 2018]

Weight update kept a full precision (FP32) while other variables are at half precision (FP16)

∂L
∂wij

=
∂L
∂yj

∂yj
∂wij

∂L
∂wij

=
∂L
∂yj

∂yj
∂wij

!"
!#!"

=%&!#"
!"

!##"$%#

BWD-Act

BWD-Weight

∂L
∂wn

ij

=
∂L
∂ynj

∂ynj
∂wn

ij

=
∂L
∂ynj

xni

L19-23

Sze and Emer

Reduce Mantissa Bits (M)

• Reduce number of unique values
• Uniform quantization (values are equally spaced out) [default]
• Non-uniform quantization (spacing can be computed, e.g.,

logarithmic, or with look-up-table)

• Fewer unique values can make transforms and compression
more effective

April 17, 2024

L19-24

Sze and Emer

Non-Uniform Quantization

• Precision refers to the number of levels
– Number of bits = log2 (number of levels)

• Quantization refers to mapping data to a smaller set of levels
– Uniform, e.g., fixed point
– Non-Uniform

• Constrained (computed as a function of binary value) – e.g., log
• Unconstrained (arbitrary relation between values) – e.g., learned from opt

April 17, 2024

Objective: Reduce size to improve speed and/or reduce energy
while preserving accuracy

L19-25

Sze and Emer

Computed Non-Uniform Quantization

Log Domain Quantization

Product = X << WProduct = X * W

[Lee, LogNet, ICASSP 2017]

April 17, 2024

L19-26

Sze and Emer

Log Domain Computation

Only activation
in log domain

Both weights and
activations in log
domain

max, bitshifts, adds/subs

April 17, 2024

[Miyashita, arXiv 2016]

L19-27

Sze and Emer

Log Domain Quantization

• Weights: 5-bits for CONV, 4-bit for FC; Activations: 4-bits

• Accuracy loss: 3.2% on AlexNet

April 17, 2024

[Miyashita, arXiv 2016],
[Lee, LogNet, ICASSP 2017]

Shift and Add

WS

L19-28

Sze and Emer

Learned Quantization

• Learned mapping of data to quantization levels (e.g., k-means)

• Additional Properties
– Fixed or Variable (across data types, layers, channels, etc.)

April 17, 2024

[Han, ICLR 2016]

Implement with
look up table

L19-29

Sze and Emer

Non-Uniform Quantization Table Lookup
Learned Quantization: Find U weights via k-means clustering
 to reduce number of unique weights per layer (weight sharing)

[Han, ICLR 2016]

Example: AlexNet (no accuracy loss)
256 unique weights for CONV layer

16 unique weights for FC layer

Weight
Decoder/
Dequant
U x 16b

Weight
index

(log2U-bits)
Weight

(16-bits)
Weight
Memory
CRSM x

log2U-bits
Output

Activation
(16-bits)

MAC

Input
Activation
(16-bits)

Does not reduce
precision of MAC

Overhead

Smaller
Weight
Memory

Consequences: Narrow weight memory and second access from (small) table
Energy savings if reading from: mem(CRSMxlog2U) + mem(Ux16) < mem(CRSMx16b)

April 17, 2024

L19-30

Sze and Emer

Precision Taxonomy

• Uniform Quantization
– Direct binary value (i.e., integer)
– Fixed binary point (i.e., fixed point)

• Non-uniform Quantization
– Constrained (a function of binary value) – e.g., log
– Unconstrained (arbitrary relation between values) – e.g., learned from opt
– Scaled binary value (e.g., floating point)

April 17, 2024

L19-31

Sze and Emer

Mantissa (M) and Exponent Bits (E)

Tradeoff between number of bits allocated to M-bits and E-bits

April 17, 2024

S E E E E E M M M M M M M M M Mfp16 (S=1, E=5, M=10)

S E E E E E E E E M M M M M M Mbfloat16 (S=1, E=8, M=7)

range: ~5.9x10-8 to ~6.5x104

range: ~1x10-38 to ~3x1038

Bfloat16 increases number of bits for exponents (equal to FP32) to support
wider range (important for gradient) at a cost of fewer unique values

