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Goals of Today’s Recitation

• Brief overview of the key concepts in Machine Learning

• Use Image Classification as the driving example

– Image representation

– Training process

– Hyperparameters & regularization

– Feature extraction

• Know some basic ideas about PyTorch

February 9, 2024
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PyTorch is Convenient for Research

• Easier to debug compared to TensorFlow

February 9, 2024 http://horace.io/pytorch-vs-tensorflow/
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Image Classification Task

Cat

[Source: Stanford cs231n]

Classifier

February 9, 2024

One Image One Label
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Image Classification Task

Core Problem in Computer Vision.  

Also referred to as Image Recognition

Object 

Detection

Image Segmentation

Can be extended to other vision tasks 

February 9, 2024

[Source: Stanford cs231n]
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What is an Image?

• Images are 2-D functions: f(x, y)

– x, y are spatial coordinates

– f(x,y) is the intensity/amplitude at (x,y)

(0,0) x

y

February 9, 2024
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What is a Digital Image?

• Sampling [Spatial] → Resolution 

– Size in terms of pixels (integer values)

• Quantization [Amplitude]→ Bits per pixel 

– e.g. 8-bits per pixel (amplitude has values between 0 to 255)

[Image Source: R. C. Gonzalez & R. E. Woods]

00000000000013

00000000000012

00071717171717100011

0047959595126126126710010

004785126126175150150126009

004795715175199199150126008

00095175175199199150126007

00000175175175150126006

00000017515012695005

000000711029878004

0000009578710003

00000000220002

0000000000001

0000000000000

11109876543210

f (x, y) x

y

February 9, 2024



R01-8

R

G

B

Color Images

Each component is a 2-D function

February 9, 2024
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Generate Other Colors from RGB

Red, green and blue each have values between 0 to 255
256*256*256 = 16,777,216 possible colors

February 9, 2024
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Image Classification Task

[Source: Stanford cs231n]

February 9, 2024

1

0

0

0

One hot 

encoding

class membership
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Image Classification Challenge

[Source: Stanford cs231n]

Need a classifier that is invariant to these variations, 

but still sensitive to inter class variations

February 9, 2024
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Use Data Driven Approach

[Image Source: Stanford cs231n]

Collect dataset of labeled images

Give the computer example images to “learn” from

February 9, 2024
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Example Dataset: CIFAR-10

Download from:

https://www.cs.toronto.edu/~kriz/cifar.html 

32x32 pixels (color)

10 classes

50,000 Training

10,000 Testing

Subset of 80M Tiny Images Dataset (Torralba)

Image Source: http://karpathy.github.io/

February 9, 2024

In PyTorch: torchvision.datasets

https://www.cs.toronto.edu/~kriz/cifar.html
http://groups.csail.mit.edu/vision/TinyImages/
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General Steps

1. Collect Labeled Dataset 

– Use subsets of the data for training and testing

2. Train the Model

– Use the training set to learn task

3. Test the Model

– Use the model to predict labels for the test set that it has 

never seen before, and compare to true labels (ground truth) 

4. Use the Model (Inference)

– Apply model to unlabeled inputs

February 9, 2024
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Steps for Training an Image Classifier

1. Collect Labeled Dataset 

– A set of N images, each labeled with one of K different classes

2. Train the Model

– Use the training set to train classifier to learn what each of the 

classes looks like 

3. Test the Model

– Use the classifier to predict labels for the test set of images 

that it has never seen before, and compare to true labels 

4. Use the Model (Inference)

– Apply model to unlabeled images

February 9, 2024
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Generalization

• After achieving adequate accuracy on the training set, 

the ultimate quality of the model is determined by how 

accurate it performs on unseen data

– The test set is a surrogate for unseen data

• Generalization refers to how well the model maintains 

the accuracy between training and unseen data

– Generalization means not overfitting

– Overfitting: fit noise rather than signal

• What are techniques that can help the model 

generalize?

February 9, 2024

[Image source: Wikipedia]

overfitting
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Hyper-Parameters

• Hyper-parameters are design choices about 

the algorithm that we set rather than learn

• Example for DNNs:

– What is the number of layers?

– What is the shape of filter?

• Need to try out several times

February 9, 2024
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Evaluating Hyper-Parameters

Example: selecting number of layers

If we use the entire dataset to select the hyper-parameters, we 

cannot evaluate how the model generalizes.

