RO1-1

6.812/6.825
Hardware Architectures for Deep Learning

Machine Learning Basics

February 9, 2024

Vivienne Sze and Joel Emer

Massachusetts Institute of Technology
Electrical Engineering & Computer Science

|I|"' Sze and Emer

RO1-2

Goals of Today’s Recitation

« Brief overview of the key concepts in Machine Learning

« Use Image Classification as the driving example

— Image representation

— Training process

— Hyperparameters & regularization
— Feature extraction

« Know some basic ideas about PyTorch

February 9, 2024 |||"- Sze and Emer

RO1-3

PyTorch is Convenient for Research

« Easier to debug compared to TensorFlow

PyTorch (Solid) vs TensorFlow (Dotted) % of Total Papers

40%
30%

20%

% of total papers

10%

0%
2016 2017 2018 2019 2020

Date

NeurlIPS
CVPR - EMNLP

February 9, 2024 Nir http://horace.io/pytorch-vs-tensorflow/ Sze and Emer

RO1-4

Image Classification Task

One Image One Label

§ ' .
l 44 ~
X 4 A
, \ n
]

Cat

[Source: Stanford cs231n]

February 9, 2024 |||"- Sze and Emer

RO1-5

Image Classification Task

Core Problem in Computer Vision.
Also referred to as Image Recognition

Can be extended to other vision tasks

person : 0.992

= Object
{l Detection

uuuuuuuuuuuu
((((((
cccccc

clouds
((((((
uuuuuu

clouds
clouds

n
eeeee

grass
grass
fence fence

[Source: Stanford cs231n] |mage Segmentation

February 9, 2024 |||"- Sze and Emer

RO1-6

What is an Image”?

« Images are 2-D functions: f(x, y)

— X, y are spatial coordinates
— f(x,y) is the intensity/amplitude at (X,y)

(0,0) > X

February 9, 2024 |||"- Sze and Emer

RO1-7

What is a Digital Image?
« Sampling [Spatial] 2 Resolution

— Size in terms of pixels (integer values)
« Quantization [Amplitude]-> Bits per pixel

— e.g. 8-bits per pixel (amplitude has values between 0 to 255)

f(x,y) X
01 2 3 4 5 6 7 8 9 10 11
0000 O O O 0O O 0O O 0 0
100 0 0 0 0O 0O 0O 0 0 0 O
200 0 2 0 0 0 0 0 0 0 0
300 0 71 78 9% 0 0 0 0 0 0
4 00 78 98 102 77 0 0 0O O 0 0
5 00 95 126 150 175 0 0 0 0 0 0
J 6 0012 15 175 175 175 0 0 0 0 0
7 0 0 126 150 199 199 175 175 95 0 0 O
8 0 0 126 150 199 199 175 715 95 47 0 O
9 0 0 126 150 150 175 126 126 85 47 0 0
10 0 0 71 126 126 126 95 95 95 47 0 0
1100 0 71 71 70 71 71 71 0 0 0
200 0 0 0 0 0 O 0O O 0 0
ol 13 0 0 O 0 0 0 0 0 0 0 O

FIGURE 2.17 (a) Continuos image projected onto a sensor arrayv. (b) Result of image
sampling and quantization.

[Image Source: R. C. Gonzalez & R. E. Woods]

RO1-8

Color Images

Each component is a 2-D function

February 9, 2024 Nir

RO1-9

Generate Other Colors from RGB

Red, green and blue each have values between 0 to 255
256*256*256 = 16,777,216 possible colors

