On-Chip Networks II: Router Microarchitecture & Routing

Mengjia Yan
Computer Science & Artificial Intelligence Lab
M.I.T.
Recap: Wormhole Flow Control

- Each router manages buffers in flits
- Each packet is sent through output link as soon as possible (without waiting for all its flits to arrive)
- Router buffers are not large enough to hold full packet → on congestion, packet’s flits often buffered across routers
- Problem: On congestion, links assigned to a blocked packet cannot be used by other packets
Recap: Wormhole Flow Control

- Each router manages buffers in flits
- Each packet is sent through output link as soon as possible (without waiting for all its flits to arrive)
- Router buffers are not large enough to hold full packet → on congestion, packet’s flits often buffered across routers
- Problem: On congestion, links assigned to a blocked packet cannot be used by other packets

![Wormhole Diagram]

November 2, 2022
Recap: Virtual-Channel Flow Control

- When a packet blocks, instead of holding on to channel, hold on to virtual channel.
- Virtual channel (VC) = channel state + flit buffers.
- Multiple virtual channels reduce blocking.
- Ex: Wormhole (=1 VC/channel) vs 2 VCs/channel.

VC flow control with 2 VCs/channel

[Diagram showing VC flow control with 2 VCs/channel]
Time-Space View: Virtual-Channel

\[
\begin{align*}
\text{In1} & : A_H A_1 A_2 A_3 A_4 A_5 A_6 A_T \\
& : 1 1 2 2 3 3 3 3 3 3 2 2 1 1 \\
\text{In2} & : B_H B_1 B_2 B_3 B_4 B_5 B_6 B_T \\
& : 1 2 2 3 3 3 3 3 3 3 2 2 1 1 \\
\text{Out} & : A_H B_H A_1 B_1 A_2 B_2 A_3 B_3 A_4 B_4 A_5 B_5 A_6 B_6 A_T B_T
\end{align*}
\]

flits in VC buffer

A downstream

B downstream

November 2, 2022

MIT 6.5900 (ne 6.823) Fall 2022
Interconnection Network Architecture

- **Topology**: How to connect the nodes up? (processors, memories, router line cards, ...)

- **Routing**: Which path should a message take?

- **Flow control**: How is the message actually forwarded from source to destination?

- **Router microarchitecture**: How to build the routers?

- **Link microarchitecture**: How to build the links?
Router
Microarchitecture
Ring-based Interconnect
Ring Stop
Ring Stop

Allow input if no traffic on ring
Ring Stop

Diagram:

- **Input**
- **Latch**
- **Output**

Text:

- **Allow input if no traffic on ring**
- **If there is traffic on ring, should traffic on ring or new input get priority?**
Ring Flow Control: Priorities

Rotary Rule – traffic in ring has priority
Ring Flow Control: Bounces

- What if traffic on the ring cannot get delivered, e.g., if output FIFO is full?
Ring Flow Control: Bounces

• What if traffic on the ring cannot get delivered, e.g., if output FIFO is full?

• One alternative: Continue on ring (bounce)
Ring Flow Control: Bounces

• What if traffic on the ring cannot get delivered, e.g., if output FIFO is full?

• One alternative: Continue on ring (bounce)

• What are the consequences of such bounces?
Ring Flow Control: Bounces

• What if traffic on the ring cannot get delivered, e.g., if output FIFO is full?

• One alternative: Continue on ring (bounce)

• What are the consequences of such bounces?

 Traffic on ring no longer FIFO
General Interconnect
Tilera, Knights Landing...
What’s In A Router?

• It’s a system as well
What’s In A Router?

• It’s a system as well
 – Logic – State machines, Arbiters, Allocators
 • Control data movement through router
 • Idle, Routing, Waiting for resources, Active

 – Memory – Buffers
 • Store flits before forwarding them
 • SRAMs, registers, processor memory

 – Communication – Switches
 • Transfer flits from input to output ports
 • Crossbars, multiple crossbars, fully-connected, bus
Virtual-channel Router
Router Pipeline vs. Processor Pipeline

- Logical stages:
 - BW
 - RC
 - VA
 - SA
 - BR
 - ST
 - LT

- Different flits go through different stages
- Different routers have different variants
 - E.g. speculation, lookaheads, bypassing
- Different implementations of each pipeline stage

- Logical stages:
 - IF
 - ID
 - EX
 - MEM
 - WB

- Different instructions go through different stages
- Different processors have different variants
 - E.g. speculation, ISA
- Different implementations of each pipeline stage
Baseline Router Pipeline

- Route computation performed once per packet
- Virtual channel allocated once per packet
- Body and tail flits inherit this info from head flit
Allocators In Routers

• VC Allocator
 – Input VCs requesting for a range of output VCs
 – Example: A packet of VC0 arrives at East input port. It’s destined for west output port, and would like to get any of the VCs of that output port.

• Switch Allocator
 – Input VCs of an input port request for different output ports (e.g., One’s going North, another’s going West)

• “Greedy” algorithms used for efficiency
Allocators In Routers

• **VC Allocator**
 - Input VCs requesting for a range of output VCs
 - Example: A packet of VC0 arrives at East input port. It’s destined for west output port, and would like to get any of the VCs of that output port.

