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Goals of Today’s Lecture

» Lectures on the co-design of the DNN models and the hardware
— Better than what each could achieve alone

— Unlike previously discussed approaches, these approaches can affect accuracy! -
Evaluate tradeoff between accuracy and other metrics

» Co-design approaches can be loosely grouped into two categories:

— Reduce number of operations for storage/compute (Sparsity [Ch. 8] and Efficient
Network Architectures [Ch. 9])

— Reduce size of operands for storage/compute (Reduced Precision [Ch. 7])

« Hardware support required to maximize savings in latency & energy

— Ensure that overhead of hardware support does not exceed benefits

. L
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Benefits of Reduced Precision

Operation: Energy
(pJ)
8b Add 0.03
16b Add 0.05
32b Add 0.1
16b FP Add 0.4
32b FP Add 0.9
8b Mult 0.2
32b Mult 3.1
16b FP Mult 1.1
32b FP Mult 3.7
32b SRAM Read (8KB) 5
32b DRAM Read 640

April 17, 2024
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Benefits of Reduced Precision

« Reduced Precision =2 Reduced Bit Width

« Reduce data movement and storage cost for inputs and outputs
of MAC operation
— Store more data (e.g., weights, activation) on chip

— Smaller memory - lower energy

* Reduce cost of MAC operation

— Cost of multiplication increases with bit width (n)

* Energy and area by O(n?)
» Delay by O(n)

. L
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Fixed Point Arithmetic
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Binary Multiplication

101010

X 10 1 1
101 010
101010
0O 00O0O0OGO

+ 1010120

Multiplicand
Multiplier

Partial products

Result

Image source: 6.6010 374
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Binary Multiplication
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X3 X3 X Xo Multiplicand nl—b%ts
i Y3 ¥2 ¥1 Yo Multiplier n-bits
X3Y0o X2Y0 X1Yo XoYo
X3Y1 X2¥1 X1¥Y1 XoYi Partial Product
X3¥2 X2¥2 X1¥Y2 XgpY¥2
+  X3y3 X2¥3 X1¥Y3 XqY3 " - e
Result é é é
2T 26 s 34 3 2 71 A
Xa X X xo]
» Partial product computation é ! é Il d ! é Z
is simple (single and gate) A o < e "
X3 X2 X1 Xo Y2 +
5 & & & -
v v
FA FA [¢ FA HA
X3 X2 X1 Xo Ys +
5 & & & -
\ A 4 \ 4
FA FA FA [¢ HA
5 BB
Z7 Zs Zs Z4 Z3
April 17, 2024 toult = [(111 —1)+(n2 _2)]tcmy+(n2 - l)tsum+tan d Image source: 6.6010 374
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Various Bit Widths Within a MAC

How many additional bits are
required for partial sum to
ensure no loss in precision?

(ns + n; + [log2(RSC)])- bits

Weight

(nrblts
(n¢N;)-bits
f Accumulate Quantize _»Ou;c)ptut
|nput A (ni- IS)
Actlvatlon Ng X N

(n-bits) multlply

Precision of internal values of MAC higher than inputs or outputs

April 17, 2024 Example assumes integer format  Ilir Sze and Emer



Popular DNNs
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Metrics AlexNet VGG-16 GooglLeNet (v1)
Input Size 227x227 224x224 224x224
# of CONV Layers 5 16 21 (depth)
Filter Sizes 3, 5,11 3 1,3,5,7
# of Channels 3 - 256 3-512 3-1024
# of Filters 96 - 384 64 - 512 64 - 384
# of Weights 2.3M 14.7TM 6.0M

# of MACs 666M 15.3G 1.43G

# of FC layers 3 3 1

# of Weights 58.6M 124M 1M

# of MACs 58.6M 124M 1M
Max Weights per Filter (RSC) 9216 25088 1728
Minimum additional bits [log,(RSC)] 14 15 1

April 17, 2024

For no loss in precision, [log,(RSC)] is determined based on largest filter size
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Determining the Bit Width

How do we determine the number of bits for the input activations (n;),
weights (n¢), and partial sums?

. L
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Quantization

Map data to a small set of quantization levels (e.g., L =4)
g; = quantization values

d; = decision boundaries

Jo g4 gz ds ds d,

aREEEREE

10 12 14 16

o
N
N |=-=-=-=
(o))
o kk---

x=1,3,7,8,9,156,2— V04" —2=2,2,6,10,10, 14,6, 2
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Quantization

Goal: Minimize the error between the reconstructed data
from the quantization levels and the original data.

g; = quantization values
d; = decision boundaries

Tmin < T < Tmaz,

L= number of quantization levels
Px(Xo): probability density function of x

Optimally choose qg; and d;

Tmax
min  E[(z — £)2] = / (5 — )2 - pa(zs) - o
qi d; ] To=Tmin
error

(quantization noise)

. L
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Example
Px(Xo)
X
-5 5°°
do o Q2 as
Uniform quantization error
L 0.5477
Quantization
X
375 -1.25 1.25 3.75
o 91 Q2 Qs
_ quantization error
Non—U.nlform 0.1467
Quantization
X

-1.1503 -0.3186 0.3186 1.1503
HIT
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Precision

The number of quantization levels reflects the precision and ultimately the
number of bits required to represent the data

— Usually, log, of the number of levels

“Reduced precision” refers to reducing the number of levels (values), and thus
the number of bits

— The benefits of reduced precision include reduced storage cost and/or reduced
computation requirements

— Can also increase throughput (recall vector lecture)
* Range of values also matters
— Ratio of the largest and smallest non-zero value (magnitude) (i.e., Xpax/Xmin)

— To support a wide range, can increase the number of quantization levels or add scale factor
(a form of non-uniform quantization)

. I L
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Example: Uniform vs. Scale factor

Original Multiplication

Uniform: g = 44000xi/16
Scale factor: g; = (472*1 - 4i2) x (1%2)/8 + 42— 1 x '®—‘z

y—l

gi - uniform ¢; - scale factor

e

Quantized Multiplication

0 0 0 f
1 2750 1.5 x=Q()
2 5500 3 38_‘ Q) 2z
3 8250 9 y—+Q() 9
4 11000 15
5 13750 39 1e8 Uniform versus Scale Factor Multiplication
6 16500 63 175 === Uniform
—— Scale F.