L19-32

Sze and Emer

Precision Taxonomy

• Uniform Quantization
– Direct binary value (i.e., integer)
– Fixed binary point (i.e., fixed point)

• Non-uniform Quantization
– Constrained (a function of binary value) – e.g., log
– Unconstrained (arbitrary relation between values) – e.g., learned from opt
– Scaled binary value (e.g., floating point)

• “Shared” values and/or hardware
– Exponent (e.g., dynamic fixed point)

April 17, 2024

L19-33

Sze and Emer

Eliminate Exponent Bits (E)

• Share range across group of values (e.g., weights for a layer or channel)
– Referred to as block floating point or dynamic fixed point
– Reduces storage and compute requirements

• The range can change for
– Different types of data (e.g., activations, weights)
– Different layers (e.g., CONV, FC)

April 17, 2024

Something in between fixed point and floating point
à Dynamic fixed point!

L19-34

Sze and Emer

Dynamic Fixed-Point Format
Components of a dynamic fixed-point number

Mantissa (m): number of levels
Scale factor (f): location of binary point

Sign (s): indicates if number is positive or negative

8-bit
dynamic

fixed

0 1 1 0 0 1 1 0

sign

integer
([7-f]-bits)

mantissa (7-bits)

fractional
(f-bits)

f = 3s = 012.75 m=102

8-bit
dynamic

fixed

0 1 1 0 0 1 1 0

sign mantissa (7-bits)

fractional
(f-bits)

f = 9s = 00.19921875 m=102

Allow f to be vary for different groups of variables;
f cannot change for each variable like floating point

vary across data
types, layers, etc.

[D. Williamson, Dynamically scaled fixed point arithmetic. 1991]
April 17, 2024

L19-35

Sze and Emer

Impact on Accuracy

[Gysel, Ristretto, ICLR 2016]
w/o fine tuning

Top-1 accuracy
on of CaffeNet
on ImageNet

April 17, 2024

L19-36

Sze and Emer

Varying Exponent Bias

• Allow exponent bias to be configurable

• AdaptivFloat [Tambe, DAC 2020]
– Divides up exponent scale factor into two parts

1. ‘e’ changes per value (i.e., floating point)

2. Bias changes per layer (i.e., dynamic fixed point except at
layer granularity)

• Configurable Float (CFloat8 & CFloat16)
[Telsa Dojo 2021]
– Fully configurable exponent bias (6-bits for CFloat8)

– Two different methods of partitioning bits between
mantissa and exponents

• Can repeatedly divide values into shared and
unshared values à Fractal

April 17, 2024

exponent bias

L19-37

Sze and Emer

Nvidia PASCAL

“New half-precision, 16-bit
floating point instructions
deliver over 21 TeraFLOPS for
unprecedented training
performance. With 47 TOPS (tera-
operations per second) of
performance, new 8-bit integer
instructions in Pascal allow AI
algorithms to deliver real-time
responsiveness for deep learning
inference.”

– Nvidia.com (April 2016)

April 17, 2024

L19-38

Sze and Emer

Mixed Precision in Nvidia GPUs

April 17, 2024 Source: Nvidia (May 2020)
FFMA= floating point fused multiply-add

L19-39

Sze and Emer

Google’s Tensor Processing Unit (TPU)

“ With its TPU Google has
seemingly focused on delivering
the data really quickly by cutting
down on precision. Specifically,
it doesn’t rely on floating point
precision like a GPU
….
Instead, the chip uses integer
math…TPU used 8-bit integer.”