February 9, 2024

R0O1-10

Image Classification Task

/ & ¥ 2
\ F A 6 62 :f
<\ , A) 30 13 36 65
‘i) ! ' / 03 32 36 71 37 02 36 91
s a2 40 40 28 &6 33 13 %0
: 2 3 78 36 84 20 35 17 12 S0
$5 81 28 64 23 67 10 26 32 40 €7 59 S4 70 €6 18 38 64 70
| €7 26 20 68 02 62 12 20 95 63 94 39 63 OF 40 91 66 49 94 21
\J - 24 35 38 03 66 73 99 26 97 17 70 78 96 €3 14 20 34 99 €3 72
\ 23 3C 3309 TS 00 TE6 44 20 435 39 14 00 €2 33 97 3 31 v
\ = 78 47 3 38 22 75 S1 €7 15 04 03 80 04 €2 16 14 09 53 S€ 92
\ 16 39 05 42 96 35 31 47 55 58 88 24 00 17 S4 24 36 29 85 57
: : 86 S6 00 48 35 71 89 07 05 44 44 37 44 €0 21 S8 51 54 17 58
K 19 80 81 68 05 94 47 63 20 73 92 13 86 32 17 77 04 29 55 40
- 04 52 00 83 27 35 99 1€ 07 97 57 32 1€ 26 232G 79 33 27 98 ¢¢
6 &7 §7 62 20 72 03 46 3% €7 46 S5 13 32 £35 93 53 69
67 11 24 94 72 18 0B 46 29 32 40 62 76 36
6 41 72 30 23 88 €3 82 €7 S9 25 74 04 36 16
$ 29 78 31 90 01 74 31 49 73 TEUMe=dl 36 23 57 05 54

Q3 7 4 T1 83 41 34 €69 16 92 33 42 61 43 %2 02

= | What the computer sees

One hot
encoding

82% cat 1
15% dog
2% hat

1% mug

>
image classification

o O o

[Source: Stanford cs231n] class membership

February 9, 2024 |||"- Sze and Emer

RO1-11

Image Classification Challenge

Viewpoint [llumination Deformation Occlusion

[Source: Stanford cs231n]

Need a classifier that is invariant to these variations,
but still sensitive to inter class variations

February 9, 2024 |||"- Sze and Emer

R0O1-12

Use Data Driven Approach

Give the computer example images to “learn” from
Collect dataset of labeled images

.~ N £ o L
5t A N 3 — :
; PN pd S =3
- : . ., - - ,’.;‘"
A ..~ /| ‘ 5\,’ -
@ e B g - - = s4® F/T
‘
]

i
P — 1 J
4 - 3
‘ e b = e
L 2 ' b)
S 14
=

S e ——— — P v:{?. P ‘

v . oF .45 N : g 2
. 1 - . $
s 3 e
5 $. - -
P = -
d . T
wk =y B I~) % .

I R U W £ e ")

¥ 7y) |

\ 1 al)

S e 1 N1

DA |
an—

[Image Source: Stanford cs231n]

February 9, 2024 |||"- Sze and Emer

R0O1-13

Example Dataset: CIFAR-10

airplane i&‘-% > ..=hi
automobile E‘Eih‘
- EEEifaiats
cat ! e - I G
32x32 pixels (color) i R
10 classes miin --R-& 4 8
50,000 Training dog .Qﬂanﬂ“‘;‘.
10,000 Testing G .- ..
horse '.mﬂ-u
o g B e LR -
ok T e A S N R

Image Source: http://karpathy.github.io/

Download from:
https://www.cs.toronto.edu/~kriz/cifar.html

Subset of 80M Tiny Images Dataset (Torralba)

In PyTorch: torchvision.datasets
February 9, 2024 i

https://www.cs.toronto.edu/~kriz/cifar.html
http://groups.csail.mit.edu/vision/TinyImages/

RO1-14

General Steps

1. Collect Labeled Dataset

— Use subsets of the data for training and testing

2. Train the Model

— Use the training set to learn task

3. Test the Model

— Use the model to predict labels for the test set that it has
never seen before, and compare to true labels (ground truth)

4. Use the Model (Inference)
— Apply model to unlabeled inputs

February 9, 2024 |||"- Sze and Emer

RO1-15

Steps for Training an Image Classifier

1. Collect Labeled Dataset

— Aset of N images, each labeled with one of K different classes

2. Train the Model

— Use the training set to train classifier to learn what each of the
classes looks like

3. Test the Model

— Use the classifier to predict labels for the test set of images
that it has never seen before, and compare to true labels

4. Use the Model (Inference)

— Apply model to unlabeled images

February 9, 2024 |||"- Sze and Emer

RO1-16

Generalization

« After achieving adequate accuracy on the training set,
the ultimate quality of the model is determined by how
accurate it performs on unseen data

— The test set is a surrogate for unseen data

* Generalization refers to how well the model maintains
the accuracy between training and unseen data
— Generalization means not overfitting

. L _ overfitting
— Overfitting: fit noise rather than signal *o

. What are techniques that can help the model *-J
generalize?