7 19250 159 1504 et
8 22000 255 s ]
9 24749 639

. 1001
10 27499 1023 z

M 0.75
11 30249 2559
12 32999 4095 99
13 35749 10239 0.251 /
14 38499 16383 0.00-
15 41249 40959 0 2'5 50 75 100 155 150 175 2'00

Max Input to Multiplier

April 17,2024  See section 7.2.1. in book for more details Mir Sze and Emer



Range Selection

« Symmetric mode vs. Asymmetric mode

-max(|x|) 0 max(|xy|) min(xy) 0 max(x; )
R frm e
-128 0 127 0

255
Easier to implement

Better utilize full range

» Clip range (saturation)

— DoReFa (clip act to [0,1])

Remove outliers

— RelLUS (clip act to [0,6]) —3*-“““*:55{—
— PACT (clip act to [0, a], where a is learned)
Source: https://intellabs.github.io/distiller/algo_quantization.html
April 17, 2024
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https://intellabs.github.io/distiller/algo_quantization.html
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Standard Components of the Bit Width

* Range of values
— e.g., ng-bits to scale values by 2(E-127)
» # of unique values per scale factor
— e.g., hy-bits to represent 2M values
« Signed or unsigned values
— e.g., signed (S) requires one bit (ng=1)

+ Total bits = ng+ng+ny,

» Floating point (FP) allows range to change
for each value (ng-bits)

» Fixed point (Int) has fixed range

- Default CPU/GPU is 32-bit float (FP32)

April 17, 2024

Common Numerical Representations

1 8 23 Range
FP32 [

!

10-%8 — 1038
15 10

7
Int8 [ 0-127

6x105- 6x104

Image Source: B. Dally
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Fixed-Point Format

When range is limited, a simple fixed-point format can be used.
For instance, 8-bit fixed (-128 to 127)

Components of a fixed-point number

Mantissa (m): number of levels
Sign (s): indicates if number is positive or negative

S
(—1)° xm
Integer S|gn mantlssa (7-bits)

Example
8-bit ﬂllﬂﬂllﬂ

fixed

blnary point after
least significant bit

(fixed)
102 s=0 m=102

. L
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Fixed-Point Format

When range is limited, a simple fixed-point format can be used.
For instance, 8-bit fixed (-127 to 128)

Components of a fixed-point number

Mantissa (m): number of levels
Sign (s): indicates if number is positive or negative

(_1)3 X m X 9Q—f€—— fixed

Fixed Point S|gn mantlssa (7-bits)
Example
8-bit ﬂllﬂ“lﬂ
fixed
blnary point (fixed)
12.75 s=0 m=102 f = 3 (fixed)

. I L
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Floating-Point Format

April 17, 2024

To support a wide range, the default format in most CPUs
and GPUs is 32-bit float (10-38 to 1038)

Components of a floating-point number
Mantissa (m): number of levels
Exponent (e): scale to a target range (location of binary point varies)
Sign (s): indicates if number is positive or negative

(=1)* x m x 2(¢7127)

Sing/_e

I;;eaclnf;)cig S|gn exponent (8-bits) mantissa (23-bits)

32-bit float IﬂlEﬂIﬂIﬂﬂﬂﬂﬂﬂﬂﬂﬂlﬂlﬂﬂﬂﬂﬂﬂﬂﬂﬂlﬂﬂ
-1.112934 x 10 s=1 e=74 m = 20484

IEEE Standard for Floating-Point Arithmetic (IEEE 754)

|||il- Sze and Emer



L19-20

Floating Point Arithmetic

Multiplier Example: C=Ax B

SA Sp ex g My Mg
.~
I Exp Update I
¥ v
I Normalizer I

v v

Sc ec Mc

. I L
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Mixed Precision

 Different precision for different data types, since different data
types have different distributions

— For inference: weights, activations, and partial sums

— For training: weights, activations, partial sums, gradients, and weight
update

. I L
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Mixed Precision for Training

Weight update kept a full precision (FP32) while other variables are at half precision (FP16)

16 _¢( )

E
Weights ——> .
sl _ g : F16 FWD i>Act|vat|ons
Activations ——
\ 4
_ BWD-Act
F16 .
—— F16 | oL oL ([e——Weights
a_LActNatlon Grad <—‘ﬁ=2wi’}m F16 ‘g :
dy . oG 9% le——Activation Grad
J A 5/
BWD-Weight
. F16 ——
OL Weight Grad _ F16 (o s oy _a [~ Activations
A aa%i| F16 : >
W, \E'W"‘ 0y; oWy 9y j&—Activation Grad
v
: F32 . W F32 :
Master-Weights (F32) Weight UpdateJ > Updated Master-Weights
t+1 _ ¢t oL

- Modified figure from [Narang, /CLR 2018]
April 17, 2024 M Sze and Emer
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Reduce Mantissa Bits (M)

 Reduce number of unique values
« Uniform quantization (values are equally spaced out) [default]

* Non-uniform quantization (spacing can be computed, e.g.,
logarithmic, or with look-up-table)

* Fewer unique values can make transforms and compression
more effective

. I L
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Non-Uniform Quantization

* Precision refers to the number of levels
— Number of bits = log, (number of levels)

* Quantization refers to mapping data to a smaller set of levels
— Uniform, e.g., fixed point
— Non-Uniform

» Constrained (computed as a function of binary value) — e.g., log
» Unconstrained (arbitrary relation between values) — e.g., learned from opt

