Caches and Virtual Memory

Ryan Lee

6.823 Spring 2021
Recap: Caches

• A small, fast storage holding **frequently used data**

• Memory reference patterns exhibit locality
 • Spatial locality
 • Temporal locality

• Can have multiple levels with larger, slower caches
Recap: Caches
Cache organization

• Need to find a piece of data in the cache:
 • **Index**: determined by number of cache lines (sets)
 • **Block offset**: determined by number of bytes in a block
 • **Tag**: enough to uniquely identify blocks (i.e. rest of the bits of the address)

| Address: | Tag | Index | Block Offset |
Cache organization

• Direct-mapped vs. Set-associative
 • Flexibility of placement in the cache

• Common replacement policies
 • Random, Least Recently Used (LRU), FIFO, etc...

• Categorizing cache misses
 • Compulsory, Capacity, Conflict

• Average memory access time (AMAT)
Virtual Memory

• Provide an illusion of large, private memory for each program
 • Protection
 • Privacy
 • Demand Paging

• Base & Bound

• Paged Memory Systems
Virtual Memory

- Processor-generated address is split into a virtual page number and offset
Virtual Memory

• Walking the page table is expensive
 • Translation Lookaside Buffer (TLB)

• Page tables are prohibitively large
 • Hierarchical page tables

• Caches can use either the virtual address or physical address
 • VIVT (Virtually Indexed Virtually Tagged)
 • PIPT (Physically Indexed Physically Tagged)
 • VIPT (Virtually Indexed Physically Tagged)