[Image source: Wikipedia]

February 9, 2024 |||"- Sze and Emer

RO1-17

Hyper-Parameters

« Hyper-parameters are design choices about
the algorithm that we set rather than learn

« Example for DNNSs:
— What is the number of layers?
— What is the shape of filter?

* Need to try out several times

February 9, 2024 |||"- Sze and Emer

R0O1-18

Evaluating Hyper-Parameters

Example: selecting number of layers

Idea #1: Choose hyperparameters
that work best on the data

Your Dataset

If we use the entire dataset to select the hyper-parameters, we
cannot evaluate how the model generalizes.

February 9, 2024 Nir [Image Source: Stanford cs231n] Sze and Emer

RO1-19

Evaluating Hyper-Parameters

Example: selecting number of layers

Idea #1: Choose hyperparameters
that work best on the data

Your Dataset

Idea #2: Split data into train and test, choose BAD: No idea how algorithm
hyperparameters that work best on test data will perform on new data
train test

If we use the test data to select the hyper-parameters, we will need to

access the test data often.
Each access to the test data “leaks information” and makes it less of a

surrogate for unseen data.

February 9, 2024 Nir [Image Source: Stanford cs231n] Sze and Emer

Use Validation Set

« Use validation set to help choose hyper-parameters

— Minimize access to test set
Example: selecting number of layers

Idea #1: Choose hyperparameters
that work best on the data

Your Dataset

Idea #2: Split data into train and test, choose

hyperparameters that work best on test data

R0O1-20

BAD: No idea how algorithm

will perform on new data

train test
Idea #3: Split data into train, val, and test; choose Better!
hyperparameters on val and evaluate on test '
train validation test

For ImageNet Challenge, test set not released!

February 9, 2024 Nir

Sze and Emer

RO1-21

Summary

1. Collect Labeled Dataset
— Partition into training, validation and test set

2. Train Model

— Select hyper-parameters
— Use the training set to learn task

3. Evaluate Model

— Compare results of model with true answers (ground truth labels) on the
validation set

— If not happy, repeat step 2!

4. Test Model
— Compare results of model with true answers (ground truth labels) on the
test set
5. Deploy Model (Inference)
- $%$%

February 9, 2024 |||"- Sze and Emer

R0O1-22

Linear Classifier

« Alinear function that maps images to class scores
— Input: Image pixels (or features — discussed later)
— Parameters: Weights and bias (values to be trained)
— Scores: Indicate how likely image belongs to a class
— Labels: Indicate which class

Image

.
:

10 numbers giving —»| apels
- >
f(X 1W’ b) class scores

Array of 32x32x3 numbers
(3072 numbers total)

[Modified from Source: Stanford cs231n]

February 9, 2024 |||"- Sze and Emer

R0O1-23

Linear Classifier

f(x,;, W, b) = Wx; + b

Stretch pixels into column

56
\ 02 | -05| 0.1 | 2.0 1.1 -96.8 | Cat score
| 96 f‘-ﬁiq ' 231
7 Y= 1.6 (1.3 | 21 | 0.0 3.2 | =— | 437.9 | Doq score
/ 2/4 *‘3} 24 + 9
Eivilin 0 [025| 02 |-0.3 1.2 61.95 | Ship score
Input image 2
W X b
For CIFAR-10 [10 x3072] [3072x1] [10x1] [10x1]
In PyTorch: torch.nn.Linear
February 9, 2024 ir Sze and Emer

[Source: Stanford cs231n]

Linear Classifier

RO1-24

Combine bias and weights in to a single Weight matrix

11

3.2

-1.2

02 |-05| 01 | 20 56

15 [1.3 | 21 (06 231
0 (025| 0.2 | -0.3 24
w 2

&L

02 (| =-0:5 | O:1 2.0 11 56
15 1.3 821 0.0 3 2 231
0 025]| 02 | -03 | 1.2 24
|44 b 2
new, single W
1
)

