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The Titanium Law

ADC energy is a product of four terms

1 exponentially with set by the DNN
higher ADC resolution Workload
r ! 1 l_l_\
ADC Energy Energy o Converts o MACs o 1
DNN  Convert . MAC DNN Utilization
| with more rows 21 based on row
1 with more input/weight slices utilization
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Use Bit Slicing to Reduce ADC Resolution

Input Weight Partial Sum

8b . 8b = 16b | 8b | '
1 Cycle 1 Column 1 ADC Convert a2l

| 16b |

Input Sliced Weight

8b . 4b <<4 = 12b << 4

16b
8b . 4b = 12b

1 Cycle 2 Columns 2 ADC Converts

Weight slicing increases area and number of ADC converts

Sliced Input Weight
: s
4b | <<4 | e 8b = 12b <<4 “
160
4b o 8b = 12b ADC|
2 Cycles 1 Column 2 ADC Converts 2 Cycles

Input slicing increases time and number of ADC converts
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The Titanium Law: Revisit ISAAC

Converts
MAC

Can we reduce
ADC energy?

ADC Energy Energy
DNN ~ Convert
input weight
1b 2b
1b 2b
128 rows T .
1b 2b
ADC
8b
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The Titanium Law: Revisit ISAAC

Converts
MAC

Increase rows

l

Increase bits

ADC Energy Energy
DNN ' Convert
input weight

1b 2b

1024 rows{ > 1 , [ 2

1b 2b

ADC
11b
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The Titanium Law: Revisit ISAAC

ADC Energy Energy " Converts MACs o 1
= — - X X
DNN v Convert MAC DNN Utilization
input weight 0.8
- ——— 307
1b 1b Decrease bits/weight slice | £ ¢
S 0.
1b 1b ! < 05
128 rows - 5 . : Increase weight slices | = .4
™ = ! 20.3
- Increase ADC converts g 0.2
5 0.1
ADC 0.0
128-Row 1024-Row 128-Row,
1b Weights
7b mADC = Analog Crossbar = Other
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How Have Prior Works Escaped These Tradeoffs?

ADC Energy Energy o Converts o MACs o 1
DNN  Convert MAC v DNN Utilization

Weight-Count-Limited

1b 2b 2 [

2% [

b, L2 Prune weights
L !
20 Reduce MACs/DNN

ADC

1b 1 2b

ADC

8b|X] 8b
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How Have Prior Works Escaped These Tradeoffs?

ADC Energy
DNN

April 24, 2024

Energy

Convert

Converts

MAC

X

MACs

DNN

Sum-Fidelity-Limited
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2b

2 |
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LowR
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LowR

ADC

ADC
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Low-Res ADC
!

Reduce energy
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How Have Prior Works Escaped These Tradeoffs?

ADC Energy Energy Converts o MACs o 1
= _ X
DNN Convert MAC DNN Utilization
Weight-Count-Limited Sum-Fidelity-Limited
1 JE 2 1b i 2b.- 2b.- 2b..
1b 1 2p 2b ) - . i . Low-Res ADC
. Prune weights | |2 [[2 [[2 |
: l : : : : R
b 1 2 o [ . ! g i educe energy
. . Reduce MACs/DNN 1b 2b| 2b|_ 2b, per convert
ADC ADC LowR] [LowR] |LowR
ADC | LADC | LADC |

8b 8b
|X] 4b 4b 4b

apiil 24,2024 Both approaches may require retraining DNN to preserve accuracy | sz andemer
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Reshape Input to ADC to Preserve Accuracy

Distribution of Reshape
input to ADC
(analog column sum)

Low-Resolution ADC Low-Resolution ADC

DNN
Accuracy ADC
Loss } Range

To preserve accuracy,
distribution must fit the
ADC range

Reshaping can either be done by changing or retraining DNN
or with adaptive hardware that changes analog compute (RAELLA)
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RAELLA’s Strategies to Reduce Input to ADC

Center+Offset Weight Encoding

— Partition compute such that input to ADC smaller and closer to zero
Adaptive Weight Slicing

