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The von Neumann Model

e Almost all modern computers are based on the von
Neumann model (John von Neumann, 1945)

e Components:

: Central
MMaln <€ Processing
emory Unit

— Main memory holds programs and their data
— Central processing unit accesses and processes memory values
- Input/output devices to communicate with the outside world
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Key Idea: Stored-Program Computer

e EXpress program as a sequence of coded instructions
e Memory holds both data and instructions
e CPU fetches, interprets, and executes successive

instructions of the program

Main
Memory

op |rd | rs|rt

rd <= op(rs,rt)

instruction

Central
Processing
Unit

instruction

instruction
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Anatomy of a von Neumann Computer

Central
Processing
Unit

$

Main Memory

How does CPU
distinguish between
instructions and data?
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Anatomy of a von Neumann Computer

g, 8
_ control
QY %Datapath‘ Control
Q5 .
( £ 2 status Unit
address data address instructions

Main Memory‘

dest‘ﬂ

registers

asel

f—\__ AU £+ cCs

operations
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bsel

> PC Z/, 1101000111011

R1 «ADD(R2,R3)
e Instructions coded as binary data

e Program Counter or PC: Address
of the instruction to be executed

e Decode Instructions for Datapath



Instructions

e Instructions are the fundamental unit of work

= Each instruction specifies:

_ > PC
= An operation or opcode to be Z/“;Tf’;;f;l;
performed

= Source operands and destination
for the result

= In a von Neumann machine,
instructions are executed loop: addi x12, x12, -1
sequentially sub x14, x15, x16

= By default, the next PC is current PC Bbne x12, x@, loop

PC + size of current instruction PC+4 »
(e.g., PC + 4)

= Except for branch instruction

xor x19, x20, x21
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ALU Instructions

r§2 rsi rfl opciode
@@@@@@@@@@@1‘@@@1@@@@@@@11@11@@11
funct? funct3

e What RISC-V instruction is represented by these
32 bits?

e Reference manual specifies the fields as follows:
- opcode = 0110011 => Which operation?

- funct3 = 000 => More specific info on op (ADD)
- funct7 = 0000000

- rd = 90011 > %3 ADD X3, X2, x1

- rsl = 00010 =5 x2

- rs2 = 00001 => X1
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ALU Instructions

ADD rd, rs1, rs2 Add reg[rd] <= reg[rsl] + reg[rs2]

SLL rd, rs1, rs2 Shift Left Logical reg[rd] <= reg[rsl] << reg[rs2]

SLT rd, rs1, rs2 Set if < (Signed) reg[rd] <= (reg[rsl] <. reg[rs2]) ?1:0
Grouped in a category called OP with fields (AluFunc, rd,
rsl, rs2)

ADDI rd, rs1, immI Add Immediate reg[rd] <= reg[rsl1] + immlI

SLLI rd, rs1, imml  Shift Left Logical reg[rd] <= reg[rsl] << imml

Immediate
SLTI rd, rs1, immI  Set if < Immediate reg[rd] <= (reg[rsl] <,immI)?1:0
(Signed)

Grouped in a category called OPIMM with fields (AluFunc,
rd, rs1, imml)
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Load and Store Instructions

LW rd, immI(rsl) Load Word reg[rd] <= mem[reg[rsl] + immlI]
SW rs2, immS(rsl) Store Word mem[reg[rsl] + immS] <= reg[rs2]

LW and SW need to access memory for execution and

thus, are required to compute an effective memory
address

February 16, 2024
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Branch Instructions

differ only in the aluBr operation they perform

BEQ rs1, rs2, immB Branch = pc <= (reg[rsl] == reg[rs2]) ? pc +
immB : pc + 4
BNE rs1, rs2, immB Branch != pc <= (reg[rsl] !'= reg[rs2]) ? pc + immB
. pc+ 4
BLT rs1, rs2, immB Branch < pc <= (reg[rsl] <. reg[rs2]) ? pc + immB
(Signed) : pc + 4
BGE rs1, rs2, immB  Branch = pc <= (reg[rsl] =, reg[rs2]) ? pc + immB
(Signed) : pc + 4
BLTU rs1, rs2, immB Branch < pc <= (reg[rsl] <, reg[rs2]) ? pc + immB
(Unsigned) : pc + 4
BGEU rs1, rs2, immB Branch = pc <= (reg[rs1] =, reg[rs2]) ? pc + immB
(Unsigned) : pc + 4

