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Advanced Storage Technology
• Bring compute and memory closer together to reduced the cost of data 

movement

• Processing/Compute Near Memory (a.k.a. near-data processing)
– Embedded DRAM (eDRAM)

• Increase on-chip storage capacity

– 3D Stacked DRAM (e.g., Hybrid Memory Cube (HMC), High Bandwidth Memory (HBM))
• Increase memory bandwidth 

• Processing/Compute In Memory (a.k.a. in-memory computing)
– Static Random Access Memories (SRAM), Dynamic Random Access Memories (DRAM), 

and Non-Volatile Memories (NVM)
– Processing integrated into memory (more aggressive form of processing near memory) 

versus processing using memory (using memory device to perform compute) 

April 22, 2024
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SRAM (kB – MB)

• SRAM accounts for majority of on-
chip storage
– SRAM is significant portion of chip area

• Usually, 6 transistors per bit-cell

February 21, 2024

Bit cell size 
0.75um2 in 14nm

Image Source: https://en.wikichip.org/wiki/amd/microarchitectures/zen 

https://en.wikichip.org/wiki/amd/microarchitectures/zen
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DRAM (GB)

• Higher density than SRAM
– 1 transistor per bit-cell
– Needs periodic refresh

• Special device process
– Usually off-chip (except eDRAM – which is pricey!)
– Off-chip interconnect has much higher capacitance 

April 22, 2024

pJ
nJ



L20-5

Sze and Emer

Memory Access Cost for DRAM is Expensive

[Horowitz, ISSCC 2014]

Operation: Energy 
(pJ)

8b Add 0.03
16b Add 0.05
32b Add 0.1
16b FP Add 0.4
32b FP Add 0.9
8b Mult 0.2
32b Mult 3.1
16b FP Mult 1.1
32b FP Mult 3.7
32b SRAM Read (8KB) 5
32b DRAM Read 640

Area 
(µm2)

36
67
137
1360
4184
282
3495
1640
7700
N/A
N/A

Relative Energy Cost

1 10 102 103 104

Relative Area Cost

1 10 102 103

April 22, 2024
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eDRAM (DaDianNao)
• Advantages of eDRAM

– 2.85x higher density than SRAM
– 321x more energy-efficient than DRAM (DDR3)

• Store weights in eDRAM (36MB)
– Target fully connected layers since dominated by weights

April 22, 2024 [Chen, MICRO 2014]

16 
Parallel 

Tiles
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Going 3D!

April 22, 2024

Source: https://www.einfochips.com/blog/2-5d-3d-ics-new-paradigms-in-asic/ 

https://www.einfochips.com/blog/2-5d-3d-ics-new-paradigms-in-asic/
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Stacked DRAM (NeuroCube)

• NeuroCube on Hybrid Memory Cube Logic Die 
– 6.25x higher BW than DDR3

• HMC (16 ch x 10GB/s) > DDR3 BW (2 ch x 12.8GB/s)

– Computation closer to memory (reduce energy)

April 22, 2024 [Kim, ISCA 2016]
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Stacked DRAM (Tetris)
• Explores the use of HMC with the Eyeriss spatial architecture and row 

stationary dataflow
• Allocates more area to the computation (PE array) than on-chip memory 

(global buffer) to exploit the low energy and high throughput properties of 
the HMC
– 1.5x energy reduction, 4.1x higher throughput vs. 2-D DRAM

April 22, 2024

[Gao, ASPLOS 2017]

Eyeriss
design
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Conventional Processing vs. CiM

April 22, 2024

Weight
Memory

Compute (e.g., MAC)

High Read BW

Input 
Activation
Memory

Low BW

A

B
Weight
Memory

+ Compute

D
AC

Input 
Activation
Memory

ADC

Low Read BW

A

B

Conventional Compute In Memory
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Analog Computing

April 22, 2024

V1
G1

I1 = V1×G1

V2
G2

I2 = V2×G2

I = I1 + I2
= V1×G1 + V2×G2

Activation is 
input voltage (Vi)

Partial sum 
is output current (Ii)

Weight is resistor 
conductance (Gi)
[= 1/resistance]

Many options for 
“resistance”

Analog computing is typically required to bring the computation into 
the array of storage elements or into its peripheral circuits

I = 𝐼! +	𝐼"
I = 𝑉!×𝐺! + 𝑉"×𝐺"
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CiM Using Memristors in Non-Volatile Memory 

Source: Darsen Lu, MICRO-49 Tutorial on Emerging Memory
April 22, 2024

Use memristors as programmable weights (resistance)

Candidate memristor devices
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Candidate Devices for Memristor

April 22, 2024
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Weight Stationary Dataflow for CiM