— Adapt slicing for each DNN layer to reduce number of ADC converts
Dynamic Input Slicing

— Dynamically change slicing to reduce number of ADC converts

Enables ~1000x reduction in range of input to ADC, or 10-bit
reduction in ADC resolution

April 24, 2024 Mir [Andrulis, ISCA 2023] Sze and Emer



Center + Offset Weight Encoding
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Partition computation
Digital calculates high-resolution center operations
Analog calculates parallel offset operations

-

Baseline Analog
Weights  Inputs

15 4
10112
14 1

\ Encode weights such that they are
represent as centers and offsets
_Center Offsets_  Inputs
13 +2 4
13 -3 2
13 +1 1

(Digital Center\

Center - Sum Input

4
m DY E

(Analog Offset\
Offsets - Input

Encoding allows input to ADC (output of column sum)
to be smaller and closer to zero

April 24, 2024
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Center + Offset Weight Encoding

V' Low-Resolution Analog ( Digital Center \ ( Analog Offset
. . . . .. ) Center - Sum Input Offsets - Input
High-resolution operations in digital domain -
4 +2 4
. 13 E 2 1T 132
vV Efficient
V log d ! ! 1
ector-vector operations in analog domain - -
\ J \ J
1.00%
—Baseline 122:
0.80% o 80%
> —(D: Center+Offset Weights O 2 70%
= 0.60% S QO e0%
ey | 9 sox
8 S 5 4o
0.40% 30%
2 7b ADC =V
0.20% Range 12:

0.00%
-128 -64 0 64 128 192 256 320 384 448 512 576 640 704 768 832 8% 960 1024
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Adaptive Weight Slicing

Typical distribution* for each bit position

Distribution of input to ADC (output of
column sum) depends on distribution
of bits at each bit position in weight

Reduce slices per weight
(increase bits per slice)
!

Reduce ADC converts
Reduce area

25

35

13

Adaptively merge weight bits
with low probabilities into same

slice without increasing range of
input to ADC (ADC resolution)
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05
04 *for center+offset encoding
»n 03
@02
©
0.1
0
MSB LSB
0 0 0 1 1 0 1
0 0 1 0 0 1 1
0 0 0 0 1 0 1
L - l - ] l. ' " - ' -l
b0001=1 b10=2 b01=1
] b0010=2 i 1 boo=0 1 b11=3 [
l b0000=0 | 1 b11=3 1 bo1=1 [
| | 1 | |
ADC ADC ADC
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Adaptive Weight Slicing

Adapt weight slicing for each layer while preserving correctness
DNN weights are known ahead of time—> Use lightweight preprocessing
100%

2 Slices per Weight
50% I m 3 Slices per Weight
I l m 8 Slices per Weight

0%

GoogleNet InceptionV3 MobileNetV2 BERT Large ResNet18 Re sNet50 Shu ffle Net

Proportion
of Layers

1.00%
===Baseline 100%
=== (1): Center+Offset Weights 90%
0.80% 80%
> (2): Adaptive Weight Slicing + (D w o, 70%
e VU o
= 0.60% 29 .
a -
s > O 40%
S 0.40% R Y
e 7b ADC 20%
0.20% Range 10%
’ ~ 0%
0.00% |

-128 -64 0 64 128 192 256 320 384 448 512 576 640 704 768 832 896 960 1024
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Dynamic Input Slicing

 Allocating bits per input slice needs to happen dynamically (at runtime)
« Use speculation to allocate many bits and recovery when saturate

Step 1: Speculation Step 2: Recovery

3 1 | 1 1 3 | | 1 1
4b S H HHT 1b|1b|1b]1b HH H H T
One Cycle ~ [aoc] [aoc] [anc] [apc Four Cycles ].IAQDCI_ADC anc] [apc

R A
One convert Y *_ Y é
per column viiviv || X Four colnverts Deactivate %
saturate per column ADC —
Reduce slices per input .
(increase bits per slice) Speculation and recovery takes more cycles
! than no speculation (recovery only)

