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Advanced Storage Technology

« Bring compute and memory closer together to reduced the cost of data
movement

* Processing/Compute Near Memory (a.k.a. near-data processing)

— Embedded DRAM (eDRAM)
* Increase on-chip storage capacity

— 3D Stacked DRAM (e.g., Hybrid Memory Cube (HMC), High Bandwidth Memory (HBM))

* Increase memory bandwidth
* Processing/Compute In Memory (a.k.a. in-memory computing)

— Static Random Access Memories (SRAM), Dynamic Random Access Memories (DRAM),
and Non-Volatile Memories (NVM)

— Processing integrated into memory (more aggressive form of processing near memory)
versus processing using memory (using memory device to perform compute)
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SRAM (kB — MB)

« SRAM accounts for majority of on- i W
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— SRAM is significant portion of chip area
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https://en.wikichip.org/wiki/amd/microarchitectures/zen
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DRAM (GB)

BL

« Higher density than SRAM WL _
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— 1 transistor per bit-cell
— Needs periodic refresh

Special device process | =
— Usually off-chip (except eDRAM — which is pricey!) CBL£
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Memory Access Cost for DRAM is Expensive

Operation: Energy
(pJ)
8b Add 0.03
16b Add 0.05
32b Add 0.1
16b FP Add 0.4
32b FP Add 0.9
8b Mult 0.2
32b Mult 3.1
16b FP Mult 1.1
32b FP Mult 3.7
32b SRAM Read (8KB) 5
32b DRAM Read 640
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eDRAM (DaDianNao)

« Advantages of eDRAM
— 2.85x higher density than SRAM
— 321x more energy-efficient than DRAM (DDR3)
« Store weights in eDRAM (36MB)
— Target fully connected layers since dominated by weights
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Going 3D!

Traditional MCM/PCB Silicon Interposer 2.5D m

Analog

RF Passive

Flipchip + wire bond 2.5D side-by-side integration Vertical stacking with
with TSVs & silicon interposer memory & logic

Source: https://www.einfochips.com/blog/2-5d-3d-ics-new-paradigms-in-asic/
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Stacked DRAM (NeuroCube)

* NeuroCube on Hybrid Memory Cube Logic Die
— 6.25x higher BW than DDR3
- HMC (16 ch x 10GB/s) > DDR3 BW (2 ch x 12.8GB/s)

— Computation closer to memory (reduce energy)
Memory vault
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Stacked DRAM (Tetris)

« Explores the use of HMC with the Eyeriss spatial architecture and row
stationary dataflow

» Allocates more area to the computation (PE array) than on-chip memory
(global buffer) to exploit the low energy and high throughput properties of
the HMC

[Gao, ASPLOS 2017]
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Conventional Processing vs. CiM

Conventional
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Analog Computing

Analog computing is typically required to bring the computation into
the array of storage elements or into its peripheral circuits

Activationis v, ==
input voltage (V;) G,

1= V,%G\

V, =

Weight is resistor
conductance (G;))
[= 1/resistance]

G,
I, = Vz"Gz\

Many options for
“resistance”

Partial sum
is output current (1) =1 + I,
| =V, XG; +V,XG,
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CiM Using Memristors in Non-Volatile Memory

Use memristors as programmable weights (resistance)

Candidate memristor devices

Phase Change Memory Spin-torque Transfer Resistive Memory

(PCM) (STT-MRAM) (RRAM)
Crystalline Conductor Free Layer Conductor
GeSbTe 7 — o o
—  — —
Amorphous Magnetic Tunnel Jct. _—
GeSbTe - fm = e : ductive
! S S ent

Pinned Layer Conductor

Conductor

OxRAM, CBRAM

Source: Darsen Lu, MICRO-49 Tutorial on Emerging Memory
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Candidate Devices for Memristor

Ewrite/ Bit| 18pJ [15]* 1.0pJ [20] 1.0pJ [20] |100pJ [31] <1.0 pJ [9]
lwrite 100pA[15]  50pA [33] 1.0pA [18]

e 0110 Write Lat. | 150ns [15] 5ns [6] 50ns [20] 5ns [27]
XL Read Lat. | 80ns[28]  10ns [5] 20-80ns [35]
LEE] IS Program 3 bit/cell Good [3] Good
lity Window [12]

Endurance| 10%-10°  Unlimited ] Unlimited

[4,9] [1]
Retention | R-drift[12] Good [6]
DR Cellsize  \4F2[15] |12 F2[33] 4-6F2[21] /<4 F2[15] 7F2[15]