April 22, 2024

Input
Activations

Memory
AD

C

Partial Sums or
Output Activations

Memory

Analog 
interface/compute 

(optional)

Columns in Array (A)

Rows in 
Array (B)

Storage element
in Weight Memory

Digital logic (optional)

DAC
WL

BL

Benefits
• Reduces data movement of weights
• Higher memory bandwidth by reading 

multiple weights in parallel
• Higher throughput by performing multiple 

computations in parallel
• Lower input activation delivery cost due to 

increased density of compute

Transform into matrix-vector 
multiply with weights in matrix, 
and input activations in vector

M CRS
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Loop Nest for CiM

April 22, 2024

For Fully Connected layer

For Convolutional layer
(1-D toy example)
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Design Considerations for CiM

• Analog computing has increased sensitivity to circuit and device 
non-idealities (i.e., non-linearity and process, voltage and 
temperature variations)

• Requires trade offs between energy efficiency, throughput, area 
density, and accuracy, which reduce the achievable gains over 
conventional architectures 

April 22, 2024
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Toy Example for CiM

April 22, 2024

1 2 0 3

1 2 3 2

0 1 2 0
3 0 1 1
2 3 1 1

ifmap filter

= 7 13 10 5x

psum

M

CHW
CHW

N

M

N

01 10 00 11

01 10 11 10

00 01 10 00
11 00 01 01
10 11 01 01

= 00111 01101 01010 00101x

ifmap filter psum
Binary Representation

Decimal Representation
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Number of Storage Elements per Weight

• Ideally, it would be desirable to be able to use one storage element (i.e., one 
device or bit cell) per weight to maximize density. 

• In practice, multiple storage elements are required per weight due to the 
limited precision of each device or bit cell (typically on the order of 1 to 4 bits)
– This is also referred to as bit slicing of the weight (weight slicing)

April 22, 2024

0 1 1 0 1 1 1 0

0 0 0 1 1 0 0 0
1 1 0 0 0 1 0 1
1 0 1 1 0 1 0 1

1 2 3 2

0 1 2 0
3 0 1 1
2 3 1 1

4

4

4

8
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Array Size
• Ideally, it would be desirable to have a large array size

– Increases weight read bandwidth and throughput
– Increases area density à amortize the cost of the peripheral circuits (e.g., ADC, DAC) which can account for 

over 50% of NVM designs

• Array size limited by the resistance and capacitance of word line and bit line wires, 
which impacts robustness, speed and energy consumption
– If capacitance or resistance of bit line much larger than storage element, it is difficult to sense value in 

storage element (i.e., change in bit-line voltage/current due to value in storage element is reduced)

April 22, 2024

WL0=0
BL=VDD

Clocal

CBL

WL0=1
BL=VDD - DVBL

Clocal

CBLt=0 t=1

Vlocal=0

VDD

WL0=Vin
BL=VHIGH

RON

RBL

WL0=Vin
BL=VLOW

RBL

ROFF
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Array Size

Utilization of the array will drop if the workload cannot fill entire column or entire row

April 22, 2024

Columns in Array (A)

Rows in 
Array (B)

Storage 
element

C
H

W

M

A=8

Storage 
element

1 2 3 2
0 1 2 0
3 0 1 1
2 3 1 1

1
2
0
3

7 13 10 5

B=8



L20-21

Sze and Emer

Number of Rows Activated in Parallel

• Ideally, it would be desirable to use all rows 
at once to maximize parallelism for high 
bandwidth and high throughput

 
• In practice, the number of rows that can be 

used at once is limited due to 
– ADC resolution (number of bits it can resolve)

– Cumulative effect of the device variations
– Maximum voltage drop or accumulated current 

on bit line

April 22, 2024

Input
Activations

Memory

AD
C

Partial Sums or
Output Activations

Memory

Analog 
interface/compute 

(optional)

Columns in Array (A)

Rows in 
Array (B)

Storage element
in Weight Memory

Digital logic (optional)

DAC
WL

BL
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Number of Rows Activated in Parallel

April 22, 2024

1 2 0 3

1 2 3 2

0 1 2 0
3 0 1 1
2 3 1 1

ifmap filter

= 1 4 7 2x

psum

t=0

1 2 0 3

1 2 3 2
0 1 2 0
3 0 1 1
2 3 1 1

= 6 9 3 3xt=1

7 13 10 5

+

=
final psum

Multiple cycles to complete accumulation across rows à Reduces Throughput
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Number of Columns Activated in Parallel

• Ideally, it would be desirable to use all 
columns at once to maximize 
parallelism for high bandwidth and high 
throughput 