These instructions are grouped in a category called
BRANCH with fields (brFunc, rs1, rs2, immB)
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Single-Cycle RISC-V Processor

PC

PC l instr

Inst
Memory

1. ALU instructions

2. Load & store instructions

3. Branch & jump instructions
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Single-Cycle RISC-V Processor

rsil 1
rs2

PC Decode Decode_ins’g

PC l instr

Inst
Memory

1. ALU instructions

2. Load & store instructions

3. Branch & jump instructions
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Single-Cycle RISC-V Processor

Register File
rs1t 1 Reg[rs1]
rs2 Reg[rs2]
—
PC Decode Decode_insi
A >
PC l instr
Inst
Memory

1. ALU instructions

2. Load & store instructions

3. Branch & jump instructions
February 16, 2024
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Single-Cycle RISC-V Processor

Register File
rsit 4 Reg[rs1]
rs2 Reg[rs2]
PC Decode Decode_insi Execute =
A " :D’
PC l instr
Inst
Memory

1. ALU instructions

2. Load & store instructions

3. Branch & jump instructions
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Single-Cycle RISC-V Processor

2 read &
Register File 1 write
ports
rsit 1 Reg[rs1] rd T
rs2 Reg[rs2]
PC Decode Decode_insE Execute —
g data
PC l instr
Inst
Memory
1. ALU instructions
2. Load & store instructions
3. Branch & jump instructions
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Single-Cycle RISC-V Processor

2 read &
Register File 1 write
ports
rsit 1 Reg[rs1] rd T
nextPc rs2 Reg[rs2]
PC ) Decode Decode_insE Execute —
g data
pcC
PC l instr
Inst
Memory
1. ALU instructions
2. Load & store instructions
3. Branch & jump instructions
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Single-Cycle RISC-V Processor

1. ALU instructions

2. Load & store instructions

3. Branch & jump instructions

February 16, 2024

2 read &
Register File 1 write
ports
rsit 4 Reg[rs1] dT 1
nextPc rs2 Reg[rs2]
PC - Decode Decode_insi Execute -
A > > :D'
pC
PC l instr
Inst
Memory

LD rd, (rsl)
reg[rd] <= mem[reg[rs1]]
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Single-Cycle RISC-V Processor

2 read &
Register File 1 write
ports
, g%“ 1 Eeg%rsﬂ rd] 1 wr_data
nextPc eg[rs S
/ A
- —lEXxecute
PC X Decode Decode_ins{ D datg | Mem[addr]
A .
pc
pPC ¢ instr addr‘ .
rate instruction
Inst separate instructio Data
Memor memory & data Memory
Y memory

1. ALU instructions
2. Load & store instructions
3. Branch & jump instructions
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Processor Performance

e “Iron Law” of performance:

Program  Program Instruction Cycle
Time Instruction  Cycle  Time

Program _
: Instruction Set
Instruction

(a) Reference Implementation (b) No Vectorization (c) Vectorized Instruction

void movzx rlld, [rdi] vmovdqub4 zmm® , [rdx]

dot_16x1x16_uint8_int8_int32( movsx eax, [rsi] vpbroadcastd zmml, [rdi]
uint8_t datalrestrict 47, imul r11d, eax vpdpbusd zmm@ , zmm@, [rsil]
int8_t kernellrestrict 16]1[4], . vmovdqub4 [rdx], zmm®
int32_t output[restrict 16]1) { add rild, ried
for (int i = @; i < 16; i++) add r11d, ecx

for (int k = @; k < 4; k++) mov [rdx], ri11d
output[i] +=
datalk] * kernel[il[k];

