
L01-1MIT 6.823 Fall 2021

Instructors: Daniel Sanchez and Joel Emer
TA: Hyun Ryong (Ryan) Lee

6.823 Computer System Architecture

September 8, 2021

The processor you

built in 6.004

What you’ll
understand after

taking 6.823

MIT 6.823 Fall 2021

Computing devices then…

September 8, 2021 L01-2

MIT 6.823 Fall 2021

Computing devices now

September 8, 2021 L01-3

http://images.google.com/imgres?imgurl=http://www.newscientist.com/data/images/ns/cms/dn7023/dn7023-1_700.jpg&imgrefurl=http://www.newscientist.com/article/dn7023.html&h=318&w=350&sz=25&hl=en&start=10&um=1&tbnid=KhUMb-mgo25vtM:&tbnh=127&tbnw=140&prev=/images?q=robots&svnum=10&um=1&hl=en&rlz=1T4GZHZ_enUS235US236&sa=N
http://images.google.com/imgres?imgurl=http://webs.cs.berkeley.edu/800demo/dots.jpg&imgrefurl=http://webs.cs.berkeley.edu/800demo/&h=300&w=400&sz=350&hl=en&start=74&um=1&tbnid=lh5GKoIR7zG-FM:&tbnh=113&tbnw=150&prev=/images?q=sensor+networks&start=72&ndsp=18&svnum=10&um=1&hl=en&rlz=1T4GZHZ_enUS235US236&sa=N

MIT 6.823 Fall 2021

A journey through this space

• What do computer architects actually do?

September 8, 2021 L01-4

MIT 6.823 Fall 2021

A journey through this space

• What do computer architects actually do?

• Illustrate via historical examples
– Early days: ENIAC, EDVAC, and EDSAC

– Arrival of IBM 650 and then IBM 360

– Seymour Cray – CDC 6600, Cray 1

– Microprocessors and PCs

– Multicores

– Cell phones

September 8, 2021 L01-4

MIT 6.823 Fall 2021

A journey through this space

• What do computer architects actually do?

• Illustrate via historical examples
– Early days: ENIAC, EDVAC, and EDSAC

– Arrival of IBM 650 and then IBM 360

– Seymour Cray – CDC 6600, Cray 1

– Microprocessors and PCs

– Multicores

– Cell phones

• Focus on ideas, mechanisms, and principles,
especially those that have withstood the test of
time

September 8, 2021 L01-4

MIT 6.823 Fall 2021

Abstraction layers

Algorithm

Register-Transfer Level (RTL)

Application

Instruction Set Architecture (ISA)

Operating System/Virtual Machine

Microarchitecture

Devices

Programming Language

Circuits

Physics

September 8, 2021 L01-5

MIT 6.823 Fall 2021

Abstraction layers

Algorithm

Register-Transfer Level (RTL)

Application

Instruction Set Architecture (ISA)

Operating System/Virtual Machine

Microarchitecture

Devices

Programming Language

Circuits

Physics

Original
domain of

the
computer
architect

(‘50s-‘80s)

September 8, 2021 L01-5

MIT 6.823 Fall 2021

Abstraction layers

Algorithm

Register-Transfer Level (RTL)

Application

Instruction Set Architecture (ISA)

Operating System/Virtual Machine

Microarchitecture

Devices

Programming Language

Circuits

Physics

Original
domain of

the
computer
architect

(‘50s-‘80s)

Domain of
computer

architecture (‘90s)

September 8, 2021 L01-5

MIT 6.823 Fall 2021

Abstraction layers

Algorithm

Register-Transfer Level (RTL)

Application

Instruction Set Architecture (ISA)

Operating System/Virtual Machine

Microarchitecture

Devices

Programming Language

Circuits

Physics

Original
domain of

the
computer
architect

(‘50s-‘80s)

Domain of
computer

architecture (‘90s)

Expansion of
computer

architecture, mid-
2000s onward.