• In practice, the number of columns that 
can be used is limited by ADC area

April 22, 2024

Input
Activations

Memory

AD
C

Partial Sums or
Output Activations

Memory

Analog 
interface/compute 

(optional)

Columns in Array (A)

Rows in 
Array (B)

Storage element
in Weight Memory

Digital logic (optional)

DAC
WL

BL
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Number of Columns Activated in Parallel

April 22, 2024

1 2 0 3

1 2 3 2

0 1 2 0
3 0 1 1
2 3 1 1

ifmap filter

= 7 13x

psum

t=0

1 2 0 3

1 2 3 2
0 1 2 0
3 0 1 1
2 3 1 1

= 7 13 10 5xt=1

Multiple cycles to complete accumulation for all columns à Reduces Throughput
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Time to Deliver Input

• Ideally, encode input activations onto the word line in the minimum amount of 
time for maximum throughput (e.g., voltage modulation)

• In practice, challenging due to non-linearity of devices and complexity of 
DAC à need to encode in time à Reduces Throughput

April 22, 2024

Voltage (amplitude) modulation Pulse width (time) modulation

time

amplitude

1 2 1 2
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Time to Deliver Input

April 22, 2024

1 1 0 1

1 2 3 2

0 1 2 0
3 0 1 1
2 3 1 1

ifmap filter

= 3 6 6 3x

psum

t=0

0 1 0 1

1 2 3 2
0 1 2 0
3 0 1 1
2 3 1 1

= 5 10 9 4xt=1

0 0 0 1

1 2 3 2
0 1 2 0
3 0 1 1
2 3 1 1

= 7 13 10 5xt=2time

1 2 0 3
value0 1 0 1 0 1 0 1

pulse width 
modulation
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Time to Compute a MAC

• Ideally, compute MAC in a 
single cycle for high throughput

• In practice, the storage element 
typically can only perform one-
bit or two-bit operations à 
need multiple cycles to build up 
to a multi-bit operation 
(temporal accumulation) à 
Reduces throughput

April 22, 2024

0 1 1 0 1 1 1 0

0 0 0 1 1 0 0 0
1 1 0 0 0 1 0 1
1 0 1 1 0 1 0 1

1 1 0 1 = 1 1 2 2 2 2 1 1xt=0

0 1 1 0 1 1 1 0

0 0 0 1 1 0 0 0
1 1 0 0 0 1 0 1
1 0 1 1 0 1 0 1

= 2 1 3 4 3 3 1 2xt=1 0 1 0 1

0 1 1 0 1 1 1 0

0 0 0 1 1 0 0 0
1 1 0 0 0 1 0 1
1 0 1 1 0 1 0 1

= 3 1 4 6 4 4 1 3xt=2 0 1 0 1

7 13 10 5

<<1

+

<<1

+

<<1

+

<<1

+

t= 2 + time required to perform shift and add

psumifmap filter
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ISAAC
• Replace eDRAM in DaDianNao with memristors 
• 16-bit dot-product operation

– 8 x 2-bits per memristors (weight slicing)
– 1-bit per cycle computation (input slicing)

April 22, 2024 [Shafiee, ISCA 2016]

V1 G1 I1 = V1.G1

V2
G2

I2 = V2.G2

I = I1 + I2 =V1.G1 + V2.G2 S&H S&H S&H S&H S&H S&H S&H S&H

ADC

Shift & ADD
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Modeling CiM with Accelergy

April 24, 2024

Accelergy

Architecture Description

Global 
Buffer
(GLB)

PE0

PE2 PE3

SRAM

control

GLB

…multiplier

adder

PE

Energy Estimation Plug-in

name action count
PE0 compute 500
PE1 …

Action Counts

name energy (pJ)
PE0 1500 !!"!#$
PE1 …

Energy Estimation

Compound Component 
Description

DAC

ADC

name technology width action energy (pJ)
multiplier 65nm memristor 16 multiply 0.8 !%&$!
adder …
ADC
DAC

[Wu, ISPASS 2020]
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Modeling CiM with Accelergy

April 24, 2024

0.E+0
1.E+3
2.E+3
3.E+3
4.E+3
5.E+3
6.E+3
7.E+3
8.E+3
9.E+3
1.E+4

1 2 3 4 5 6 7 8

En
er

gy
 C

on
su

m
pt

io
n 

(µ
J)

A2D Conver. Sys. Digital  Accu. D2A Conver. Sys.
PE Array Input Buffer

VGG Layers

Energy breakdown across layers

This Work [7]

0.037J
0.035J

66.9% 67.9%

11.4%

17.4%

3.1%

12.6%

17.7%

3.0%
0.01% N/ACascade 

[MICRO 2019]

[Wu, ISPASS 2020]

Achieves ~95% accuracy

ADC dominates energy consumption