« Each row of matrix W is a classifier for a given class
« Single Matrix Multiplication evaluates multiples classes in parallel

February 9, 2024

[Source: Stanford cs231n]

Sze and Emer

RRRRRR

Linear Classifier

Linear Classifier can be thought of as a basic
building block in the neural network

weighted o
sum activation

non-linear
function f(-)

eeeeeeeeee

R0O1-26

Intuition of Classifier

Visualizing weights of each classifier
Can be thought of as a template for the class

plane car bird cat

horse tm_g:k :

[Image Source: Stanford cs231n]

deer

February 9, 2024 |||"- Sze and Emer

RO1-27

Linear Classifier

f(x,;, W, b) = Wx; +b

Stretch pixels into column

56
N 02 |05 01 | 2.0 1.1 Cat score
imB6 11231 231
‘r_j.'-""'" “H"} 1.5 1.3 2.1 0.0 3.2 Doa score
f_f e/ 24 + °
BT 0 [025] 02 | -0.3 1.2 Ship score
Input image 2
W X b
For each image, the classifier generates scores for all classes.
How do we evaluate the quality the classifier?
February 9, 2024 ir Sze and Emer

[Source: Stanford cs231n]

R0O1-28

Use Loss Function for Evaluation

« Loss function quantifies the agreement between the
predicted scores and the ground truth labels
— Scores are also referred to as logits

« Quantifying loss allows us to improve classifier (i.e. update
weights) — how good is the classifier?

Goal

« Want the class that
matches the ground truth
label to have highest score

cat 3.2 1.3 2.2

« Want the classes that don’t
el 5.1 4.9 2.5 match the ground truth
frog -1.7 2.0 -3.1 label to have low scores

February 9, 2024 ——
’ i [Image Source: Stanford cs231n] Sze and Emer

R0O1-29

Loss Function

Cross-Entropy Loss (Softmax)

Compute score for each class S; = f(JCg, W)j

Score of
(correct class
eSyi
L. =-log
5)
\Z e Score of
J each class

Loss function is derived from minimizing cross-entropy between
estimated class probabilities and ground truth

In PyTorch: torch.nn.CrossEntropyLoss

Update weights such that the correct label
has the highest probability

February 9, 2024 |||"- Sze and Emer

R0O1-30

Use Loss Function for Evaluation

« Loss function quantifies the agreement between the
predicted scores and the ground truth labels

— Scores are also referred to as logits

Scores (logits)
N

B 7 Gl

cat 3.2 2.2 1 0 0
car 5.1 2.5 0 1 0
frog -1.7 -3.1 0 0 1
February 9, 2024 M [Image Source: Stanford cs231n] Sze and Emer

RO1-31

Loss Function

Compute Average Loss on Training Examples

Average Loss o | = index of example
LoSS Function Prediction N = number of examples

\ Score
Z Li(:gz. W)‘, ;)
, \ \

Average across 1

~number of Input Weight Correct class
training examples yrajining Matrix of training
Image (trained) Image
(given) (given)

Many possible functions for L,

February 9, 2024 |||"- Sze and Emer

R0O1-32

Use Loss Function for Evaluation

« Ratios of scores can be used to evaluate the quality of the classifier
« Use the softmax function to keep values between 0 and 1

yl
Softmax

e
a 2 function

=

] Probabilities
cat 0.025 (takes on
car 0.924 valuesclose

to ground
frog 0.051 _J truthlabels)

February 9, 2024 Mir [Image Source: Stanford cs231n] Sze and Emer

RO1-33

Regularization

* Regularization adds constraints to improve
generalizability of model

— Examples: smoothness, number of parameters, size of the
parameters (weight decay), prior distribution or structure

>

A overfitting

underfitting

> > >

[Image source: The Shape of Data]

February 9, 2024 |||"- Sze and Emer

RO1-34

Regularization: Training vs. Test Error

> _ > _ >

Test Error
Note: In this case,
error is equivalent
to loss

Training Error

-

& S 6

Model Complexity .
[Modified from Source: scott.fortmann-roe.com/]

February 9, 2024 |||"- Sze and Emer

RO1-35

Regularization for DNN: Dropout

During training, randomly set some activations and their weights to zero.
Reduces over-fitting by helping the activations (i.e. feature detectors) to be

robust to changes in its neighbors.