- Next Platform (May 19, 2016)

[Jouppi, ISCA 2017]

accumulators are 32-bits

April 17, 2024

L19-40

Sze and Emer

Quantization in TensorFlow Lite (TFLite)

TFLite has support for 8-bit quantization

April 17, 2024

Performance of MobileNet

[Jacob, CVPR 2018]

L19-41

Sze and Emer

Quantization in TensorFlow Lite (TFLite)
Impact of quantization to 8-bits integer (accuracy within <1%)

April 17, 2024

Source: https://blog.tensorflow.org/2019/06/tensorflow-integer-quantization.html

https://blog.tensorflow.org/2019/06/tensorflow-integer-quantization.html

L19-42

Sze and Emer

Other Industry Examples
• NVDLA

– Binary/INT4/INT8/INT16/INT32/FP16
/FP32/FP64

– For inference

• Microsoft BrainWave
– Custom 8-bit and 9-bit floating point
– For inference of RNNs/LSTMs on

FPGAs

• Nervana Systems (now Intel)
– Custom FlexPoint format for training

• TPU v2 & v3
– bfloat16 for training

[Chung, Hot Chips 2017]

Intel
Neural
Network
Processor

April 17, 2024

L19-43

Sze and Emer

Standardize Microscaling (MX) Data Formats

April 17, 2024

Source: https://www.opencompute.org/blog/amd-arm-intel-meta-microsoft-nvidia-and-qualcomm-standardize-next-generation-
narrow-precision-data-formats-for-ai (Oct 2023)

k=block size

MX data formats share scaling across block of “narrow bit width elements”

https://www.opencompute.org/blog/amd-arm-intel-meta-microsoft-nvidia-and-qualcomm-standardize-next-generation-narrow-precision-data-formats-for-ai
https://www.opencompute.org/blog/amd-arm-intel-meta-microsoft-nvidia-and-qualcomm-standardize-next-generation-narrow-precision-data-formats-for-ai

L19-44

Sze and Emer

Standardize Microscaling (MX) Data Formats

Impact on accuracy
• Inference with MXINT8 and MXFP8 can be used on FP32 pretrained models with minimal loss
• Inference with MXFP6 closely matches FP32 accuracy after quantization-aware finetuning

• Training with MXFP6 weights, activations, and gradients w/ minimal loss (w/o changing training recipe)
• Training with MXFP4 weights and MXFP6 activations and gradients incurs only a minor loss

April 17, 2024

Source: https://www.opencompute.org/blog/amd-arm-intel-meta-microsoft-nvidia-and-qualcomm-standardize-next-generation-
narrow-precision-data-formats-for-ai (Oct 2023)

https://www.opencompute.org/blog/amd-arm-intel-meta-microsoft-nvidia-and-qualcomm-standardize-next-generation-narrow-precision-data-formats-for-ai
https://www.opencompute.org/blog/amd-arm-intel-meta-microsoft-nvidia-and-qualcomm-standardize-next-generation-narrow-precision-data-formats-for-ai

L19-45

Sze and Emer

Standardize Microscaling (MX) Data Formats

April 17, 2024

MX data formats used for matrix multiplication, while vector operations (e.g., layernorm, Softmax,
GELU, and residual add) are performed in a scalar floating-point format like Bfloat16 or FP32

Source: https://www.opencompute.org/blog/amd-arm-intel-meta-microsoft-nvidia-and-qualcomm-standardize-next-generation-
narrow-precision-data-formats-for-ai (Oct 2023)

https://www.opencompute.org/blog/amd-arm-intel-meta-microsoft-nvidia-and-qualcomm-standardize-next-generation-narrow-precision-data-formats-for-ai
https://www.opencompute.org/blog/amd-arm-intel-meta-microsoft-nvidia-and-qualcomm-standardize-next-generation-narrow-precision-data-formats-for-ai

L19-46

Sze and Emer

Varying Precision

[Moons, WACV 2016][Judd, arXiv 2016]

Activations Weights

April 17, 2024

Change precision for different parts of the DNN
(e.g., vary across layers)

L19-47

Sze and Emer

Bitwidth Scaling (Speed)
Bit-Serial Processing: Reduce Bit-width à Skip Cycles

Speed up of 1.92x vs. 16-bit fixed

[Judd, Stripes, MICRO 2016]
April 17, 2024

L19-48

Sze and Emer

Bitwidth Scaling (Power)