Objective: Reduce size to improve speed and/or reduce energy

while preserving accuracy

. I L
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Computed Non-Uniform Quantization

Log Domain Quantization

linear quantizer log,, quantizer
3000 Pl d & Lt 3000 R B L
2500 + [ I | - boundaries | 2500 + : : }: :: -- boundaries |
2000 i i i E i 2000 Rl TR
15001 | o | o 1500f | | i@l
| | | | |
1000f | I - LN T
| | |
500 N I 500 | : : : :
| | | | |
0 0 ‘
02 01 0 01 02 e —Oi;v | htOVI 0.1 02
Weight Values e b
Product= X*W Product = X << W

[Lee, LogNet, ICASSP 2017]

. L
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Log Domain Computation

(a) Conventional ' w
32b float

=

< =% e | o) (O )
32b float

32b float
From memory To memory
LARGE bandwidth Multiply-Accumulate LARGE bandwidth

(b) Proposed 1 ’ w
Float or

‘ Fixed

o) CEEEEEEZEEE!EH

|log; x|

Only activation

in i d : =) log, x — @ RelU llog, x| | e BIY-ON )

In Og omain 3b fixed 3b fixed
From memory ZW K Xx Leftmost ‘1’ S To memory
SMALL bandwidth Bit shift-Accumulate position SMALL bandwidth

(c) Proposed 2 log, w
' 4b fixed

Both weights and
activations in log e

From memory

domain SMALL bandwidth

log, x ‘O‘ RelU | o) BOVPREN m)

3b fixed Eq. (3),(4) 3b fixed To memory
SMALL bandwidth

max, bitshifts, adds/subs
[Miyashita, arXiv 2016]

. L
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Log Domain Quantization

« Weights: 5-bits for CONV, 4-bit for FC; Activations: 4-bits

« Accuracy loss: 3.2% on AlexNet
Shift and Add

Hardware (¢)

s contains 3x3 filters

features

1) Wxwxc® (1+1) Wxwxc{+D
a e Z3, a € L3,

input acts. of layer [ output acts. o(layer l+1

[Miyashita, arXiv 2016],
[Lee, LogNet, ICASSP 2017]

. I L
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Learned Quantization

» Learned mapping of data to quantization levels (e.g., k-means)

20000,
xXx linear quantization
nonlinear quantization by
©®® (lustring and finetuning
15000
Implement with
5 10000 look up table
© 5000
0 © o000 © o0o000000 O O
X X X X X X X X X X X X X x x X [Han’ICLR2016]

—0.04 —0.02 0.00 0.02 0.04 0.06
weight value

» Additional Properties

— Fixed or Variable (across data types, layers, channels, etc.)

. I L
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Non-Uniform Quantization Table Lookup

Learned Quantization: Find U weights via k-means clustering
to reduce number of unique weights per layer (weight sharing)

Example: AlexNet (no accuracy loss)
256 unique weights for CONV layer

16 unique weights for FC layer

Smaller

Weight

Memory Weight Overhead Does not reduce

Weight index Weight Weight precision of MAC

Memory (Iog2U-bitsL Decoder/ | (16-bits) MAC

CRSM x Dequant O_Utpl_"t
log,U-bits U x 16b T> Activation

Input (16-bits)
Activation —
(16-bits)

Consequences: Narrow weight memory and second access from (small) table
Energy savings if reading from: mem(CRSMxlog,U) + mem(Ux16) < mem(CRSMx16b)

April 17, 2024 Ui [Han, ICLR 2016] Sze and Emer



L19-30

Precision Taxonomy

« Uniform Quantization
— Direct binary value (i.e., integer)
— Fixed binary point (i.e., fixed point)

* Non-uniform Quantization
— Constrained (a function of binary value) — e.g., log
— Unconstrained (arbitrary relation between values) — e.g., learned from opt
— Scaled binary value (e.g., floating point)

. I L
April 17, 2024 M Sze and Emer
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Mantissa (M) and Exponent Bits (E)

Tradeoff between number of bits allocated to M-bits and E-bits

fp16 (S=1, E=5, M=10) DEEEEELNNYYMMMEY range: ~5.9x10% to ~6.5x10*
bfloat16 (S=1, E=8, M=7) MMM range: ~1x10-38 to ~3x1038

Bfloat16 increases number of bits for exponents (equal to FP32) to support
wider range (important for gradient) at a cost of fewer unique values

. I L
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Precision Taxonomy

 Uniform Quantization
— Direct binary value (i.e., integer)
— Fixed binary point (i.e., fixed point)
* Non-uniform Quantization
— Constrained (a function of binary value) — e.g., log
— Unconstrained (arbitrary relation between values) — e.g., learned from opt
— Scaled binary value (e.g., floating point)
» “Shared” values and/or hardware

— Exponent (e.g., dynamic fixed point)

. I L
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Eliminate Exponent Bits (E)
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« Share range across group of values (e.g., weights for a layer or channel)

— Referred to as block floating point or dynamic fixed point

— Reduces storage and compute requirements

« The range can change for

— Different types of data (e.g., activations, weights)
— Different layers (e.g., CONV, FC)

April 17, 2024

Something in between fixed point and floating point
- Dynamic fixed point!

Sze and Emer



Dynamic Fixed-Point Format

Components of a dynamic fixed-point humber
Mantissa (m): number of levels

Scale factor (f): location of binary point
Sign (s): indicates if number is positive or negative

S —f € vary across data
(_1) Xm X 2 'f types, layers, etc.