Emerging Memory Technologies
- Estimated using |_reset " Ydd *twrite (Speed of DRAM; Non-volatility of NAND)

2. Required programming pulse duration Microwag Tutor\al on Emerging Vlcmory

Devices (Darsen Lu)
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Weight Stationary Dataflow for CiM
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A

Transform into matrix-vector nout
multiply with weights in matrix, Activations
and input activations in vector Memory

VIVY VYV Y

S
>

SAC ereia,

Benefits

* Reduces data movement of weights

« Higher memory bandwidth by reading
multiple weights in parallel

» Higher throughput by performing multiple
computations in parallel

« Lower input activation delivery cost due to
increased density of compute

April 22, 2024
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Loop Nest for CiM

For Fully Connected layer

i = Array(CHW) # Input  activations
t = Array(M, CHW) # Filter weights
o = Array(M) # Output partial sums

parallel—for min [0, M):
parallel—for chwin [0, CHW):
o[m] += i[chw] * f[m, chw]

For Convolutional layer
(1-D toy example)

i = Array(C, W) # Input activations
t = Array(M, C, S) # Filter weights
o = Array(M, Q) # Output partial sums

parallel—for min [0, M):
parallel—for s in [0, S):
parallel—for c in [0, C]:
for q in [0, Q):
w=(q+s
o[m, q] +=i[c, w] * f[m, ¢, s]

L20-15
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Design Considerations for CiM

« Analog computing has increased sensitivity to circuit and device
non-idealities (i.e., non-linearity and process, voltage and
temperature variations)

» Requires trade offs between energy efficiency, throughput, area
density, and accuracy, which reduce the achievable gains over
conventional architectures

. I L
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Toy Example for CiM

Decimal Representation

ifmap filter psum
12132 1
N11203X0129CHW—7131951N
- cHY — 3(ef2]2
2 [3]2[a] | — M >
< M >
Binary Representation
ifmap filter psum
01101110
011000 12| X [©2{01]10]060| = [gp111]01101|01010 00101

11|00 |01 |01
10|11 |01 |01

. I L
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Number of Storage Elements per Weight

« Ideally, it would be desirable to be able to use one storage element (i.e., one
device or bit cell) per weight to maximize density.

 In practice, multiple storage elements are required per weight due to the
limited precision of each device or bit cell (typically on the order of 1 to 4 bits)

— This is also referred to as bit slicing of the weight (weight slicing)

4 8

A
\ 4
A
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N[w]leo]|r
wleo|lr]|~
Rlrldv]w
Rlr]lo]n
Rlr|lo]|e
Olr|o]|r
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Rlo|lr]|e
oleo|r|r
Rrlr|lo]r
oleo|o|r
Rlr|lo]|e
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Array Size

« |deally, it would be desirable to have a large array size

— Increases weight read bandwidth and throughput

— Increases area density - amortize the cost of the peripheral circuits (e.g., ADC, DAC) which can account for
over 50% of NVM designs

« Array size limited by the resistance and capacitance of word line and bit line wires,
which impacts robustness, speed and energy consumption

— If capacitance or resistance of bit line much larger than storage element, it is difficult to sense value in
storage element (i.e., change in bit-line voltage/current due to value in storage element is reduced)

BL=Vpp BL=Vpp - AV, BL=Vyien BL=V, ow
WL0=0ﬁ_— WL0=1ﬁ_— WL0= ‘/in WL0= ‘/in
vlocal=0 s R R
ON OFF
Clocal Clocal
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Array Size

Utilization of the array will drop if the workload cannot fill entire column or entire row

Columns in Array (A)

y

SR ETOTE
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=
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Storageﬁ L D’ID'F" |
element

April 22, 2024

«— CHW —

>
rd

o
<

Rows in
Array (B)

A=8

1 1121312
2 0111210
0 3101111
3 213111

4
Storage
element 7 |13]10| 5

8
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Number of Rows Activated in Parallel

L20-21

 Ideally, it would be desirable to use all rows
at once to maximize parallelism for high
bandwidth and high throughput

* In practice, the number of rows that can be
used at once is limited due to
— ADC resolution (number of bits it can resolve)
— Cumulative effect of the device variations

— Maximum voltage drop or accumulated current
on bit line

April 22, 2024 |||il-
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Number of Rows Activated in Parallel

ifmap filter psum
213
t=0 112 X 6]1)2(¢° = 114|172
+
t=1 o Tef3] X = 619]3]3
011
213|111

finalpsum | 7 |13|10| 5

Multiple cycles to complete accumulation across rows - Reduces Throughput

. I L
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Number of Columns Activated in Parallel