February 9, 2024 [Image Source: Stanford cs231n]
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Evaluating Hyper-Parameters

Example: selecting number of layers

If we use the test data to select the hyper-parameters, we will need to 

access the test data often.  

Each access to the test data “leaks information” and makes it less of a 

surrogate for unseen data. 

February 9, 2024 [Image Source: Stanford cs231n]
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Use Validation Set
• Use validation set to help choose hyper-parameters

– Minimize access to test set

For ImageNet Challenge, test set not released!

Example: selecting number of layers

February 9, 2024
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Summary

1. Collect Labeled Dataset 
– Partition into training, validation and test set

2. Train Model
– Select hyper-parameters

– Use the training set to learn task 

3. Evaluate Model
– Compare results of model with true answers (ground truth labels) on the 

validation set

– If not happy, repeat step 2!

4. Test Model 
– Compare results of model with true answers (ground truth labels) on the 

test set

5. Deploy Model (Inference)
– $$$

February 9, 2024
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Linear Classifier

• A linear function that maps images to class scores 

– Input: Image pixels (or features – discussed later)

– Parameters: Weights and bias (values to be trained)

– Scores: Indicate how likely image belongs to a class

– Labels: Indicate which class

f(x,W,b)

[Modified from Source: Stanford cs231n]

February 9, 2024

Labels
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Linear Classifier

[Source: Stanford cs231n]

For CIFAR-10 [3072 x 1] [10 x 1][10 x 3072] [10 x 1]

bxi

February 9, 2024

In PyTorch: torch.nn.Linear
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Linear Classifier

Combine bias and weights in to a single Weight matrix

• Each row of matrix W is a classifier for a given class

• Single Matrix Multiplication evaluates multiples classes in parallel

February 9, 2024
[Source: Stanford cs231n]
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Linear Classifier

February 9, 2024

Linear Classifier can be thought of as a basic 

building block in the neural network

weighted

sum

non-linear

function f(・)

activation 
W00

W30
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x1

x2

x3

y1

y0

y2
𝑦𝑗 = 𝑓 ෍
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3
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Intuition of Classifier

[Image Source: Stanford cs231n]

Visualizing weights of each classifier

Can be thought of as a template for the class

February 9, 2024
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Linear Classifier

[Source: Stanford cs231n]

bxi

February 9, 2024

For each image, the classifier generates scores for all classes.  

How do we evaluate the quality the classifier?
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Use Loss Function for Evaluation

Goal

• Want the class that 

matches the ground truth 

label to have highest score

• Want the classes that don’t 

match the ground truth 

label to have low scores

• Loss function quantifies the agreement between the 

predicted scores and the ground truth labels

– Scores are also referred to as logits

• Quantifying loss allows us to improve classifier (i.e. update 

weights) – how good is the classifier?

February 9, 2024
[Image Source: Stanford cs231n]
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Loss Function

Cross-Entropy Loss (Softmax)

Li  = -log
e
syi

e
s j

j
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è

ç
ç

ö

ø
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Compute score for each class

Score of 

correct class

Score of 

each class

February 9, 2024

Loss function is derived from minimizing cross-entropy between 

estimated class probabilities and ground truth

Update weights such that the correct label 

has the highest probability

In PyTorch: torch.nn.CrossEntropyLoss
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Use Loss Function for Evaluation

• Loss function quantifies the agreement between the 

predicted scores and the ground truth labels

– Scores are also referred to as logits

[Image Source: Stanford cs231n]

1 0 0

0 1 0

0 0 1

Scores (logits) Ground Truth Labels

February 9, 2024
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Loss Function

Compute Average Loss on Training Examples

Correct class 

of training

image

(given)

Input 

training 

image

(given)

Weight 

Matrix

(trained)

Prediction 

Score

Average across 

number of 

training examples

Loss  

Function
Average 

Loss

i = index of example

N = number of examples

February 9, 2024

Many possible functions for Li
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Use Loss Function for Evaluation

• Ratios of scores can be used to evaluate the quality of the classifier

• Use the softmax function to keep values between 0 and 1

February 9, 2024

Scores (logits)

Softmax

function

3.67

134.3

7.39

f =
e
syi

e
s j

j
åe

syi

[Image Source: Stanford cs231n]

0.025

0.924

0.051

Probabilities

(takes on 

values close 

to ground 

truth labels)
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Regularization

• Regularization adds constraints to improve 

generalizability of model

– Examples: smoothness, number of parameters, size of the 

parameters (weight decay), prior distribution or structure

February 9, 2024

[Image source: The Shape of Data]

overfittingunderfitting
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Regularization: Training vs. Test Error

February 9, 2024

[Modified from Source: scott.fortmann-roe.com/]

Test Error

Note: In this case, 

error is equivalent 

to loss
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Regularization for DNN: Dropout

February 9, 2024 [Srivastava, JMLR 2014]

During training, randomly set some activations and their weights to zero. 