S|gn mantlssa (7-bits) S|gn mantlssa (7-bits)
8-bit fijnegong 8-bit ﬂllllﬂﬂllﬂ
dynamic gt Ve dynamic
fixed integer  fractional fixed fractlonal
([7-f]-bits) (f-bits) (f-bits)
12.75 s=0 m=102 f=3 0.19921875 s=0 m=102 f=9

Allow fto be vary for different groups of variables;
f cannot change for each variable like floating point

[D. Williamson, Dynamically scaled fixed point arithmetic. 1991]
April 17, 2024 |||il-
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Impact on Accuracy
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Static vs Dynamic Fixed Point

S 60
g ) Siutubdeboh, S LY ' 55
= -~
Top-1 accuracy 8 ®----- it Sk huiint AT ——— Dynamic fixed point
< AN N
on of CaffeNet s e R 50 ----m--- Integer length: 9-bit
on ImageNet '§ \ N - - - - --- Integer length: 10-bit
3‘% '.‘ 45 Integer length: 11-bit
© '
6 ' 40 . .
19 18 17 16 15 w/o fine tuning
[Gysel, Ristretto, ICLR 2016] Bit-width I
Layer CONV FC 32-bit floating  Fixed poin
outputs parameters parameters point baseline accuracy
LeNet (Exp 1) 4-bit 4-bit 4-bit 99.1% 99.0% (98.7%)
LeNet (Exp 2) 4-bit 2-bit 2-bit 99.1% 98.8% (98.0%)
Full CIFAR-10 8-bit 8-bit 8-bit 81.7% 81.4% (80.6%)
SqueezeNet top-1  8-bit 8-bit 8-bit 57.7% 57.1% (55.2%)
CaffeNet top-1 8-bit 8-bit 8-bit 56.9% 56.0% (55.8%)
GoogleNet top-1  8-bit 8-bit 8-bit 68.9% 66.6% (66.1%)

Sze and Emer
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Varying Exponent Bias
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Allow exponent bias to be configurable (—]_)S X m X 2 <e_14‘

exponent bias

AdaptivFloat [Tambe, DAC 2020]

— Divides up exponent scale factor into two parts
1. ‘e’ changes per value (i.e., floating point)

2. Bias changes per layer (i.e., dynamic fixed point except at
layer granularity)

Configurable Float (CFloat8 & CFloat16)
[Telsa Dojo 2021]
— Fully configurable exponent bias (6-bits for CFloat8)

— Two different methods of partitioning bits between
mantissa and exponents

Can repeatedly divide values into shared and
unshared values - Fractal

3130

Radix Point

27)

IEEE 754 FP32 |
(e8m23)

242
N
e

I
T T
Sign Exponent

8-bit AdaptivFloat (AFP)
w/ 8-bit exponent bias
(e4m3)

Sign Exponent Mantissa

T
Mantissa
Radix Point

Sze and Emer



L19-37

Nvidia PASCAL

“New half-precision, 16-bit
floating point instructions
deliver over 21 TeraFLOPS for
unprecedented training
performance. With 47 TOPS (tera-
operations per second) of
performance, new 8-bit integer
instructions in Pascal allow Al
algorithms to deliver real-time
responsiveness for deep learning
inference.”

— Nvidia.com (April 2016)

. L
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Mixed Precision in Nvidia GPUs

A100 TENSOR CORE

SPARSE
X-factor | SPARSE | X-factor
INPUT OPERANDS ACCUMULATOR TOPS |vs. FFMA| TOPS | vs. FFMA
\"}ﬁ\:—fj FP32 mmmmommmmy FP32  COmmmmoo s 15.7 1x - -
W FP16  ocomnummm FP32 mmmummmmmms 125 8x s C
FP32 commomummmmmmy FP32  COmmmommmmn 19.5 1x - -
TF32 mmmomrmn FP32  mmmommmmmmn 156 8x 312 16x
FP16  ommommmm FP32 mmmmmmmmmm 312 16x 624 32x
BF16  commpumm FP32 mmmummmmmmn 312 16x 624 32x
FP16 ommommm FP16 commmmmm 312 16x 624 32x
INT§ mm INT32 Ommmmmmmmn 624 32x 1248 64x
INT4 m INT32 o 1248 64x 2496 128x
BINARY 0 INT32 O 4992 256x Y100-2A100
IEEE FP64 oy 19.5 % ] 2-5%x FLOPS
for HPC

FFMA= floating point fused multiply-add
April 17, 2024 Illil- Source: Nvidia (May 2020)
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Google’s Tensor Processing Unit (TPU)

“With its TPU Google has
seemingly focused on delivering
the data really quickly by cutting
down on precision. Specifically,
it doesn’t rely on floating point
precision like a GPU

Instead, the chip uses integer
math...TPU used 8-bit integer.”

- Next Platform (May 19, 2016)

[Jouppi, ISCA 2017]

accumulators are 32-bits

L19-39
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Quantization in TensorFlow Lite (TFLite)

TFLite has support for 8-bit quantization

Performance of MobileNet

ReLU6 s output ReLU6 output L ..
|

uint8

+> +>
uint32
uint32
-
=
Float

conv conv o

Top 1 Accuracy
(=23
1S

|
|

S
S
6]

int8 I 8-bit
uint§, uint 40 I
input G 10 20 40 8 160 320
° b Latency (ms)
(a) Integer-arithmetic-only inference (b) Training with simulated quantization (c) ImageNet latency-vs-accuracy tradeoff

April 17, 2024 hr [Jacob, CVPR 2018] Sze and Emer
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Quantization in TensorFlow Lite (TFLite)

Impact of quantization to 8-bits integer (accuracy within <1%)

Float vs int8 CPU time per inference (ms)

float32 int8

MobileNet v1 (1.0, 224)

ResNet v2

Inception v3

0 500 1000 1500

Source: https://blog.tensorflow.org/2019/06/tensorflow-integer-quantization.htmi

. L
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https://blog.tensorflow.org/2019/06/tensorflow-integer-quantization.html

Other Industry Examples
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 NVDLA