Reduce ADC converts __
Reduce cycles Mii [Andrulis, ISCA 2023] Sze and Emer
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Dynamic Input Slicing

« Comparing speculation for 8-bit input (one 4-bit slice + two 2-b slices) and

recovery (eight 1-b slices) versus only recovery slices (eight 1-b slices)
— Reduces ADC converts by 60%
— Adds three extra cycles

— In summary, speculation improves ADC energy efficiency at cost of speed
1.00%
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Baseline 100%
== (1): Center+Offset Weights " 90%
0.80% (2): Adaptive Weight Slicing + (O £ 80%
> ===(3): Dynamic Input Slicing, Speculation + (2) 3 - 0%
by s ====(3): Dynamic Input Slicing, Recovery + ()
= 0.60% ®: Dy P g v+®@ c & 60%
‘2 £ = 5%
.g 2 8 40%
O 0.40% oY 3
hud 7b ADC O 20%
o 22
0.20% Range S 10%
| &» -
0.00%

-128  -64 0 64 128 192 256 320 384 448 512 576 640 704 768 832 896 960

Input to ADC
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RAELLA: Reshape Distributions of Input to ADC

» Makes analog operations produce low-resolution results
— Center+Offset Weight Encoding, Adaptive Weight Slicing, Dynamic Input Slicing

« Enables more compute per ADC convert while using lower-resolution ADCs
— Improves energy efficiency by 3.9x and throughput by 1.8x compared to iso-area ISAAC

« Maintains DNN accuracy without changing DNN or retraining

1.00%

—==Baseline 100%
===(1): Center+Offset Weights 90%

(2): Adaptive Weight Slicing + (D) 80%
===(3): Dynamic Input Slicing, Speculation + (2)

0.80%

wn
5
> A e 7%
x e (3): D ic Input Slicing, R [§)
= 0.60% (3): Dynamic Input Slicing, Recovery + (2) c O oo
‘a £ = 50%
.g 3 8 40%
O 0.40% oY 3
& 7b ADC O 20%
Range R 0w

0.20% /

0.00%

\&¥ -

-128 -64 0 64 128 192 256 320 384 448 512 576 640 704 768 832 896 960 1024
Input to ADC
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Designing DNN Models for CiM

» Designing DNNs for CiM may differ from DNNs for
digital processors

» Highest accuracy DNN on digital processor may be
different on CiM

— Accuracy drops based on robustness to non-
idealities

ImageNet
Top-5 Accuracy (%)

N
o

* Reducing number of weights is less desirable

— Since CiM is weight stationary, may be better to
reduce number of activations

— PIM tend to have larger arrays - fewer weights may
lead to low utilization on CiM

» Current trend is deeper and smaller filters

— CiM may prefer to have shallower and larger filters

[0}
o

[*))
o

I
o

o

=@ alexnet

== vggl6

== vggl9

=d=inceptionv4

== inceptionresnetv2

=fe= resnetl8
resnet152

== resnextl01_32x4d
resnext101_64x4d

== squeezenetl 0

== squeezenetl 1

¢— densenet121

0.0 0.1 0.2 03 =& mobilenetv2
Noise Std

Storage Element

«— RxSxC —

April 24, 2024 Miir  [Yang, IEDM 2019] Sze and Emer



CiM Using SRAM Bit Celi

L21-20

* Multiplication uses I-V WL,

.......... VODSRAM...........q

.........
7
PRl
-
-7
-

relationship of access transistor
(WL) and stored value in bit-cell

— Assumes binary weights and multi-

bit input activation
WLy

lsc 141

| s

il

R

!

0
H
H
H
-

sz_'

[ ]
. VDD_SRAM ...