}
Number of Instructions 273 4

Februa ry 1 6, 2024 [Reference] VeGen: A Vectorizer Generator for SIMD and Beyond (Chen et al.)
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Processor Performance

e “Iron Law” of performance:

Program  Program Instruction Cycle

Time  Instruction Cycle  Time

Program _
. Instruction Set
Instruction
Instruction _ _
Microarchitecture Design
Cycle
Cycle
?, Technology, circuits
Time

February 16, 2024
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Single-Cycle Processor Performance

K]Register File A
- - te

Inst Data
Memory Memory

e IPC (Instruction Per Cycle) =1
e t-.x = Longest path for any instruction

teik ® tivem + toec + tre + texe + tomem + tws  SIOW!
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Pipelined Implementation

e Divide datapath in multiple pipeline stages to reduce t.
— Each instruction executes over multiple cycles

o We'll study the classic 5-stage pipeline:

IF Instruction Fetch stage: Maintains PC,
fetches instruction and passes it to
Y Decode & Read Registers stage: Decodes
DEC instruction and reads source operands
! from register file, passes them to

EXE Execute stage: Performs indicated

operation in ALU, passes result to

MéM Memory stage: If it’s a load, use input as
the address, pass read data (or ALU result

v if not a load) to

WB Write-Back stage: writes result back
into register file.

tok = max{ty toec texe twem, twelt
February 16, 2024 23




Example: Non-Pipelined Execution

|-> PC

i) [hstruction
IF Memory

v
DEC Register
EXE Execute
Data

MEM M’Iemory
WB ! |é

addi x11, x10, 2
lw x13, 8(x14)

xor x19,
add x22,
addi x25, x26, 1

Stages

X200, x21

X23,

X24

Cycles
1 2 4 5 6
IF
DEC
EXE | addi | |lw xor | add | addi
MEM
WB

Reg r
File ~
_MKI\ ok ® Uvem + Toec + e + Texe + Tomem T+ tus
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Example: Pipelined Execution

addi x11, x10, 2

| PC 1w x13, 8(x14)

"uctlon\
IF | -Me ory xor x19, x20, x21

' add x22, x23, x24

DEC D(;Lode: Regiilséter addi x25, x26, 1
| | - — Cycles
EXE > : Executte:EP 1 - 2 3 4
—— IF | addi
| r=— 9 DEC
MEM Mgr?']t(?ry S EXE
[ I | 0 MEM
WB | WB
Register
File

February 16, 2024
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Example: Pipelined Execution

addi x11, x10, 2

(1 1w x13, 8(x14)
+ 4]« \W -m
[F | HEmorn xor x19, x20, x21
— ' add x22, x23, x24
DEC addfcode: Register| addi x25, x26, 1
L — Flllel | Cycles
EXE > : Executte:EP 1 - 2 3 4
— T IF | addi | Iw
' r=— 9 DEC addi
MEM Mgr?']t(?ry S EXE
| I | 0 MEM
WB | we
Register

File

February 16, 2024

26



Example: Pipelined Execution

addi x11, x10, 2

IPC 1w x13, 8(x14)
+4 'm
[F | tEmon xor x19, x20, x21
' l ' add x22, x23, x24
DEC | \WN el Regiilséter addi x25, x26, 1
| | - — Cycles
d\‘v Executtel 1 2 3 4
EXE 36-, >, IF |addi| Iw
| r¥— o DEC addi | Iw
MEM Mgr?']t(?ry 8’ EXE addi
| I | 0 MEM
WB ‘*17*7 wB
Register
File

February 16, 2024
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Example: Pipelined Execution

|-> PC
i) [nstruction
IF Mlemory
[ ]
v
DEC Decode: Reg_lster
File
[ 1
[ ]
! |
E
EXE Xecute
1 1
| |
L 2K
Data
MEM Memory
|
| |
WB ! $