@

Q @Oy

'(
0
i@
X

AN

»

0
0

/N
\/
9
A

X
4
4
:
%74
27
177
>

{
AN
2O
_:."
/
(_
\ /
(U

./
’-’In
XS
LA
A\.

%
S
“\
v,
‘\
)

%

1\\
N

Q)
.

N
&
77
>

(a) Standard Neural Net

February 9, 2024

(b) After applying dropout.

[Srivastava, JMLR 2014]

RO1-36

Regularization for DNN: Dropout

Dropout results in more meaningful learned features (e.g. detect edges,
strokes and spots in different parts of the image). Results on MNIST shown.

i ¥ ™ 4 ‘,’. ™ ' -y . ,‘
ay Yol ey % L N) P L el 1P L7 S
. . o - ..' 3 Ay . -~ I - z +| ’
\ .‘ » A o N . 3‘1 R “x " F
i i 7 INNIE ' L, %
"! - -~ ’ < e , - ; ’, 0,
= T s e R B
> !‘ o L. ‘.‘ L l' l.l ol 4
@ A - - - | »
/= N ‘ “I» / y ‘I - "
3 55 55 . - i/’ ol e o N
. 2 . ») Al .
” ¥ ’ u‘ - L/
e ’ - . \ 7 ol o r 21? *l o
» s odV b . N\ 2
’.' — l’-'\~ ! L] - , / - ? .
= = - v 1% v L A S » . v | - -
o = ¥ 2 .
B A -~ .' ”) - ’ ™ ,‘ e - » s " - »
- v * coellyC =
Wi Z - 2 5 it . ‘v " “‘o L w
, ’ » » L4 »
‘ ‘ »
A I « | Ll v s
- ’ il B¢ o) _ 4 = -
il I - ,4, . Fe » - ’l
- : ~ - - - - -
..' |. - 'l" . - - e] it :,|
ESFR BT ' "oy > | [w - ’ s
_‘. - '. ; - = : "." - '-‘) '.—' \ / {1
‘. “. e i | 177 A A T ‘r\ -'.
] e “, Al e I o ‘i -

(a) Without dropout (b) Dropout with p = 0.5.

February 9, 2024 Nir [Srivastava, JMLR 2014]

RO1-37

Total Loss

1
L = W;Li+ AR(W)

regularization loss

\——

data loss

A is a hyper-parameter set during training.
Larger A improves generalizability, but may increase data loss.

February 9, 2024 |||"- Sze and Emer

RO1-38

Gradient Descent

« Goal: Determine set of weights to minimize loss

« Use gradient descent to incrementally update weights
to reduce loss

— Compute derivative of loss relative to weights to indicate how to
change weights (linear approximation of loss function)

A

L(w)
t_l_l — t - 8L Initjial
w?;j o w?,'j a 8'“)27 weight
R
Learning rate . g

[Image Source: http://sebastianraschka.com/]
February 9, 2024 |||"- Sze and Emer

R0O1-39

Visualization of Gradient Descent

[Image Source: Wikipedia]

February 9, 2024 |||"- Sze and Emer

R0O1-40

Learning Rate

« Many algorithms designed to set the learning rate
— Momentum, RMSProp, Adam, etc.

In PyTorch: torch.optim.Adam

A A
L(w) | | L(w)
> >
W w
Large learning rate: Overshooting. Small learning rate: Many iterations

until convergence and trapping in

_ local minima.
[Image Source: http://sebastianraschka.com/]

February 9, 2024 |||"- Sze and Emer

RO1-41

Impact of Learning Rate

A

loss

low learning rate

high learning rate

good learning rate

>
Time (epochs)

Can also decay learning rate over time for faster convergence

[Image source: http://blogs.sas.com/]
February 9, 2024 Illil- Sze and Emer

R0O1-42

Learning Rate Decay

A Loss

Learning rate decay!