L20-23

 l|deally, it would be desirable to use all
columns at once to maximize
parallelism for high bandwidth and high
throughput

 In practice, the number of columns that
can be used is limited by ADC area

April 22, 2024 |||il-

Input
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Number of Columns Activated in Parallel

ifmap filter psum
112
t=0 12le]3] X ]2 = |7 |13
3o
2 |3
3|2
t=1 1]2le|3]| X 219 = 10| 5
1|1
1|1

Multiple cycles to complete accumulation for all columns - Reduces Throughput
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Time to Deliver Input

« |deally, encode input activations onto the word line in the minimum amount of
time for maximum throughput (e.g., voltage modulation)

 |n practice, challenging due to non-linearity of devices and complexity of
DAC - need to encode in time > Reduces Throughput

amplitude

Voltage (amplitude) modulation

April 22, 2024

B P I

Pulse width (time) modulation
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Time to Deliver Input
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Time to Compute a MAC

* |deally, compute MAC in a
single cycle for high throughput

* In practice, the storage element
typically can only perform one-
bit or two-bit operations -
need multiple cycles to build up
to a multi-bit operation
(temporal accumulation) -
Reduces throughput

April 22, 2024

ifmap filter psum
e|l1]1|le|1]1|1]e
e|le|o|1]|1]0|e]e
=0 [fafefa] Xyl = Lelel2l2]2]2]a]4]
1{e|1]1|e]|1]|e]1
e|l1l1|le|2]1|1]e
e|le|loe|1]|1]0|e]e
t=1 [efafefs] X nnnnnonnnis [2[2]3]a]3]3]2]2]
1{e|1]1|e]|1]|e]|1
e(1]1|lef2]2]|2]oe
elele|1|1]e]|0fo
2 [olafela] X orr| = BLlelsl<[+[:[5]
1le|1]|1]le|1]e|1 <1
t= 2 + time required to perform shift and add | 7 | 13 | 10 | 5 |
|||il- Sze and Emer
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ISAAC

* Replace eDRAM in DaDianNao with memristors
» 16-bit dot-product operation

— 8 x 2-bits per memristors (weight slicing)
— 1-bit per cycle computation (input slicing)

1-bit | —DAC 2-Ibit [ 2-bit B 2-bit H 2-bit H 2-bit r 2-bit Fo 2-bit M 2-bit
Vi % 16

- _hit | —DAC -bi -bi -bi -bi -bi -bi -bi -bi

M1 =V1.G1 iterati/%n>s 1-bit 2-bit [ 2-bit ¥ 2-bit M 2-bit 1] 2-bit [ 2-bit %] 2-bit H 2-bit

-
V2 % —{DAC 2-bit 2-b|t 2- b|t 2-bit 2-bit 2-bit 2-b|t 2-bit
i
12 =V2.G2
‘ — blt 5. 2-bit [~ 2-bit [%] 2-bit [%] 2-bit r] 2-bit 2b|t 5 2-bit
I = |1 + |2 =V1 .G1 + V2.G2 | |nput Neurons | . . I I I I I

Shift & ADD

April 22, 2024 Ui [Shafiee, ISCA 2016] Sze and Emer



L20-29

Modeling CiM with Accelergy

Architecture Description Action C ounts
pmmmmsmn--fomocae. : name | action | count
| PEO H&é i \ <«—| PEO | compute | 500
Global i i PE1
-~ Buffer 4 ) ) G
! GLB) | ! ]
"/ (GLB) E PE2 P PE3 '*;\\ Accelergy Energy Estimation
; e el H name | energy (pJ)
1 ]
\ GLB PE__|./ —>| PEO | 4560 Fiu
\
“m(ADC SRAM multiplier I, 3 PE1
\xx
DAC) control adder “.| Energy Estimation Plug-in
l‘ name technology width action energy (pJ)
Compound Component ‘\ multiplier | 65am memristor 16 multiply 08 E,.uie
. y
Description W adder
ADC
DAC
April 24, 2024 Ui [Wu, ISPASS 2020] Sze and Emer
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1.E+4

Modeling CiM with Accelergy

Energy breakdown across layers
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Achieves ~95% accuracy

0.035]

67.9%

1.4%

17.4%
— 3.1%

Frryi

.01% Cascade

[MICRO 2019]

[Wu, ISPASS 2020]
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