File

Register

February 16, 2024

addi x11, x10, 2

lw x13, 8(x14)

xor x19, x20, x21
add x22, x23, x24
addi x25, x26, 1

Cycles
1 2 3 4 5 6
IF | addi | Ilw xor | add | addi
DEC addi | Iw xor | add
EXE addi | Iw Xxor
MEM addi | Iw
WB addi | Iw

tork = max{t; toec texe twem, twelt




Classic 5-Stage Pipelined Datapath

IF [

PC

+4|e

DEC

EXE

MEM

WB

Instruction
Memory

Decode |

Register
File

v

|
vy

Execute

y Vv

Data
Memory

o

File

Register

February 16, 2024

e Pipeline registers separate
different stages

e Each stage services one
instruction per cycle

tork = Max{ty toec, texe, tvem twet

29



Pipeline Hazard

|-> PC
i) [nstruction
IF Mlemory
[ ]
v
DEC Decode: Reg_lster
File
| [ 1
! |
EXE Execute
1 1
I L 2K
Data
MEM Memory
|
| |
WB ! $

File

Register

February 16, 2024

lw x13, 8(x14)

xor x19, x20, x21

When do register reads
and writes happen?

Reads in DEC stage
Writes at end of

add x22, x23, x24 WB stage
addi x25, x26, 1
Cycles >
1 2 3 4 5 6
IF | addi | Ilw xor | add | addi
DEC addi | Iw xor | add
EXE addi | Iw Xxor
MEM addi | Iw
WB addi | Iw
v
Read x10 Write x11




Data Hazards

addi x11

e Consider this instruction

x19, 2

xor x13, 11, x12

sequence.
xori x19, x18, OxF
1 2 | 3 4 5 6
IF addi XOr XOri
DEC addi XO0r XOri
EXE addi Xor XOri
MEM addi XOr
e xor reads x11 on cycle 3, but addi does not

update it until end of cycle 5 2 x11 is stale!

e Pipeline must maintain correct behavior...

February 16, 2024
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Pipeline Hazards

e Pipelining tries to overlap the execution of multiple
instructions, but an instruction may depend on
something produced by an earlier instruction
— A data value 2> Data hazard

— The program counter - Control hazard
(branches, jumps, exceptions)

February 16, 2024
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Resolving Hazards

e Strategy 1: Stall. Wait for the result to be available
by freezing earlier pipeline stages

e Strategy 2: Bypass (Data hazard). Route data to
the earlier pipeline stage as soon as it is calculated

e Strategy 3: Speculate (Control hazard)
— Guess a value and continue executing anyway

- When actual value is available, two cases
e Guessed correctly - do nothing
e Guessed incorrectly =2 kill & restart with correct value

February 16, 2024 33



Resolving Data Hazards by Stalling

addi x11, x10, 2

e Strategy 1: Stall. Wait for the cor x13 % %11 %12

result to be available by

freezing earlier pipeline stages | . .o [1s oy

Stall
/N
1 2 3 4 5 6 7 8
IF addi XOr XOri
DEC addi XO0r xor xor xor XOri
EXE addi | NOP | NOP | NOP | xor
MEM addi | NOP | NOP | NOP | xor
WB addi | NOP | NOP | NOP

\ x11 updated
Stalls decrease IPC!

February 16, 2024
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Stall Logic

STALLF PC

IF +a | Instruction
Memory
STALL— . 1
v
— Register
DEC Decode | File
¥ _NOP
STALLN\_/
: ¥ vy
EXE > Execute:D
I 1 1 1 1
v ¥
MEM Data
Memory

WB ‘—737

Register
File

February 16, 2024

e New STALL control signal

e STALL==

— Freezes PC and IF pipeline
— Injects NOP into EXE stage

e NOP = No-operation

35



Resolving Data Hazards by Bypassing

addi xll,\xle, 2

e Strategy 2: Bypass. Route data wor x13. x11. x12

to the earlier pipeline stage

as soon as it is calculated xori x19, x18, OxF

e addi writes to x11 at the end of cycle 5...
but the result is produced during cycle 3,
at the EXE stage!