[Moons, VLSI 2016]

Reduce Bit-width à
Shorter Critical Path
à Reduce Voltage

Power reduction of 2.5x vs. 16-bit fixed
On AlexNet Layer 2

April 17, 2024

L19-49

Sze and Emer

Precision Taxonomy
• Uniform Quantization

– Direct binary value (i.e., integer)
– Fixed binary point (i.e., fixed point)

• Non-uniform Quantization
– Function of binary value (e.g., log)
– Arbitrary relation (i.e., table lookup)
– Scaled binary value (e.g., floating point)

• “Shared” values and/or hardware
– Exponent (e.g., dynamic fixed point)
– Mantissa (e.g., varying precision hardware)

April 17, 2024

L19-50

Sze and Emer

Fixed Point Multiplier

HA

x3

FA

x2

FA

x1

FA

x2

FA

x1

HA

x0

FA

x1

HA

x0

HA

x0

FA

x3

FA

x2

FA

x3

x3 x2 x1 x0

z0

z1

z2

z4z5z6z7

y3

y2

y1

y0

z3

FA = full adder
HA = half adder

April 17, 2024

L19-51

Sze and Emer

Precision Scalable MACs for Varying Precision

Conventional data-gated MAC
Gate unused logic (e.g., full adders) to reduce energy consumption;

share hardware across different precisions

[Camus, JETCAS 2019]

8b

20b

2b

8b

…

……

…

……

00
00

4b

gated …

…

…

…
gated

16b

4b 0 0 0 0 0 0 0 0 0 0

20b

16b

20b

16b

8b

Full precision 8bx8b 4bx4b 2bx8b

April 17, 2024

Can we add logic to increase utilization for higher throughput/area?

L19-52

Sze and Emer

Many Types of Precision-Scalable MACs

• Many similarities between DNN accelerators and precision-scalable
MACs

• DNN accelerators with a spatial architecture contain multiple PEs
within a PE array, while a spatial precision-scalable MAC contains
multiple full adders within a spatial multiplier

• The PEs in the PE array accumulate partial sums, while the full
adders in the multiplier accumulate partial products

April 17, 2024

Use similarities to classify different
precision-scalable MAC architectures

L19-53

Sze and Emer

Spatial Precision-Scalable MACs

April 17, 2024 [Camus, JETCAS 2019]

4x
14b

4x
10b

2x
16b

2x
12b

<< <<<< <<

<<

20b

16b

gated

2 2

4

2 2

8b8b8b

2b 2b2b 2b4b 4b8b

Temporal accumulation of partial products

L19-54

Sze and Emer

Spatial Precision-Scalable MACs

April 17, 2024 [Camus, JETCAS 2019]

2b 8
b

2b 2
b 2b 8
b

<< <<

<<

20b

16b

2 2

4

<< <<

16b

13b

2 2

14b

12b

2b 2b2b 2b4b 4b8b

8b

Spatial accumulation of partial products

L19-55

Sze and Emer

Temporal Precision-Scalable MACs

April 17, 2024 [Camus, JETCAS 2019]

w0

20b

16b

w1 w2 w7

8 clock cycles 4 clock cycles

>>

2 clock cycles

8b

w0 w1 w2 w3 w0 w1

16b

12b >>

14b

10b >>

8b8b

Also referred to as bit-serial processing

L19-56

Sze and Emer

Precision Scalable MACs for Varying Precision

Overhead of additional logic to increase utilization for
higher throughput/area can reduce benefits

1.3x

1.6x

Evaluation of 19 precision-scalable
MAC designs

• 5% of values 8bx8b
• 95% of values at 2bx2b and 4bx4b

Conventional
data-gated

April 17, 2024 [Camus, JETCAS 2019]

L19-57

Sze and Emer

Binary Nets

• Binary Connect (BC)
– Weights {-1,1}, Activations 32-bit float
– MAC à addition/subtraction
– Accuracy loss: 19% on AlexNet