— Binary/INT4/INT8/INT16/INT32/FP16
IFP32/FP64

— Forinference
* Microsoft BrainWave

— Custom 8-bit and 9-bit floating point

— For inference of RNNs/LSTMs on
FPGAs

* Nervana Systems (now Intel)

— Custom FlexPoint format for training

« TPUV2 & V3
— bfloat16 for training

April 17, 2024 |||il-

Tera-Operations/sec

100

80
70

50

30

20
10

Intel
Neural
Network
Processor

FPGA Performance vs. Data Type

~8-Stratix V D5 @ 225MHz 20

Stratix 10 280 @ 500MHz

65

31

12

o—o—o0— @
16-bit int 8-bitint ms-fp9 ms-fp8

[Chung, Hot Chips 2017]
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Standardize Microscaling (MX) Data Formats

MX data formats share scaling across block of “narrow bit width elements”

-

P,
(element)
P,

X (element) k scalar
(shared scale) . elements

P, k=block size
(element)

—

Source: https://www.opencompute.org/blog/amd-arm-intel-meta-microsoft-nvidia-and-qualcomm-standardize-next-generation-
narrow-precision-data-formats-for-ai (Oct 2023)

April 17, 2024 |||il-

Sze and Emer


https://www.opencompute.org/blog/amd-arm-intel-meta-microsoft-nvidia-and-qualcomm-standardize-next-generation-narrow-precision-data-formats-for-ai
https://www.opencompute.org/blog/amd-arm-intel-meta-microsoft-nvidia-and-qualcomm-standardize-next-generation-narrow-precision-data-formats-for-ai
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Standardize Microscaling (MX) Data Formats

Format | Block Scale Scale Element Element
Name Size | Data Format | Bits Data Format Bit-width
MXFPS8 32 E8MO 8 FP8 (E4M3 / ESM2) 8
MXFP6 32 E8SMO 8 FP6 (E2M3 / E3M2) 6
MXFP4 32 E8MO 8 FP4 (E2M1) 4
MXINTS8 32 E8SMO 8 INTS8 8

Impact on accuracy

» Inference with MXINT8 and MXFP8 can be used on FP32 pretrained models with minimal loss

» Inference with MXFP6 closely matches FP32 accuracy after quantization-aware finetuning

» Training with MXFP6 weights, activations, and gradients w/ minimal loss (w/o changing training recipe)
* Training with MXFP4 weights and MXFP6 activations and gradients incurs only a minor loss

Source: https://www.opencompute.org/blog/amd-arm-intel-meta-microsoft-nvidia-and-qualcomm-standardize-next-generation-
narrow-precision-data-formats-for-ai (Oct 2023)
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Standardize Microscaling (MX) Data Formats

MX data formats used for matrix multiplication, while vector operations (e.g., layernorm, Softmax,
GELU, and residual add) are performed in a scalar floating-point format like Bfloat16 or FP32

Ai-l [M,K] [Forward]
(Bfloati6) iy, . |
—

' Vector | —— MX*[M, K?] R
. ops MatMul ' Vector |

—
---------- : (A 1* W) _ops |
uantize = s A; M,N] c_ 20!
My o) [ areize s Lo
(Bfloat16) ’ (BFloat16)

A. . [MK]

i-1 2
W8, Optimizer [Backward] =« ik, me] ' (Bfloat16)

(FP32) .| Quantize H Transpose }47

atMu
MX*[MQ, N
G: [KN] (A;.," * E;) LM, N] Quantize E; [m,N]
il -
(Bfloat16) ' Vector | (Bfloat16)
Ops
N 19 [ —— T { V1) B
————————— ' tize W [K,N]
(Bfloati6) Vector | MatMul Quan 1t

— ' *[NQ (Bfloat16)

Ops (Ey * W;T) MXTIN K] Quantize H Transpose }47

Source: https://www.opencompute.org/blog/amd-arm-intel-meta-microsoft-nvidia-and-qualcomm-standardize-next-generation-
narrow-precision-data-formats-for-ai (Oct 2023)
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Varying Precision

L19-46
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Change precision for different parts of the DNN
(e.g., vary across layers)

Activations

Tolerance | Bits per layer (I+F)
AlexNet (F=0)
1% 10-8-8-8-8-8-6-4
2% 10-8-8-8-8-8-5-4
5% 10-8-8-8-7-7-5-3
10% 9-8-8-8-7-7-5-3

[Judd, arXiv 2016]
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Layer Number [-]

[Moons, WACV 2016]
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Bitwidth Scaling (Speed)

Bit-Serial Processing: Reduce Bit-width - Skip Cycles
Speed up of 1.92x vs. 16-bit fixed

N;—1 N;—1 P-1 P-1 N;—1
b b b b

E sixni:E sixgnix2=22xg n; X S;
i=0 i=0 b=0 b=0 i=0

LSB _MSB Cycle 1 Cycle 2 Cycle 3

2 lo[1|o o[1

o

3 [ooftf olof

[Judd, Stripes, MICRO 2016]

April 17, 2024 |||il-

::D~‘1)
;

0

[ <<

- <<

EE
_LO_L

[ oo]|l==0O| &l

Synapses

AR <

)] )]

vs) 0

m m
[+]
| - O O

Sze and Emer



L19-48

Bitwidth Scaling (Power)

. ] y2 y1/0 y0/0 o o
Reduce Bit-width = .
Shorter Critical Path 3 .
- Reduce Voltage 3 33x gain
=E @ 1% RMSE
E 10 -6 -4 -2 0
(a4 10 10 10 10
........................ Root-Mean-Square Error [-]
AlexNet Layer 2 example: |274 mW p7 pb p5 p4
A. 2D-baseline @ 16 bit 1.9X

B. Precision-Scaling @ 7-7 bit

2 - V.2
Pprecise =aCfv® = Pimprecise = k—lcf(k—z)