Epoch

[Image Source: Stanford cs231n]

February 9, 2024 |||"- Sze and Emer

Frequency of Weight Updates

Batch Gradient Descent
— Update weights after computing loss on the entire training set

— Computationally expensive to compute loss

Stochastic Gradient Descent

— Update weights after computing loss on a single training
example; shuffle examples after going through entire training set

— Fast, but might go in the wrong direction (noisy)

Mini-batch Gradient Descent

— Divide training set into smaller sets called mini-batch, and
update weights based on loss of each mini-batch (a.k.a. ‘batch’)

Each pass through the entire training set is referred to as an epoch

R0O1-43

February 9, 2024 |||"- Sze and Emer

R0O1-44

Intuition of Classifier

Images are points in high dimensional space
(e.g. CIFAR images in 3072-dimensional space)

2-D Visualization

»w
gﬁ;\ car classifier
airplane classifier Q'
S

/

deer classifier

Note: Images not
always easily separated
with a line (features!)

Sze and Emer

[Image Source: Stanford cs231n]

February 9, 2024

R0O1-45

Feature Extraction

« Use features rather than pixels as input into the classifier

« Feature extraction can be thought of as transforming
pixels into a space where the images can more easily
separated by the classifier

— The transformation can be non-linear

Perform feature extraction
before classification

fClaSS(X 1W1 b) ‘ 1:class(fextract(x) ’W’ b)

Featu_re Classifier|_y Cat
Extraction W,b

February 9, 2024 |||"' Sze and Emer

R0O1-46

Feature Extraction

o y g @
® o .o
o ® o
' %a* » f(x, y) = (r(x, y), 8(x, y)) o o
Q d) ® > L) :
® o ® ® [}
e | o o
(0] o
o @ o o°
o
Cannot separate red After applying feature
and blue points with transform, points can
linear classifier be separated by linear
classifier

[Source: Stanford cs231n]

February 9, 2024 |||"- Sze and Emer

RO1-47

Example Hand-Crafted Features

Edges contain a lot of information

N = &
R Ifw

b ¥ ? P
R

ﬂ&;@
= .

February 9, 2024 Nir

R01-48

Example Hand-Crafted Features

V1 cells in the primary visual cortex are sensitive to edges

(A) Experimental setup {B) Stimulus Stimulus

orentaton presented Primary
=ty Visual Cortex
Light bar stimalus - - (V1)

projected on screen

Recording from visual corbe

Columnar Architecture of V1

"/ |werr{
/D
mcmﬁ

| LeFT >

N\ INIS=]~]2] 7] 1]
10 Y e
I I

V4

&

= \i

— \t\

5NN

VAN

W bk

® Knowing Neurons http://knowingneurons.com

Hubel and Wiesel (1950s — Nobel Prize): https://youtu.be/Cw5PKV9IR|30

February 9, 2024 Nir

https://youtu.be/Cw5PKV9Rj3o

R0O1-49

Example Hand-Crafted Features

Histogram of Oriented Gradients (HOG)

Current cell with the 4
normalization blocks

' cell Gradient Vector Block 1 Block 2
sl ifol=]~]~
|] Ll L
’
‘ \\\ - “

EEHZL e
e b =™
éi : : : — : Block 3 Block 4 Block Block Block Block
Rt 1 2 3 4
< B8 B
8x8 pixels (9 bins) I':?;?- fe*latur)e
values

Learned Weights

February 9, 2024 [Dalal & Triggs, CVPR 2005] i

R0O1-50

Classification Pipeline (Inference)

Image

Trained weights (w)

!

pixels| Feature | Fe2tUres () [passification |55

b Extraction_J}- ~a (WTX)
z S Scores per class
I""

_ Ssao (select class based
’,,/ S~l0onmaxor threshold)
o"”’ \s\\\
--~ Handcrafted Features Learned Features Sso
(e.g. HOG) (e.g. DNN)

In PyTorch: torch.nn.Conv2d

Score =2 X; W,

February 9, 2024 Nir

R0O1-51

Features: Energy vs. Accuracy

Exponential
10000 <
DNN(VGG16)?
1000
Energy/ 100 *
2
Pixel (n.l) DNN(AIEXNEt)
Measured in 65nm* 10 Video
1. [Suleiman, VLSI 2016] Compression
2. [Chen, ISSCC 2016] 1 = .- HOGI
Linear
* Only feature extraction. Does 0.1 | | | |

not include data, augmentation,

ensemble and classification 0 20 40 60 80

energy, etc.