« Addition using current addition
on bit line (BL)

— Limited by nonlinearity and
sensitivity to variations

B

April 24, 2024 L

1>
K

0
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T

WLDAC
code
|
Igc
H1 _"i
AVg, _ BL BLB _
\ Ideal transfer curve

: No_min_al tr_ans_fer curve
5 10 15 20 25 30 35
WLDAC Code

>

[Verma, SSCS 2019]
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CiM Using SRAM Bit Celi

« Binary multiplication (AND or

XNOR) using access transistor Ars " ST Multiying 81t Cell (42
i I 2. Anal lati

(WL) and stored value in bit-cell »{/P e

— Explicit capacitor to store charge a,,, D R T I N

HHE

= N m
W)~~~ |ﬂ s w L

Two modes:
o XNOR:O},, =IA,,, ® WS,

« Addition using charge sharing on
bit line (BL) v o AND:OL,, = Ay, x W,

(i.e., keep 1A, , high)

Pre-activation

— Better linearity and matching PAn

April 24, 2024 Ilif [Verma, SSCS2019] Sze and Emer



Using Charge Sharing for Addition |

Capacitive charge sharing [ TAnalog snippets

J:/ —C2 it ‘C,l =
T 11’ . 1]

Q\mT = C (N, =V )+ Q,:,NM =c (Ve —v) +
Ca (V, — 2’) C’ZC\[P'—\I/2_>
Br = Qewao
gz 1= E8 JRTEY BN Lo dRRORCN RRRRE—SERLY IPoar BN HAT (2 AL
SN = e SN
om e ol =i/

Image Source: https://www.youtube.com/watch?v=XRQ_Xldr2nk

If C,=C,, V; =% (V,+V,), which is a scaled value of the sum (addition)

. L
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CiM Using DRAM

Performs bit-wise operations using charge sharing

If Z=0, perform AND(X, Y)

AND (X=1, Y=1) = 1 AND (X=1, Y=0) =0

April 24, 2024 il  [Ambit, MICRO 2017] Sze and Emer



CiM Using DRAM
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Performs bit-wise operations using charge sharing

If Z=1, perform OR(X, Y)

Voo / 2 Vpp /2 +38 Voo Voo ! 2 Vpp/2-8 0

0——1—| 1 1 Loy =

1x_|_|—p XHI_I_L . 1X_|_|‘—LL i 1x_‘_|_rlL 1 1x_u_|"—L f- H 1
0

— | — | T 0 L 1 T

sl B RS B s BTSSR T
0 T
— | ! 1 0 ! 1

I T i | 12_|_|‘—LL 1z_|_rLL f_u_rLL 2l |1

t=2 @ SA t=0 t=1

OR (X=1, Y=1) = 1 OR (X=0, Y=0) = 0

Takes multiple cycles to built up to a multiplication.

However, can perform many operations in parallel (bus width of DRAM)

Sze and Emer
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CiM Research Spans Full Stack

» Devices: The components forming each memory cell (e.g., SRAM, DRAM,
ReRAM, STT-RAM)

« Circuits: The components performing computation, analog/digital conversion,
storage, data movement, and other actions

« Architecture: The organization of components into a larger system (e.g., the
number of each component and how components are connected)

« Workload: The DNN to be run, which we model as a series of extended-
Einsum operations with tensors of varying shapes and values

« Mapping: The temporal and spatial scheduling of the workload onto the system

Need for modeling tool to enable apple-to-apple comparison
and design space exploration - CiMLoop (used in Lab 5)

April 24, 2024 ir
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Inputs (YAML) = o e e e e e e - -

( CiMLoop )
. |
Devices - N : : :
I L Data-Value- Per-Action Energy |1 CiMLoop is built on the
‘% ek é“' Dependent * Convert: 1pJ I Timeloop [Parashar, ISPASS 2019]
- Component {AD(| Leak: TmW I+ Accelergy [Wu, ICCAD 2019]
Circuits I Model % Read: 10fJ : Infrastructure
DAC> <ADC :' L Write: 2pJ )
. X |
: Data Value Distributions I
Workload I l . l I Code available at
> L 1
[ : I https:/github.com/mit-emze/cimloop
x| |= —p Algorithm & Tensor Shapes |
D00 |
I |
l ' Outputs
Architecture I I =
| Full-System Model : nergy
(Timeloop to search for best mapping + » Area
Accelergy to estimate energy consumption) : Throughput
]