September 8, 2021 L01-5

MIT 6.823 Fall 2021

Abstraction layers

Algorithm

Register-Transfer Level (RTL)

Application

Instruction Set Architecture (ISA)

Operating System/Virtual Machine

Microarchitecture

Devices

Programming Language

Circuits

Physics

Original
domain of

the
computer
architect

(‘50s-‘80s)

Domain of
computer

architecture (‘90s)

Reliability, power

Expansion of
computer

architecture, mid-
2000s onward.

September 8, 2021 L01-5

MIT 6.823 Fall 2021

Abstraction layers

Algorithm

Register-Transfer Level (RTL)

Application

Instruction Set Architecture (ISA)

Operating System/Virtual Machine

Microarchitecture

Devices

Programming Language

Circuits

Physics

Original
domain of

the
computer
architect

(‘50s-‘80s)

Domain of
computer

architecture (‘90s)

Reliability, power

Parallel computing,
specialization,

security, …

Expansion of
computer

architecture, mid-
2000s onward.

September 8, 2021 L01-5

MIT 6.823 Fall 2021

Computer Architecture is the design
of abstraction layers

September 8, 2021 L01-6

MIT 6.823 Fall 2021

Computer Architecture is the design
of abstraction layers

• What do abstraction layers provide?
– Environmental stability within generation

– Environmental stability across generations

– Consistency across a large number of units

September 8, 2021 L01-6

MIT 6.823 Fall 2021

Computer Architecture is the design
of abstraction layers

• What do abstraction layers provide?
– Environmental stability within generation

– Environmental stability across generations

– Consistency across a large number of units

• What are the consequences?
– Encouragement to create reusable foundations:

• Toolchains, operating systems, libraries

– Enticement for application innovation

September 8, 2021 L01-6

MIT 6.823 Fall 2021

Technology is the dominant factor
in computer design

September 8, 2021 L01-7

MIT 6.823 Fall 2021

Technology is the dominant factor
in computer design

Computers
Technology

Transistors
Integrated circuits
VLSI (initially)
Flash memories, …

September 8, 2021 L01-7

MIT 6.823 Fall 2021

Technology is the dominant factor
in computer design

Technology
Core memories
Magnetic tapes
Disks

Computers

Computers
Technology

Transistors
Integrated circuits
VLSI (initially)
Flash memories, …

September 8, 2021 L01-7

MIT 6.823 Fall 2021

Technology is the dominant factor
in computer design

Technology
ROMs, RAMs
VLSI
Packaging
Low Power

Computers

Technology
Core memories
Magnetic tapes
Disks

Computers

Computers
Technology

Transistors
Integrated circuits
VLSI (initially)
Flash memories, …

September 8, 2021 L01-7

MIT 6.823 Fall 2021

But Software...

September 8, 2021 L01-8

MIT 6.823 Fall 2021

But Software...

As people write programs and use computers,
our understanding of programming and
program behavior improves.

This has profound though slower impact
on computer architecture

September 8, 2021 L01-8

MIT 6.823 Fall 2021

But Software...

As people write programs and use computers,
our understanding of programming and
program behavior improves.

This has profound though slower impact
on computer architecture

Modern architects must pay attention to
software and compilation issues.

September 8, 2021 L01-8

MIT 6.823 Fall 2021

But Software...

As people write programs and use computers,
our understanding of programming and
program behavior improves.

This has profound though slower impact
on computer architecture

Modern architects must pay attention to
software and compilation issues.

Technology

Software

Computers

September 8, 2021 L01-8

MIT 6.823 Fall 2021

Architecture is engineering design
under constraints
Factors to consider:

September 8, 2021 L01-9

MIT 6.823 Fall 2021

Architecture is engineering design
under constraints
Factors to consider:

• Performance of whole system on target applications
– Average case & worst case

September 8, 2021 L01-9

MIT 6.823 Fall 2021

Architecture is engineering design
under constraints
Factors to consider:

• Performance of whole system on target applications
– Average case & worst case

• Cost of manufacturing chips and supporting system

September 8, 2021 L01-9

MIT 6.823 Fall 2021

Architecture is engineering design
under constraints
Factors to consider:

• Performance of whole system on target applications
– Average case & worst case

• Cost of manufacturing chips and supporting system

• Power to run system
– Peak power & energy per operation

September 8, 2021 L01-9

MIT 6.823 Fall 2021

Architecture is engineering design
under constraints
Factors to consider:

• Performance of whole system on target applications
– Average case & worst case

• Cost of manufacturing chips and supporting system

• Power to run system
– Peak power & energy per operation

• Reliability of system
– Soft errors & hard errors

September 8, 2021 L01-9

MIT 6.823 Fall 2021

Architecture is engineering design
under constraints
Factors to consider:

• Performance of whole system on target applications
– Average case & worst case

• Cost of manufacturing chips and supporting system

• Power to run system
– Peak power & energy per operation

• Reliability of system
– Soft errors & hard errors

• Cost to design chips (engineers, computers, CAD tools)
– Becoming a limiting factor in many situations, fewer unique chips can be

justified

September 8, 2021 L01-9

MIT 6.823 Fall 2021

Architecture is engineering design
under constraints
Factors to consider:

• Performance of whole system on target applications
– Average case & worst case

• Cost of manufacturing chips and supporting system

• Power to run system
– Peak power & energy per operation

• Reliability of system
– Soft errors & hard errors

• Cost to design chips (engineers, computers, CAD tools)
– Becoming a limiting factor in many situations, fewer unique chips can be

justified

• Cost to develop applications and system software
– Often the dominant constraint for any programmable device

September 8, 2021 L01-9

MIT 6.823 Fall 2021

Architecture is engineering design
under constraints
Factors to consider:

• Performance of whole system on target applications
– Average case & worst case

• Cost of manufacturing chips and supporting system

• Power to run system
– Peak power & energy per operation

• Reliability of system
– Soft errors & hard errors

• Cost to design chips (engineers, computers, CAD tools)
– Becoming a limiting factor in many situations, fewer unique chips can be

justified

• Cost to develop applications and system software
– Often the dominant constraint for any programmable device

September 8, 2021

At different times, and for different applications at the
same point in time, the relative balance of these factors
can result in widely varying architectural choices

L01-9

L01-32MIT 6.823 Fall 2021

All info kept up to date on the website:

http://www.csg.csail.mit.edu/6.823

Course Information

September 8, 2021

MIT 6.823 Fall 2021

Contact times

• Lectures on Monday and Wednesday
– 1:00pm to 2:30pm in room 32-141

• Tutorial on Friday
– 1:00pm to 2:00pm in room 32-141

– Attendance is optional

– Additional tutorials will be held in evenings before quizzes

• Quizzes on Friday (except last quiz)
– 1:00pm to 2:30pm in room 32-141

– Attendance is NOT optional

• Instructor office hours
– After class or by email appointment

• TA office hours
– Thursday 4-5:30pm @ Stata 32G-725

September 8, 2021 L01-11

MIT 6.823 Fall 2021

“New normal” policies

• We’re excited to return to the classroom, but want
everyone to be and feel safe

• We’ll record videos of lectures and tutorials for
students who need to miss lecture
– Due to isolation/quarantine, visa issues, case spikes, etc.

– However, these videos will be best-effort and more basic than for
online classes (e.g., no webcam feed, audio may be worse)

– Please do not use these to take 6.823 as an online course

• When asking questions, please keep your mask on

• If you feel uncomfortable with any aspect of our in-
person interactions, please let us know

September 8, 2021 L01-12

MIT 6.823 Fall 2021

Online resources & help

• We use Piazza extensively
– Fastest way to get your questions answered

– All course announcements are made on Piazza

• This is not a normal term; if you need help,
let us know!
– We can be accommodating

September 8, 2021 L01-13

MIT 6.823 Fall 2021

The course has three modules

Module 1

– ISA and Simple In-Order Pipelines

– Caches and Virtual Memory

– Complex Pipelining and Out-of-Order Execution

– Branch Prediction and Speculative Execution

Module 3

– Microcoding and VLIW

– Vector machines and GPUs

– Hardware accelerators

– Hardware security

Module 2

– Multithreading and Multiprocessors

– Coherence and consistency

– On-chip networks

September 8, 2021 L01-14

MIT 6.823 Fall 2021

New this term

The course has three modules

Module 1

– ISA and Simple In-Order Pipelines

– Caches and Virtual Memory

– Complex Pipelining and Out-of-Order Execution

– Branch Prediction and Speculative Execution

Module 3

– Microcoding and VLIW

– Vector machines and GPUs

– Hardware accelerators

– Hardware security

Module 2

– Multithreading and Multiprocessors

– Coherence and consistency

– On-chip networks

September 8, 2021 L01-14

MIT 6.823 Fall 2021

Textbook and readings

• “Computer Architecture: A Quantitative
Approach”, Hennessy & Patterson, 5th / 6th ed.
– 5th edition available online through MIT Libraries