Accuracy (Average Precision)

Measured in on VOC 2007 Dataset
1. DPM v5 [Girshick, 2012]
2. Fast R-CNN [Girshick, CVPR 2015]

February 9, 2024 [Suleiman et al., ISCAS 2017]

R0O1-52

Summary

* Image Classification Task

— Input: Image - Output: label (class scores)

« Steps to training and testing a classifier

— regularization
« Example of a simple linear classifier

 Feature extraction

February 9, 2024 |||"- Sze and Emer

RO1-53

PyTorch Summary

 Dataset: torchvision.datasets, torch.utils.data.DataLoader

 Construct model: torch.nn

Linear layer: torch.nn.Linear

Feature extraction: torch.nn.Conv2d

— Activations: torch.nn.ReLU

 Train the model:

Loss function: torch.nn.CrossEntropyLoss

Optimizer: torch.optim.Adam

* One training step:

output = model(input)
loss = loss_fn(output, target)

timizer. d
optimizer.zero_grad() https://github.com/pytorch/examples/blob/

master/mnist/main.py

loss.backward()

timizer.st i
optimizer.step() https://pytorch.org/tutorials/

February 9, 2024 |||"- Sze and Emer

https://github.com/pytorch/examples/blob/master/mnist/main.py
https://github.com/pytorch/examples/blob/master/mnist/main.py
https://pytorch.org/tutorials/

Key Concepts and Terms

RO1-54

« Image Classification

* Training, Testing, Validation

* Linear Classifier > Weights and Bias

 Loss function 2 Softmax

« Generalization, Overfitting

* Regularization

* Hyper-parameters
* Epoch, Batch
« Gradient Descent, Learning Rate, Adam

 Feature Extraction

February 9, 2024

In Lab 1 and walk through the PyTorch code to see if you
can identify these concepts

Sze and Emer

RO1-55

References

« For a more in-depth treatment, please see
— MIT’s Machine Learning Courses (6.036/6.876)

* https://introml.mit.edu/

— MIT’s Computer Vision Course (6.819/6.869)
* http://6.869.csail.mit.edu/fal8/

— Class notes from Stanford’s CNN Course (cs231n)
* http://cs231n.stanford.edu/syllabus.html

» http://cs231n.github.io/classification/

» http://cs231n.github.io/linear-classify/

February 9, 2024 |||"- Sze and Emer

https://introml.mit.edu/
http://6.869.csail.mit.edu/fa18/
http://cs231n.stanford.edu/syllabus.html
http://cs231n.github.io/classification/
http://cs231n.github.io/linear-classify/

R0O1-56

References

« Textbook: Chapters 1 & 2

— https://www.morganclaypool.com/doi/abs/10.2200/S01004ED1V01Y202004CAC
050

« Stanford c¢s231n
— http://cs231n.github.io/classification/
— http://cs231n.qithub.io/linear-classify/
« http://www.deeplearningbook.org/

— Chapter 5 http://www.deeplearningbook.org/contents/ml.html

 Other Works Cited in Recitation
— CIFAR-10 Dataset: https://www.cs.toronto.edu/~kriz/cifar.html
— L. Zitnick, “Which way forward? Al + vision,” CVPR Workshop, 2017

— A. Suleiman*, Y.-H. Chen*, J. Emer, V. Sze, “Towards Closing the Energy Gap Between HOG
and CNN Features for Embedded Vision,” IEEE International Symposium of Circuits and
Systems, 2017.