1 2 3 4 5
IF addi XO0r XOri
DEC addi Xor T XOri
EXE addi XO0r
MEM addi XOr
WB addi
addi result computed ! Tx11 updated

February 16, 2024 36



Bypass Logic

STALL—»)
PC
C
IF +4Je Instruction
Memory
STALL—] : 1
v
— Registei
DEC Decode | il %
¢NopP  [{
STALLS_ 7
v v
EXE Execute:D
| |
v v
MEM Data
Memory
1 |
WB | \—5
Register
File

February 16, 2024

Add bypass muxes to
DEC outputs

Route EXE, MEM,
outputs to mux inputs

Bypass value if
destination register of
instruction matches
source register of
instruction in DEC



Resolving Hazards

e Strategy 1: Stall. Wait for the result to be available
by freezing earlier pipeline stages

e Strategy 2: Bypass (Data hazard). Route data to
the earlier pipeline stage as soon as it is calculated

e Strategy 3: Speculate (Control hazard)
— Guess a value and continue executing anyway

— Two cases can happen
e Correct Guess - do nothing @
e Wrong Guess - kill & restart with correct value g

February 16, 2024
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Resolving Control Hazards with
Speculation

loop: addi x12, x12, -1
e What’s a good guess sub x14, x15, x16

for nextPC? PC+4 PC Wbne x12, x@, loop
PC+4 W)

xor x19, x20, x21

for (int i=100; i>=0; i--){

\

February 16, 2024 39



Resolving Control Hazards with

Speculation

e What’s a good guess
for nextPC? PC+4

e Assume nextPC = PC+4

loop:

addi x12, x11, -1
sub x14, x15, x16
bne x12, x0, loop

xor x19, x20, x21

1 2 3 4 5 6 7 8 9
IF addi sub bne xor
DEC addi sub bne xor
EXE addi sub bne Xor
MEM addi sub bne Xor
WB addix sub bne Xor
Start fetching at PC+4 ( 7‘) but Guessed right (x12==x0)

bne not resolved yet...

February 16, 2024




Resolving Control Hazards with
Speculation

loop: addi x12, x11, -1
* What’s a good guess sub x14, x15, x16
for nextPC? PC+4 bne x12, x@, loop
e Assume nextPC = loop xor x19, x20, x21
1 2 3 4 5 6 7 8 9
IF addi sub bne XOr addi sub bne
DEC addi sub bne NOP | addi sub bne
EXE addi sub bne | NOP | NOP | addi sub
MEM addi sub bne | NOP | NOP | addi
WB addi sub bne | NOP | NOP
/ t
Start fetching at PC+4 ( ) but  Guessed wrong, kill & xor

bne not resolved yet ... and restart fetching at loop(addi)
February 16, 2024 41



Speculation Logic

IF

DEC

EXE

MEM

WB

ANNUL STALL

February 16, 2024

¢ T pC
—>
| [ 4 Instruction
' + Cache
STAL
ANNUL =1 = r
— Register
Decode | FiIe
¢ NOP
ANNUL STALL-*-.—/ ->\.._/
[
¥ ¥ +
ANNUL > Execute
< q:}
| | — | |
| |
v v
Data
| Cache
| |
Register
File

When EXE finds a jump
or taken branch, i
supplies nextPC and
sets ANNUL==

— Annulling instructions
currently in IF and DEC
stages

— Writes NOPs in IF/DEC and
DEC/EXE pipeline registers

— Loads the branch or jump
target into PC register

42



Summary of solutions to hazards

e Stalling can address all pipeline hazards
— Simple, but hurts IPC

e Bypassing improves IPC on data hazards

e Speculation improves IPC on control hazards
— Speculation works only when it’s easy to make good guesses

Program  Program Instruction Cycle

Time  Instruction Cycle  Time

Instruction

Microarchitecture
Cycle

February 16, 2024 43



Summary

e Processor state
— Registers (including PC)
- Memory

e Instruction set — means of updating state
- Compute
- Memory access
— Control

e Basic implementation: single-cycle RISC-V processor

e Pipelining boosts throughput, but introduces hazards
— Solutions to hazards: stall, bypass, and speculate

February 16, 2024 44
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