C. Voltage-Scaling @0.9V

D. Sparse operation guarding

Power reduction of 2.5x vs. 16-bit fixed

“TA B C D On AlexNet Layer 2
e MAC-array |

April 17, 2024 Illiir [Moons, VLS/2016] Sze and Emer
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Precision Taxonomy

 Uniform Quantization
— Direct binary value (i.e., integer)
— Fixed binary point (i.e., fixed point)
* Non-uniform Quantization
— Function of binary value (e.g., log)
— Arbitrary relation (i.e., table lookup)

— Scaled binary value (e.g., floating point)
» “Shared” values and/or hardware
— Exponent (e.g., dynamic fixed point)
— Mantissa (e.g., varying precision hardware)

. I L
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Fixed Point Multiplier

FA = full adder % ’% % % Yo
HA = half adder % )% N i

. I L
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Precision Scalable MACs for Varying Precision

Full precision 8bx8b 4bx4b 2bx8b

| 8b | [ 4b [0000] (20| 000000 |
I I

=
=) gated
x [| X | gated

S ) ¢
I I
16b B | 16b B | 16b B |
] | ]
+ + +
20b B : | 20b B : | 20b B : |
%

Conventional data-gated MAC
Gate unused logic (e.g., full adders) to reduce energy consumption;
share hardware across different precisions

Can we add logic to increase utilization for higher throughput/area?

April 17, 2024 |||||- [Camus, JETCAS 2019] Sze and Emer
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Many Types of Precision-Scalable MACs

« Many similarities between DNN accelerators and precision-scalable
MACs

 DNN accelerators with a spatial architecture contain multiple PEs
within a PE array, while a spatial precision-scalable MAC contains
multiple full adders within a spatial multiplier

* The PEs in the PE array accumulate partial sums, while the full
adders in the multiplier accumulate partial products

Use similarities to classify different
precision-scalable MAC architectures

. I L
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Spatial Precision-Scalable MACs

8b 4b 4b 2bl|2b||2b||2b

7 7 | | 7 | | 7 7 7 | 7
g_.x-.x-.x-.x £—>X*X-’X-’X gqx-.x-.x-.x
| é; | L+ | L+ | [+ | | | | |

4 b =

| -!- | || gated |] | |
16b P | XB > | AXB B B b ]
12b " 10b " —T1 _

| | v ' ) vl

+ + + + |+ |+ |+

| o ] | 4 | ] ] |
200 B | R GEEE

Temporal accumulation of partial products
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Spatial Precision-Scalable MACs

8b 4b 4b 2b|[2b||2b]||2b
T T T 1 T T T 1 T T T 7
SHI %X H %X P % % x:x,x_.x xaxzx*x
52 52 Ba; | E3; b oo
L+ | [+ | L+ | [+ | L+ | [+ |
B, ] ]
I -l- | I -}- | I -l- |
16b P | 13b p | 12bp |
+ + +
! |
20b P | 16b P | | 14b P |

Spatial accumulation of partial products
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Temporal Precision-Scalable MACs

8 clock cycles 4 clock cycles
ay

Wy |[Wq|W2]W3

2 clock cycles

Also referred to as bit-serial processing

April 17, 2024 |||||- [Camus, JETCAS 2019] Sze and Emer



Precision Scalable MACs for Varying Precision

061 °
Evaluation of 19 precision-scalable i gl
MAC designs 05!
g i
%OA oK --e(;onventional
D B data-gated 1.3x
L e P —
* 5% of values 8bx8b 0.3}
* 95% of values at 2bx2b and 4bx4b

0.2

2 3 4 5 6 7 8 9
Throughput/area (GOPS/me)

Overhead of additional logic to increase utilization for

higher throughput/area can reduce benefits
April 17, 2024 |||il-

[Camus, JETCAS 2019]
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Binary Nets

« Binary Connect (BC)
— Weights {-1,1}, Activations 32-bit float
— MAC - addition/subtraction
— Accuracy loss: 19% on AlexNet
M,
|

[ |
Binary Filters « H F Reduced number

1 F '. n of unique filters
Lr n b

[Courbariaux, NeurlPS 2015]
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Binary Connect

L19-58

April 17, 2024

Algorithm 1 SGD training with BinaryConnect. C is the cost function for minibatch and the func-
tions binarize(w) and clip(w) specify how to binarize and clip weights. L is the number of layers.
Require: a minibatch of (inputs, targets), previous parameters w;_; (weights) and b;_; (biases),

and learning rate 7).
Ensure: updated parameters w; and b;.

1. Forward propagation:

wy, < binarize(w;_1)

For k = 1 to L, compute ax knowing ax_1, wp and b;_;

2. Backward propagation:

Initialize output layer’s activations gradlent

For k = L to 2, compute 52— knowing 52 ‘and w, “Only binarize the weights
3. Parame(ger update: during the forward and
Compute and knowm and a .
p 1 sy and g € G kol backward propagations, but
W ¢ lp(wt L "awb) not during the parameter
update”

by < by_1 — n@bt 1

Keep full precision weights around during training
(mixed precision)

Sze and Emer



Binary Nets (Weights & Activations)

* Binarized Neural Networks (BNN)
— Weights {-1,1}, Activations {-1,1}

— MAC > XNOR-Count

— Accuracy loss: 29.8% on AlexNet

10100011
11010100

Tiny XOR gate
(add inverter for XNOR)

0

we'

u
1 F

XNOR 10001000 A

\_'_I

N
1~

]

-

XNOR-Count =2
(popcount)

April 17, 2024 ir

[Courbariaux, arXiv 2016]
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Scale the Weights

« Binary Weight Nets (BWN)
— Weights {-a, a} - except first and last layers are
32-bit float [ = ]

. _ Hardware needs to support
— Activations: 32-bit float

both weight precisions
— Add scaling
« o determined by the |;-norm of all weights in a filter

— Accuracy loss: 0.8% on AlexNet

028 8. ) 0y =¥ PR .
'33'..’.. (;zn: , W "”‘Vl" =Q 1.y ] B

sign(W)