April 24, 2024 il [Andrulis, ISPASS 2024] Sze and Emer
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CiMLoop

* Flexibility
— Aflexible specification that lets users describe, model, and map workloads to both
circuits and architecture

« Accuracy

— A data-value-dependent energy model that captures the interaction between DNN
operand values, data representations, and analog/digital values

— Estimated values from model are within 8% of values reported for measured designs
» Speed

— A fast statistical model that uses the average energy per component action for constant
runtime w.r.t. number of components and amortizes overhead across mappings

— Enables orders-of-magnitude speed up relative to other high-accuracy models

April 24, 2024 MliiT  [Andrulis, ISPASS 2024] Sze and Emer
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Example: Apples-to-Apples Comparison

Memory Read/Write I/F

[(RMWinterface | e s i ooy
Row [y 1T (8111 (o1 (o -
N GLEE ik .
mi S|1Z| |64 x 64 8T Array| | omers ::::g % g % E; ‘—;j' :,’(,";‘?:5
Macro
[Sinangil, JSSC 2021] [Wang, VLS/ 2022] [Jia, JSSC 2020]
Technology Node 7nm 22nm 65nm
ADC Type 4b Flash 8b SAR 8b SAR
Memory Device 6T SRAM 8T SRAM + Capacitor 6T SRAM

1000

Compare Designs:
Same technology, ADC,
device for all macros

\ [ — [Sinangil —= [Wang] ia] |
@

100 —— ‘\

Energy Efficiency
(TOPS/W)

\¢\\:\:

Number of Input & Weight Bits
il [Andrulis, ISPASS 2024] Sze and Emer
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Example: Design Space Exploration

2.5 —
>
—_— on
2_ 5 Accumulator Control = DAC+MAC m ADC+Accumulator
@) a
1.5 3
3 .
N 1 =
a 7]
m
©
0.5
G l l I 1
1024 1024 1024 1024
Max-Utilization Workload Large-Tensor-Size Workload Medium-Tensor-Size Workload Small-Tensor-Size Workload

CiM Array Size (N Rows x N Columns)

Explore array size (architecture) and DNN shapes (workload)

April 24, 2024 MliiT  [Andrulis, ISPASS 2024] Sze and Emer
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Companies doing Analog CiM

E—Enchqrge/\, Technology ~ AboutUs  News & Publications ~ Events  Careers

MYTHIC PRODUCTS ~ TECHNOLOGY v MARKETS v BLOG  COMPANY

Technology » Compute-in-Memory

In-Memory Computing (IMC)

Compute-in-Memory
In-memory computing greatly enhances compute efficiency and reduces data movement.
Boosting memory capacity and processing speed
Traditional Digital Accelerators  Current-based Analog IMC EnCharge Al Analog IMC
(GPU, TPU, FPGA) (Transistors, NVM, Spintroni CMOS C:
Problem #1:
Bit-by-bit

I
1
of !
lots of data v

«Array size
limited by
reduced SNR

B Crsoons ﬁ“ﬁ“ﬁ“ﬁﬁ
(>150 TOPS/W) CcPU CcPU CcPU CcPU
! ! ! i
). [E53]... ). .. -
CPU CcPU CPU CPU
E & T @

Matrix multiply output

i (compute results over g A bk Niomoryih
Ps?"t'em:% - some bits simultaneously) Matrix multiply output Compute-in-Memory IC

<5 wolg11<)aps/w1 rocessor (compute results over

<5-

all bits simultaneously)

Today's most common computing architectures are built on assumptions about how memory is
accessed and used. These systems assume that the full memory space is too large to fit on-chip

near the nrocessor. and that we do not know what memorv will be needed at what time. To address

Research Focus areas Blog Publications Careers About v

Home
L Projects

Analog Al

Making Deep Neural Network systems
April 22, 2024 more capable and energy-efficient.
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Compute with Light

ECOI];}(:%IiSt = Menu  Weekly edition Q_ Search v

April 24, 2024

Science & technology | Information technology

Artificial intelligence and the rise
of optical computing

Photonic data-processing is well-suited to the age of deep learning

Dec20th 2022 [ Save < Share & Give

ODERN INFORMATION technology (1) relies on division of labour. Photons
M carry data around the world and electrons process them. But, before
optical fibres, electrons did both—and some people hope to complete the
transition by having photons process data as well as carrying them.