Binary Filters

[Courbariaux, NeurIPS 2015]

Reduced number
of unique filters

April 17, 2024

L19-58

Sze and Emer

Binary Connect

“Only binarize the weights
during the forward and

backward propagations, but
not during the parameter

update”

Keep full precision weights around during training
(mixed precision)

April 17, 2024

L19-59

Sze and Emer

Binary Nets (Weights & Activations)

• Binarized Neural Networks (BNN)
– Weights {-1,1}, Activations {-1,1}
– MAC à XNOR-Count
– Accuracy loss: 29.8% on AlexNet

[Courbariaux, arXiv 2016]

10100011
11010100
10001000XNOR

XNOR-Count =2
(popcount)

Tiny XOR gate
(add inverter for XNOR)

April 17, 2024

L19-60

Sze and Emer

Scale the Weights

[Rastegari, BWN & XNOR-Net, ECCV 2016]

• Binary Weight Nets (BWN)
– Weights {-α, α} à except first and last layers are

32-bit float
– Activations: 32-bit float
– Add scaling

• α determined by the l1-norm of all weights in a filter
– Accuracy loss: 0.8% on AlexNet

Scale factor (α) can change per filter

Hardware needs to support
both weight precisions

April 17, 2024

L19-61

Sze and Emer

Scale the Weights and Activations
• XNOR-Net

– Weights {-α, α}, Activations {-βi, βi}
• except first & last layers are 32-bit float

– Add scaling
• βi determined by the l1-norm of all activations across

channels for given position i of the input feature map

– Accuracy loss: 11% on AlexNet

April 17, 2024 Scale factors (α, βi) can change per filter or position in filter

L19-62

Sze and Emer

XNOR-Net

[Rastegari, BWN & XNOR-Net, ECCV 2016]

https://xnor.ai/

April 17, 2024

https://xnor.ai/

L19-63

Sze and Emer

Ternary Nets

• Allow for weights to be zero
– Increase sparsity, but also increase number of bits (2-bits)

• Ternary Weight Nets (TWN) [Li, Workshop @ NeurIPS 2016]

– Weights {-w, 0, w} à except first and last layers are 32-bit float
– Activations: 32-bit float

– Accuracy loss: 3.7% on AlexNet

• Trained Ternary Quantization (TTQ) [Zhu, ICLR 2017]

– Weights {-w1, 0, w2} à except first and last layers are 32-bit float
– Activations: 32-bit float
– Accuracy loss: 0.6% on AlexNet

April 17, 2024

L19-64

Sze and Emer

Filter Kernels of TTQ

[Zhu, ICLR 2017]

April 17, 2024

L19-65

Sze and Emer

Binary/Ternary Net Hardware

• Examples
– YodaNN (binary weights)
– BRein (binary weights and

activations)
– TrueNorth (ternary weights

and binary activations)

[BRein, VLSI 2017]

These designs tend only
support DNN models for

digital classification (‘MNIST’)
(except YodaNN)

April 17, 2024

L19-66

Sze and Emer

Binary and Ternary LLMs

April 17, 2024 Source: https://arxiv.org/abs/2402.17764

BitNet = 1b weights
Ternary BitNet = ~1.58b weights
Both have 8-bit activations and trained from scratch

https://arxiv.org/abs/2402.17764

L19-67

Sze and Emer

Summary of Reduce Precision
Category Method Weights

(# of bits)
Activations
(# of bits)

Accuracy Loss vs.
32-bit float (%)

Dynamic Fixed
Point

w/o fine-tuning 8 10 0.4
w/ fine-tuning 8 8 0.6

Reduce weight Ternary weights
Networks (TWN)

2* 32 3.7

Trained Ternary
Quantization (TTQ)

2* 32 0.6

Binary Connect (BC) 1 32 19.2
Binary Weight Net
(BWN)

1* 32 0.8

Reduce weight
and activation

Binarized Neural Net
(BNN)