Scale factor (a) can change per filter

[Rastegari, BWN & XNOR-Net, ECCV 2016]
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Scale the Weights and Activations

« XNOR-Net
— Weights {-a, a}, Activations {-B;, B}

» except first & last layers are 32-bit float

— Add scaling

» B, determined by the |;-norm of all activations across
channels for given position i of the input feature map

— Accuracy loss: 11% on AlexNet

____________ *l = 3] TR e
2Ll - 3 SO
¢ k 2 11T
Ke=eeeeny T A A A K sign(I)
(4) Convolution with XNOR-Bitcount
0.2 -01 .:'3 0.1- Tomas T ST 2 T &)
-1.4 05 .. 0.2 2 * a1 a4- 201’ P = viig iy ® ey O] O«
05 3 ..-12 0.2 W U b B sign(W) |
I sign(I) K

April 17, 2024 Scale factors (a, ;) can change per filter or position in filter Sze and Emer




XNOR-Net
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Network Variations Operations Memory
used in Saving

Convolution | (Inference)

| Real-Value Inputs
Standard

. /| Real-Value Weights
Input -0.250.61... 0.52~ e

| "Real-value Inputs

4h hin ) : gl Binary Weights
LB L. . Binary Weight | g.41021 7 -0.34" +, - ~32x
Weight -0.250.61 ... 0.52°
W, t -
c @ Binary Inputs
BinaryWeight . /| Binary Weights XNOR
Binary Input A= ) : ~32X
(XNOR-Net) 1. 1" bitcount

[Rastegari, BWN & XNOR-Net, ECCV 2016]

https://xnor.ai/

Computation
Saving
(Inference)

1x

X

~58x

Accuracy on
ImageNet
(AlexNet)

%56.7

%56.8

%44.2

Sze and Emer
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Ternary Nets

« Allow for weights to be zero
— Increase sparsity, but also increase number of bits (2-bits)

« Ternary Weight Nets (TWN) [Li, Workshop @ NeurlPS 2016]
— Weights {-w, 0, w} = except first and last layers are 32-bit float
— Activations: 32-bit float
— Accuracy loss: 3.7% on AlexNet

* Trained Ternary Quantization (TTQ) [zhu, /ICLR 2017]
— Weights {-wy, 0, w,} = except first and last layers are 32-bit float
— Activations: 32-bit float

— Accuracy loss: 0.6% on AlexNet
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Filter Kernels of TTQ

hODOENrEEND
daIROFERELRD
UNOUINENENERA
I'REFRYEET =D
EFT.EFNEN
RIEEEANGE N
EESAFTRREEE
JENEEENLECE
EFFMFENEhER
BECLETERNENR

EROR3BENANNE
EEERIRENED
EEEENEETLE
FRNEARETYE
ERNONOSHENO
LEDRNEEMN N
OFEENuUNNSD
BESYEENETIN
dARONEENNR
EXNCOEENTR

[Zhu, ICLR 2017]
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Binary/Ternary Net Hardware

L19-65
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« Examples

— YodaNN (binary weights)

— BRein (binary weights and

activations)

— TrueNorth (ternary weights

and binary activations)

These designs tend only
support DNN models for
digital classification (‘MNIST")
(except YodaNN)

Upper SRAM (H-bit L-word)

1]0] Neuron 1

Neuron # | 0 1]~ Neuron2

8 10 Neuron 3

oH

o)

aH

»H

nH

o - XNOR
Input S — Accumulate

Activation Bitl<}|, W — Sign
Stream A1 597 0

AR
I 7805

— Adder Tree
- Sign

Stream A3

0 Neuron 3 H
‘[1]o] - Neuron 2 H
1]0/1]  Neuron 1H

Lower SRAM (H-bit L-word)
(b) Processing-in-Memory Module (PIM)

[BRein, VLSI 2017]

Addrésé I'De'coder'

Neuron #
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Binary and Ternary LLMs

L19-66

& Pareto Improvement
Jf------------ DGR e e L E L P L T h----mm e e oo
S &
3 BitNet b1.58 (This Work) Transformer LLMs
M
H {-1,0,1} 16-bit Float (FP16/BF16)
@
1 1 1 0.2961 -0.0495 .. -0.4765
-| 0 1 -1 Ww=|00413 .. 02812 0.2403
1 1 0 -0.1808 0.1304 .. -0.1771
1 0 -1 -0.4809 .. -0.1741 -0.3853
Cost
Y = f(W, X) Model W ¢ Inputx = Output Y
N IV N
0.2961 -0.0495 -0.0924 -0.4765 X 0.2961x( — 0.0495x; — 0.0924x, — 0.4765x3
0.0413 03397 0.2812 0.2403 X1 ‘\-\(\0“ GPU
FP16 % — “e«h"
-0.1808 0.1304 0.4322 -0.1771 X2 (\0«‘
X
.v\\ﬁ
-0.4809 0.3244 -0.1741 -0.3853 | = “\\;\"-‘ )
N A
1 -1 1 1 *o Xo— X3 — Xzt X3
14 1 x1 o™
: We? New
1(.58)-bit ® — -
1 o 1 4 X2 — “ON\“ Hardware
30°
1 1 1 o ) X3 o )
April 17, 2024

Source: https://arxiv.org/abs/2402.17764

BitNet = 1b weights

Ternary BitNet = ~1.58b weights
Both have 8-bit activations and trained from scratch