Reduces over-fitting by helping the activations (i.e. feature detectors) to be 

robust to changes in its neighbors. 
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Regularization for DNN: Dropout

February 9, 2024

Dropout results in more meaningful learned features (e.g. detect edges, 

strokes and spots in different parts of the image). Results on MNIST shown.

[Srivastava, JMLR 2014]
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Total Loss

February 9, 2024

λ is a hyper-parameter set during training.  

Larger λ improves generalizability, but may increase data loss.  
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Gradient Descent

• Goal: Determine set of weights to minimize loss

• Use gradient descent to incrementally update weights 

to reduce loss

– Compute derivative of loss relative to weights to indicate how to 

change weights (linear approximation of loss function)

[Image Source: http://sebastianraschka.com/]
February 9, 2024

L(w)

Lmin(w)

Learning rate
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Visualization of Gradient Descent

February 9, 2024

[Image Source: Wikipedia]
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Learning Rate

• Many algorithms designed to set the learning rate

– Momentum, RMSProp, Adam, etc.

[Image Source: http://sebastianraschka.com/]

February 9, 2024

L(w)L(w)

In PyTorch: torch.optim.Adam
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Impact of Learning Rate

February 9, 2024

[Image source: http://blogs.sas.com/]

Time (epochs)

Can also decay learning rate over time for faster convergence
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Learning Rate Decay

February 9, 2024

[Image Source: Stanford cs231n]
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Frequency of Weight Updates

• Batch Gradient Descent

– Update weights after computing loss on the entire training set 

– Computationally expensive to compute loss

• Stochastic Gradient Descent

– Update weights after computing loss on a single training 

example; shuffle examples after going through entire training set

– Fast, but might go in the wrong direction (noisy)

• Mini-batch Gradient Descent

– Divide training set into smaller sets called mini-batch, and 

update weights based on loss of each mini-batch (a.k.a. ‘batch’)

• Each pass through the entire training set is referred to as an epoch

February 9, 2024
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Intuition of Classifier

[Image Source: Stanford cs231n]

Images are points in high dimensional space 

(e.g. CIFAR images in 3072-dimensional space)

2-D Visualization

Note: Images not 

always easily separated 

with a line (features!)
February 9, 2024
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Feature Extraction

• Use features rather than pixels as input into the classifier

• Feature extraction can be thought of as transforming 

pixels into a space where the images can more easily 

separated by the classifier

– The transformation can be non-linear

fclass(x,W,b) fclass(fextract(x),W,b)

Perform feature extraction 

before classification

February 9, 2024

CatClassifier

W,b

Feature

Extraction
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Feature Extraction

[Source: Stanford cs231n]

February 9, 2024
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Example Hand-Crafted Features

Edges contain a lot of information

February 9, 2024
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Example Hand-Crafted Features

February 9, 2024

V1 cells in the primary visual cortex are sensitive to edges

Hubel and Wiesel (1950s – Nobel Prize): https://youtu.be/Cw5PKV9Rj3o  

https://youtu.be/Cw5PKV9Rj3o
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Example Hand-Crafted Features

Histogram of Oriented Gradients (HOG)

Examples

[Dalal & Triggs, CVPR 2005]
Learned Weights

February 9, 2024
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Classification Pipeline (Inference)

Score = Σn xi wi

Feature 

Extraction
Classification

(wTx)

Handcrafted Features 

(e.g. HOG)

Learned Features 

(e.g. DNN)

pixels Features (x)

Trained weights (w)
Image

Scores

Scores per class

(select class based 

on max or threshold)

February 9, 2024

In PyTorch: torch.nn.Conv2d
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Features: Energy vs. Accuracy 

0.1

1
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0 20 40 60 80

Accuracy (Average Precision)

Energy/
Pixel (nJ)

DNN(VGG16)2

DNN(AlexNet)2

HOG1

Measured in 65nm*
1. [Suleiman, VLSI 2016]
2. [Chen, ISSCC 2016] 

* Only feature extraction. Does 
not include data, augmentation, 
ensemble and classification 
energy, etc.