1 1 29.8

XNOR-Net 1* 1 11
Non-Uniform LogNet 5(conv), 4(fc) 4 3.2

Weight Sharing 8(conv), 4(fc) 16 0

* first and last layers are 32-bit float

April 17, 2024

L19-68

Sze and Emer

Impact of Reduced Precision

April 17, 2024

Source: https://nicsefc.ee.tsinghua.edu.cn/projects/neural-network-accelerator

https://nicsefc.ee.tsinghua.edu.cn/projects/neural-network-accelerator

L19-69

Sze and Emer

Research on Reduced Precision for Training

• Gradients have large dynamic ranges that vary across layers

• Hybrid 8-bit float [Sun, NeurIPS 2019]
– HFP8 (forward: E=4, M=3, S=1, backward: E=5, M=2, S=1)

• 4-bit training [Sun, NeurIPS 2020]
– Gradients use a radix-4 logarithmic format (FP4)

• Also, FP8 for some layers

– Per-layer trainable scale factor for gradient to utilize full range
– Two-phase rounding (different quantization levels) to minimize quantization errors

April 17, 2024

L19-70

Sze and Emer

Stochastic Rounding

April 17, 2024

Statistical information lost when rounding to nearest quantization level.
Instead, use stochastic rounding where probability is proportional to distance from

quantization level. Referred to as “unbiased rounding scheme”.

[Barnes, Electronic Eng 1951]

• Probability x rounds to x1 = (x-x1)/ (x2-x1)
• Probability x rounds to x2 = (x2-x)/ (x2-x1)

L19-71

Sze and Emer

Stochastic Rounding

April 17, 2024

[Gupta, ICML 2015]

Impact on training on MNIST with fixed-point number of bit width
(i.e., WL=word length) of 16 at different fractional length (FL)

L19-72

Sze and Emer

Design Considerations for Reduced Precision
• Impact on accuracy

– Must consider difficulty of dataset, task, and DNN model
• e.g., Easy to reduce precision for an easy task (e.g., digit classification); does method work for a more

difficult task?

– Quantization-aware training vs. Post-training quantization

• Does hardware cost exceed benefits?
– Need extra hardware to support variable precision

• e.g., Additional shift-and-add logic and registers for variable precision

– Granularity impacts hardware overhead as well as accuracy
• e.g., More overhead to support (1b, 2b, 3b … 16b) than (2b, 4b, 8b, 16b)

• Evaluation
– Use 8-bit for inference and 16-bit float for training for baseline
– 32-bit float is a weak baseline

April 17, 2024

L19-73

Sze and Emer

Interplay with Other Optimizations

• DNN Model Shape
– WRPN: Wide Reduce Precision Network [Mishra, ICLR 2018]

• Increasing width (# of channels) to recover accuracy from reduce precision (4-bits, 2-bits)

• Dataflows
– UNPU: Unified neural processing unit [Lee, JSSC 2019]

• Use input-stationary dataflow since weights are reduced precision

April 17, 2024

L19-74

Sze and Emer

Summary

• Reducing precision is an effective way to reduce compute and
storage costs
– Widely exploited in industry already

• Fine tuning is critical for maintaining accuracy
– Retraining needed for lower precision, especially binary nets

• Weight sharing reduces storage but not necessarily compute
• There are a LOT of publications in this space!

April 17, 2024

L19-75

Sze and Emer

Recommended Reading

• Textbook Chapter 7
– https://doi.org/10.1007/978-3-031-01766-7

• V. Camus et al., “Review and Benchmarking of Precision-Scalable Multiply-
Accumulate Unit Architectures for Embedded Neural-Network Processing,”
IEEE Journal on Emerging and Selected Topics in Circuits and Systems,
October 2019
– https://ieeexplore.ieee.org/abstract/document/8887521/

April 17, 2024

https://doi.org/10.1007/978-3-031-01766-7
https://ieeexplore.ieee.org/abstract/document/8887521/