— N. Dalal, B. Triggs, "Histograms of oriented gradients for human detection," Computer Vision
and Pattern Recognition, 2005

February 9, 2024 |||"- Sze and Emer

https://www.morganclaypool.com/doi/abs/10.2200/S01004ED1V01Y202004CAC050
https://www.morganclaypool.com/doi/abs/10.2200/S01004ED1V01Y202004CAC050
http://cs231n.github.io/classification/
http://cs231n.github.io/linear-classify/
http://www.deeplearningbook.org/
http://www.deeplearningbook.org/contents/ml.html
https://www.cs.toronto.edu/~kriz/cifar.html

R0O1-57

Demo of CIFAR-10 CNN Training

Notwork Visualization

Input (32x32x3) Activations:

ConvNetJS CIFAR-10 demo max activation: 0.34313, min- -0.49608

max gradient: 0.04754, min: -0.0368

Description
cony (32x32x16;

This demo trains a Convolutional Neural Network on the CIFAR-10 dataset in your browser, with nothing but titer size 5x5x3, mm
Javascript. The state of the art on this dataset is about 90% accuracy and human performance is at about 94% m;ﬁ"&" 0’0;221 i 0.02963 -.-..--
(not perfect as the dataset can be a bit ambiguous). | used this python script to parse the original files (python parameters: 16xSx5x3+16 = 1216
version) into batches of images that can be easily loaded intc page DOM with img tags. ..-“..
This dataset is more difficult and it takes longer to train a network. Data augmentation includes random flipping
and random image shifts by up to 2px horizontally and verically. .-
By default, in this demo we're using Adadelta which is one of per-parameter adaptive step size methods, so we e
don't have to worry about changing learning rates or momentum over time. However, | still included the text fields ...--..

for changing these if you'd like to play around with SGD+Momentum trainer.
Report questions/bugs/suggestions to @karpathy.

unmaunum-
Weight Gradants:
CLLERL EEFT TN g™

http://cs.stanford.edu/people/karpathy/convnetis/demo/cifar10.html

February 9, 2024 |||"- Sze and Emer

http://cs.stanford.edu/people/karpathy/convnetjs/demo/cifar10.html

	Slide 1: 6.812/6.825 Hardware Architectures for Deep Learning Machine Learning Basics
	Slide 2: Goals of Today’s Recitation
	Slide 3: PyTorch is Convenient for Research
	Slide 4: Image Classification Task
	Slide 5: Image Classification Task
	Slide 6: What is an Image?
	Slide 7: What is a Digital Image?
	Slide 8: Color Images
	Slide 9: Generate Other Colors from RGB
	Slide 10: Image Classification Task
	Slide 11: Image Classification Challenge
	Slide 12: Use Data Driven Approach
	Slide 13: Example Dataset: CIFAR-10
	Slide 14: General Steps
	Slide 15: Steps for Training an Image Classifier
	Slide 16: Generalization
	Slide 17: Hyper-Parameters
	Slide 18: Evaluating Hyper-Parameters
	Slide 19: Evaluating Hyper-Parameters
	Slide 20: Use Validation Set
	Slide 21: Summary
	Slide 22: Linear Classifier
	Slide 23: Linear Classifier
	Slide 24: Linear Classifier
	Slide 25: Linear Classifier
	Slide 26: Intuition of Classifier
	Slide 27: Linear Classifier
	Slide 28: Use Loss Function for Evaluation
	Slide 29: Loss Function
	Slide 30: Use Loss Function for Evaluation
	Slide 31: Loss Function
	Slide 32: Use Loss Function for Evaluation
	Slide 33: Regularization
	Slide 34: Regularization: Training vs. Test Error
	Slide 35: Regularization for DNN: Dropout
	Slide 36: Regularization for DNN: Dropout
	Slide 37: Total Loss
	Slide 38: Gradient Descent
	Slide 39: Visualization of Gradient Descent
	Slide 40: Learning Rate
	Slide 41: Impact of Learning Rate
	Slide 42: Learning Rate Decay
	Slide 43: Frequency of Weight Updates
	Slide 44: Intuition of Classifier
	Slide 45: Feature Extraction
	Slide 46: Feature Extraction
	Slide 47: Example Hand-Crafted Features
	Slide 48: Example Hand-Crafted Features
	Slide 49: Example Hand-Crafted Features
	Slide 50: Classification Pipeline (Inference)
	Slide 51: Features: Energy vs. Accuracy
	Slide 52: Summary
	Slide 53: PyTorch Summary
	Slide 54: Key Concepts and Terms
	Slide 55: References
	Slide 56: References
	Slide 57: Demo of CIFAR-10 CNN Training