– Recommended, but not necessary

• Course website lists H&P reading material for
each lecture, and optional readings that provide
more in-depth coverage

September 8, 2021 L01-15

MIT 6.823 Fall 2021

Grading

• Grades are not assigned based on a
predetermined curve
– Most of you are capable of getting an A

• 75% of the grade is based on three closed book
1.5 hour quizzes
– The first two quizzes will be held during the tutorials; the last

one during the last lecture (dates on web syllabus)

– We’ll have makeups if needed

• 25% of the grade is based on four laboratory
exercises

• No final exam

• No final project

September 8, 2021 L01-16

MIT 6.823 Fall 2021

Problem sets & labs

• Problem sets
– One problem set per module, not graded

– Intended for private study and for tutorials to help prepare
for quizzes

– Quizzes assume you are very familiar with the content of
problem sets

• Labs
– Four graded labs

– Based on widely-used PIN tool

– Labs 2 and 4 are open-ended challenges

• You must complete labs & quizzes individually
– Please review the collaboration & academic honesty policy

September 8, 2021 L01-17

MIT 6.823 Fall 2021

Self evaluation take-home quiz

• Goal is to help you judge for yourself whether you
have prerequisites for this class, and to help
refresh your memory

• We assume that you understand digital logic, a
simple 5-stage pipeline, and simple caches

• Please work by yourself on this quiz – not in groups

• Remember to complete self-evaluation section at
end of the quiz

• Due by Friday (on recitation or send answers to TA
mailing list)

September 8, 2021

Please email us if you have concerns
about your ability to take the class

L01-18

L01-42MIT 6.823 Fall 2021

Early Developments:
From ENIAC to the mid 50’s

September 8, 2021

MIT 6.823 Fall 2021

Prehistory

• 1800s: Charles Babbage
– Difference Engine (conceived in 1823, first implemented in 1855

by Scheutz)

– Analytic Engine, the first conception of a general purpose
computer (1833, never implemented)

• 1890: Tabulating machines

• Early 1900s: Analog computers

• 1930s: Early electronic (fixed-function) digital
computers

September 8, 2021 L01-20

MIT 6.823 Fall 2021

Electronic Numerical Integrator
and Computer (ENIAC)
• Designed and built by Eckert and Mauchly at the

University of Pennsylvania during 1943-45

• The first, completely electronic, operational, general-
purpose analytical calculator!

– 30 tons, 72 square meters, 200KW

• Performance

– Read in 120 cards per minute

– Addition took 200 ms, Division 6 ms

• Not very reliable!

September 8, 2021 L01-21

MIT 6.823 Fall 2021

Electronic Numerical Integrator
and Computer (ENIAC)
• Designed and built by Eckert and Mauchly at the

University of Pennsylvania during 1943-45

• The first, completely electronic, operational, general-
purpose analytical calculator!

– 30 tons, 72 square meters, 200KW

• Performance

– Read in 120 cards per minute

– Addition took 200 ms, Division 6 ms

• Not very reliable!

Application: Ballistic calculations

angle = f (location, tail wind, cross wind,
air density, temperature, weight of shell,
propellant charge, ...)