• **Switch Allocator**
 - Input VCs of an input port request for different output ports (e.g., One’s going North, another’s going West)

• “Greedy” algorithms used for efficiency

• What happens if allocation fails on a given cycle?
VC & Switch Allocation Stalls

Cycle

Head Flit (packet A)

Tail Flit (packet B - holds VC)

Body Flit (packet A)
VC & Switch Allocation Stalls

Cycle
Head Flit (packet A)
Tail Flit (packet B - holds VC)
Body Flit (packet A)

Cycle
Head Flit
Body Flit 1
Body Flit 2
Body Flit 3
Pipeline Optimizations: Lookahead Routing [Galles, SGI Spider Chip]

• At current router, perform route computation for next router

 - Head flit already carries output port for next router
 - RC just has to read output → fast, can be overlapped with BW
 - Precomputing route allows flits to compete for VCs immediately after BW
 - Routing computation for the next hop (NRC) can be computed in parallel with VA

• Or simplify RC (e.g., X-Y routing is very fast)
Pipeline Optimizations: Speculative Switch Allocation [Peh & Dally, 2001]

- Assume that Virtual Channel Allocation stage will be successful
 - Valid under low to moderate loads
- If both successful, VA and SA are done in parallel
- If VA unsuccessful (no virtual channel returned)
 - Must repeat VA/SA in next cycle
- Prioritize non-speculative SA requests
Routing
Properties of Routing Algorithms

- **Deterministic/Oblivious**
 - route determined by (source, dest),
 - not intermediate state (i.e. traffic)

- **Adaptive**
 - route influenced by traffic along the way

- **Minimal**
 - only selects shortest paths

- **Deadlock-free**
 - no traffic pattern can lead to a situation where no packets move forward
Network Deadlock

- Flow A holds u and v but cannot make progress until it acquires channel w
- Flow B holds channels w and x but cannot make progress until it acquires channel u
Dimension-Order Routing

XY-order

- Uses 2 out of 4 turns

YX-order

- Uses 2 out of 4 turns
Dimension-Order Routing

Uses 2 out of 4 turns

XY-order

YX-order

Uses 2 out of 4 turns

XY is deadlock free, YX is deadlock free, what about XY+YX?
Dimension-Order Routing

XY-order

YX-order

Uses 2 out of 4 turns

Uses 2 out of 4 turns

XY is deadlock free, YX is deadlock free, what about XY+YX?

No!
One way of looking at whether a routing algorithm is deadlock-free is to look at the turns allowed.

Deadlocks may occur if turns can form a cycle.

XY Model

YX Model
Allowing more turns

• Allowing more turns may allow adaptive routing, but also **deadlock**

![Six turn model](image-url)
Allowing more turns may allow adaptive routing, but also **deadlock**

Six turn model
Turn Model [Glass and Ni, 1994]

- A systematic way of generating deadlock-free routes with small number of prohibited turns

- Deadlock-free if routes conform to at least ONE of the turn models (acyclic channel dependence graph)
Can create a channel dependency graph (CDG) of the network.

Vertices in the CDG represent network links

Disallowing 180° turns, e.g., AB \rightarrow BA

2-D Mesh and CDG
Cycles in CDG

The channel dependency graph D derived from the network topology may contain many cycles.

Flow routed through links AB, BE, EF
Flow routed through links EF, FA, AB
Deadlock!
Key Insight

If routes of flows conform to acyclic CDG, then there will be no possibility of deadlock!

Disallow/Delete certain edges in CDG

Edges in CDG correspond to turns in network!
Acyclic CDG \rightarrow Deadlock-free routes

Turns could be prohibited ad-hoc, all the edges in red are deleted
West-first \rightarrow Deadlock-free routes

Per the West-First prohibited turns, all the edges in red are deleted

West-First Acyclic CDG
Routing deadlocks in wormhole routing result from Structural hazard at router resources, e.g., buffers.

How can structural hazards be avoided?
Routing deadlocks in wormhole routing result from Structural hazard at router resources, e.g., buffers.

How can structural hazards be avoided?

Adding more resources
Virtual Channels

• Virtual channels can be used to avoid deadlock by restricting VC allocation
CDG and Virtual Channels
CDG and Virtual Channels
CDG and Virtual Channels
Randomized Routing: Valiant

- Route each packet through a randomly chosen intermediate node

A packet, going from node S_A to node D_A, is first routed from S_A to a randomly chosen intermediate node I_A, before going from I_A to final destination D_A.
Randomized Routing: Valiant

• Route each packet through a randomly chosen intermediate node

A packet, going from node S_A to node D_A, is first routed from S_A to a randomly chosen intermediate node I_A, before going from I_A to final destination D_A.

It helps load-balance the network and has a good worst-case performance at the expense of locality.
To retain locality, choose intermediate node in the minimal quadrant.

Equivalent to randomly selecting among the various minimal paths from source to destination.
Thank you!

Next Lecture: VLIW