Measured in on VOC 2007 Dataset
1. DPM v5 [Girshick, 2012]
2. Fast R-CNN [Girshick, CVPR 2015] 

Exponential

Linear

Video 
Compression

[Suleiman et al., ISCAS 2017]February 9, 2024
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Summary

• Image Classification Task

– Input: Image → Output: label (class scores)

• Steps to training and testing a classifier

– regularization

• Example of a simple linear classifier

• Feature extraction

February 9, 2024
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PyTorch Summary

• Dataset: torchvision.datasets, torch.utils.data.DataLoader

• Construct model: torch.nn

– Linear layer: torch.nn.Linear

– Feature extraction: torch.nn.Conv2d

– Activations: torch.nn.ReLU

• Train the model:

– Loss function: torch.nn.CrossEntropyLoss

– Optimizer: torch.optim.Adam

• One training step:

– output = model(input)

– loss = loss_fn(output, target)

– optimizer.zero_grad()

– loss.backward()

– optimizer.step()

February 9, 2024

https://github.com/pytorch/examples/blob/

master/mnist/main.py 

https://pytorch.org/tutorials/ 

https://github.com/pytorch/examples/blob/master/mnist/main.py
https://github.com/pytorch/examples/blob/master/mnist/main.py
https://pytorch.org/tutorials/
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Key Concepts and Terms

• Image Classification

• Training, Testing, Validation

• Linear Classifier → Weights and Bias

• Loss function → Softmax

• Generalization, Overfitting

• Regularization

• Hyper-parameters

• Epoch, Batch

• Gradient Descent, Learning Rate, Adam

• Feature Extraction

February 9, 2024

In Lab 1 and walk through the PyTorch code to see if you 

can identify these concepts
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References

• For a more in-depth treatment, please see 

– MIT’s Machine Learning Courses (6.036/6.876)

• https://introml.mit.edu/

– MIT’s Computer Vision Course (6.819/6.869)

• http://6.869.csail.mit.edu/fa18/

– Class notes from Stanford’s CNN Course (cs231n)

• http://cs231n.stanford.edu/syllabus.html

• http://cs231n.github.io/classification/

• http://cs231n.github.io/linear-classify/

February 9, 2024

https://introml.mit.edu/
http://6.869.csail.mit.edu/fa18/
http://cs231n.stanford.edu/syllabus.html
http://cs231n.github.io/classification/
http://cs231n.github.io/linear-classify/
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References

• Textbook: Chapters 1 & 2

– https://www.morganclaypool.com/doi/abs/10.2200/S01004ED1V01Y202004CAC

050

• Stanford cs231n

– http://cs231n.github.io/classification/

– http://cs231n.github.io/linear-classify/

• http://www.deeplearningbook.org/

– Chapter 5 http://www.deeplearningbook.org/contents/ml.html

• Other Works Cited in Recitation

– CIFAR-10 Dataset: https://www.cs.toronto.edu/~kriz/cifar.html

– L. Zitnick, “Which way forward? AI + vision,” CVPR Workshop, 2017

– A. Suleiman*, Y.-H. Chen*, J. Emer, V. Sze, “Towards Closing the Energy Gap Between HOG 

and CNN Features for Embedded Vision,” IEEE International Symposium of Circuits and 

Systems, 2017.

– N. Dalal, B. Triggs, "Histograms of oriented gradients for human detection," Computer Vision 

and Pattern Recognition, 2005

February 9, 2024

https://www.morganclaypool.com/doi/abs/10.2200/S01004ED1V01Y202004CAC050
https://www.morganclaypool.com/doi/abs/10.2200/S01004ED1V01Y202004CAC050
http://cs231n.github.io/classification/
http://cs231n.github.io/linear-classify/
http://www.deeplearningbook.org/
http://www.deeplearningbook.org/contents/ml.html
https://www.cs.toronto.edu/~kriz/cifar.html


R01-57

Sze and Emer

Demo of CIFAR-10 CNN Training

http://cs.stanford.edu/people/karpathy/convnetjs/demo/cifar10.html

February 9, 2024

http://cs.stanford.edu/people/karpathy/convnetjs/demo/cifar10.html
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