Models Size Memory (GB), Latency (ms)| PPL|
LLaMA LLM 700M 2.08 (1.00x) 1.18 (1.00x) 12.33
BitNet b1.58 700M 0.80 (2.60x) 0.96 (1.23x) 12.87
LLaMA LLM 1.3B 3.34 (1.00x) 1.62 (1.00x) 11.25
BitNet b1.58 1.3B 1.14 (2.93x) 0.97 (1.67x) 11.29
LLaMA LLM 3B 7.89 (1.00x) 5.07 (1.00x) 10.04
BitNet b1.58 3B 2.22 (3.55x) 1.87 (2.71x) 9.91
BitNet b1.58 3.9B 2.38 (3.32x) 2.11 (2.40x) 9.62
102 :
= BitNet b1.58 102{ — BitNetb1.58
— | aMA .10x = LLaMA .16x
m o
£ S
10 2
c g 10!
5 =
100 100
138 3B 7B 13B 70B 138 3B 7B 13B 70B
Model Size Model Size
II|" Sze and Emer
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Summary of Reduce Precision

Category Weights Activations | Accuracy Loss vs.
(# of bits) (# of bits) 32-bit float (%)

Dynamic Fixed w/o fine-tuning 0.4
el w/ fine-tuning 8 8 0.6
Reduce weight Ternary weights 2* 32 3.7
Networks (TWN)
Trained Ternary 2 32 0.6
Quantization (TTQ)
Binary Connect (BC) 1 32 19.2
Binary Weight Net 1* 32 0.8
(BWN)
Reduce weight Binarized Neural Net 1 1 29.8
and activation (BNN)
XNOR-Net 1* 1 11
Non-Uniform LogNet 5(conv), 4(fc) 4 3.2
Weight Sharing 8(conv), 4(fc) 16 0

* first and last layers are 32-bit float
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Impact of Reduced Precision

™ " . .
A
@ FP32  1000TOPs/W 100TOPs/W 10TOPs/W . AVTOPs W
® P16 ) r]
FP8 s
100k | A INTIE , v , N i °

A INTIZ ) - A % ° g 10GOPs/W

A INT8 ‘ N L W = A .

A INT6 - A Bk AL * 4

A INT4 ] = A
7 10k A INT2 o | i 1 O [ Y o* A
é B Ternary v - o . u A o o " 1GOPs/W
Z M Binary | & ° A Ai A4 4 [ |
3 [ others ’ A A ,A 'iAAA{A
5 : ! 177 A = A
v 1k .AA ‘ A I ™ A x “ A A

| ;- A ok ‘A 5 A A N A )
A 2
] 4 A f“;‘ A A 'y "‘
loootorsw A | m 4 T A : nnle A
100 - | Pk A °
= BT 4 Ay A, o® °
A u A i
. e
A A A
100TOPs/W - A A
10 =
0.001 0.01 0.1 1 10 100 1k
Power (W)

Source: https://nicsefc.ee.tsinghua.edu.cn/projects/neural-network-accelerator
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Research on Reduced Precision for Training

« Gradients have large dynamic ranges that vary across layers

» Hybrid 8-bit float [Sun, NeurlPS 2019]
— HFP8 (forward: E=4, M=3, S=1, backward: E=5, M=2, S=1)

» 4-bit training [Sun, NeurlPS 2020]
— Gradients use a radix-4 logarithmic format (FP4)

» Also, FP8 for some layers
— Per-layer trainable scale factor for gradient to utilize full range

— Two-phase rounding (different quantization levels) to minimize quantization errors
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Stochastic Rounding

Statistical information lost when rounding to nearest quantization level.
Instead, use stochastic rounding where probability is proportional to distance from
quantization level. Referred to as “unbiased rounding scheme”.

4 1
| - |

T o

A
Y

» Probability x rounds to x; = (X-X4)/ (Xo-X1)
* Probability x rounds to x, = (Xo-X)/ (Xo-X1)
[Barnes, Electronic Eng 1951]
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Stochastic Rounding

Impact on training on MNIST with fixed-point number of bit width
(i.e., WL=word length) of 16 at different fractional length (FL)

Training error

45
40
35

Test error(%)

30

25

(@ 0

40 60 80

Training epoch

20
100 120 ()

[Gupta, ICML
i

50 1

gy Round to nearest, FL 14 -«
"N Stochastic rounding, FL 14 ———
B : Stochastic rounding, FL 12 ———
Float

Training epoch

2015]
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Design Considerations for Reduced Precision

* Impact on accuracy

— Must consider difficulty of dataset, task, and DNN model

* e.g., Easy to reduce precision for an easy task (e.g., digit classification); does method work for a more
difficult task?

— Quantization-aware training vs. Post-training quantization

 Does hardware cost exceed benefits?

— Need extra hardware to support variable precision
* e.g., Additional shift-and-add logic and registers for variable precision
— Granularity impacts hardware overhead as well as accuracy
* e.g., More overhead to support (1b, 2b, 3b ... 16b) than (2b, 4b, 8b, 16b)

« Evaluation
— Use 8-bit for inference and 16-bit float for training for baseline
— 32-bit float is a weak baseline
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Interplay with Other Optimizations

 DNN Model Shape
— WRPN: Wide Reduce Precision Network [Mishra, /ICLR 2018]

* Increasing width (# of channels) to recover accuracy from reduce precision (4-bits, 2-bits)

« Dataflows
— UNPU: Unified neural processing unit [Lee, JSSC 2019]

» Use input-stationary dataflow since weights are reduced precision
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Summary

Reducing precision is an effective way to reduce compute and
storage costs
— Widely exploited in industry already

Fine tuning is critical for maintaining accuracy

— Retraining needed for lower precision, especially binary nets

Weight sharing reduces storage but not necessarily compute

There are a LOT of publications in this space!
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Recommended Reading

« Textbook Chapter 7
— https://doi.org/10.1007/978-3-031-01766-7

« V. Camus et al., “Review and Benchmarking of Precision-Scalable Multiply-
Accumulate Unit Architectures for Embedded Neural-Network Processing,”
IEEE Journal on Emerging and Selected Topics in Circuits and Systems,
October 2019

— https://ieeexplore.ieee.org/abstract/document/8887521/
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