“Unlike electrons, photons (which are
electrically neutral) can cross each others’
paths without interacting, so glass fibres
can handle many simultaneous signals in
a way that copper wires cannot. An
optical computer could likewise do lots
of calculations at the same time. Using
photons reduces power consumption, too.
Electrical resistance generates heat,
which wastes energy. The passage of
photons through transparent media is
resistance-free.”

https://www.economist.com/science-and-
technology/2022/12/20/artificial-intelligence-and-
the-rise-of-optical-computing
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Compute with Light

Matrix Multiplication in the Optical Domain

» Cost of moving a photon can be independent of distance

« Multiplication can be performed passively

Multio Tlk+1)
Copies of T in:etglfalteor;' NL (output)
[E o 0| B,
c [ »]
& N @ "/ Source
BS
T il e
- EOE® ... E® B
o SU(4) Core pMMC ! Eweights) N FwnMD"
[Shen, Nature Photonics 2017] [Bernstein, CLEO 2020]

. L
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Compute with Light

This Chip for Al Works Using Light, Not Electrons

Lightmatter says the computing and power demands of complex neural networks need new technologies like these to keep up.

“...chip runs 1.5 to 10 times faster than
a top-of-the-line Nvidia A100 Al chip,

Running a natural language model
called BERT, for example, Lightmatter
says Envise is five times faster than
the Nvidia chip; it also consumes one-

sixth of the power”

https://www.wired.com/story/chip-ai-works-using-light-not-electrons/

. I L
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CiMLoop for Photonics Modeling

(DR¢AM Legend Converter
2igii DE AE/AE | AE/AO Multiply* || [ > Inputs
6 :'g """"""" t { ey QUtputs :'DE (Digital+Electrical) *
o im0 . UAO* Y Vo N . 'Z::Z::ZZ:ZZ:ZZ:ZZ:Z'.:ZZ'
_g g—’ DE/AE - AE/AO _"AO* Af ..... WEIghtS : AE (Analog+Electrical) *
D 10! i p— s, - - SR

(T ioie— DE_ i AE/DE J—{ AE* "—{AO/AE] | | cpmmentiniia 5.0 iAnalogiOpical

por oo — B . = MRR

8 ‘,:, Rr:wrtddl F (B . .Zi,: La§t ygar’s final
= e roE project in 6.5930
§2 oo NI  DE/AE involved modeling
B2 Reported [N ) )
) ; 1 , AE/oE and validation

Best-Case Energy (pJ/MAC) ® Cache
April 24, 2024 v [Andrulis, ISPASS 2024] Sze and Emer
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Summary

« Cross-layer design critical for providing additional efficiency improvements

« For DNN processing using Advanced Technologies, it is important to factor in device
and circuit limitations into the architecture

« Textbook Chapter 10
— https://doi.org/10.1007/978-3-031-01766-7

« Other References

— Y.N.Wu, V. Sze, J. S. Emer, “An Architecture-Level Energy and Area Estimator for Processing-In-Memory
Accelerator Designs,” IEEE International Symposium on Performance Analysis of Systems and Software
(ISPASS), April 2020 [ paper PDE | code github ]

— T. Andrulis, J. Emer, V. Sze, “RAELLA: Reforming the Arithmetic for Efficient, Low-Resolution, and Low-Loss
Analog PIM: No Retraining Required!,” International Symposium on Computer Architecture (ISCA), June 2023
[ PDF ]

— T. Andrulis, J. Emer, V. Sze, “CiMLoop: A Flexible, Accurate, and Fast Compute-In-Memory Modeling Tool,”
IEEE International Symposium on Performance Analysis of Systems and Software (ISPASS), May 2024
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http://www.rle.mit.edu/eems/wp-content/uploads/2023/04/2023_isca_raella.pdf