WW-2 Effort

September 8, 2021 L01-21

MIT 6.823 Fall 2021

Electronic Discrete Variable
Automatic Computer (EDVAC)

• ENIAC’s programming system was external
– Sequences of instructions were executed independently of the

results of the calculation

– Human intervention required to take instructions “out of order”

September 8, 2021 L01-22

MIT 6.823 Fall 2021

Electronic Discrete Variable
Automatic Computer (EDVAC)

• ENIAC’s programming system was external
– Sequences of instructions were executed independently of the

results of the calculation

– Human intervention required to take instructions “out of order”

• EDVAC was designed by Eckert, Mauchly, and von Neumann
in 1944 to solve this problem

– Solution was the stored program computer

 “program can be manipulated as data”

September 8, 2021 L01-22

MIT 6.823 Fall 2021

Electronic Discrete Variable
Automatic Computer (EDVAC)

• ENIAC’s programming system was external
– Sequences of instructions were executed independently of the

results of the calculation

– Human intervention required to take instructions “out of order”

• EDVAC was designed by Eckert, Mauchly, and von Neumann
in 1944 to solve this problem

– Solution was the stored program computer

 “program can be manipulated as data”
• First Draft of a report on EDVAC was published in 1945, but

just had von Neumann’s signature!
– Without a doubt the most influential paper in computer

architecture

September 8, 2021 L01-22

MIT 6.823 Fall 2021

Stored Program Computer

Program = A sequence of instructions

September 8, 2021 L01-23

MIT 6.823 Fall 2021

Stored Program Computer

Program = A sequence of instructions

How to control instruction sequencing?

September 8, 2021 L01-23

MIT 6.823 Fall 2021

Stored Program Computer

manual control calculators

Program = A sequence of instructions

How to control instruction sequencing?

September 8, 2021 L01-23

MIT 6.823 Fall 2021

Stored Program Computer

manual control calculators

automatic control
external (paper tape) Harvard Mark I, 1944

Program = A sequence of instructions

How to control instruction sequencing?

September 8, 2021 L01-23

MIT 6.823 Fall 2021

Stored Program Computer

manual control calculators

automatic control
external (paper tape) Harvard Mark I, 1944

Zuse’s Z1, WW2
internal

plug board ENIAC 1946
read-only memory ENIAC 1948
read-write memory EDVAC 1947 (concept)

– The same storage can be used to store program
and data

Program = A sequence of instructions

How to control instruction sequencing?

September 8, 2021 L01-23

MIT 6.823 Fall 2021

Stored Program Computer

manual control calculators

automatic control
external (paper tape) Harvard Mark I, 1944

Zuse’s Z1, WW2
internal

plug board ENIAC 1946
read-only memory ENIAC 1948
read-write memory EDVAC 1947 (concept)

– The same storage can be used to store program
and data

Program = A sequence of instructions

How to control instruction sequencing?

EDSAC 1950 Maurice Wilkes

September 8, 2021 L01-23

MIT 6.823 Fall 2021

The Spread of Ideas

ENIAC & EDVAC had immediate impact
brilliant engineering: Eckert & Mauchly
lucid paper: Burks, Goldstein & von Neumann

IAS Princeton 46-52 Bigelow
EDSAC Cambridge 46-50 Wilkes
MANIAC Los Alamos 49-52 Metropolis
JOHNIAC Rand 50-53
ILLIAC Illinois 49-52

Argonne 49-53
SWAC UCLA-NBS

September 8, 2021 L01-24

MIT 6.823 Fall 2021

The Spread of Ideas

ENIAC & EDVAC had immediate impact
brilliant engineering: Eckert & Mauchly
lucid paper: Burks, Goldstein & von Neumann

IAS Princeton 46-52 Bigelow
EDSAC Cambridge 46-50 Wilkes
MANIAC Los Alamos 49-52 Metropolis
JOHNIAC Rand 50-53
ILLIAC Illinois 49-52

Argonne 49-53
SWAC UCLA-NBS

UNIVAC - the first commercial computer, 1951

September 8, 2021 L01-24

MIT 6.823 Fall 2021

The Spread of Ideas

ENIAC & EDVAC had immediate impact
brilliant engineering: Eckert & Mauchly
lucid paper: Burks, Goldstein & von Neumann

IAS Princeton 46-52 Bigelow
EDSAC Cambridge 46-50 Wilkes
MANIAC Los Alamos 49-52 Metropolis
JOHNIAC Rand 50-53
ILLIAC Illinois 49-52

Argonne 49-53
SWAC UCLA-NBS

UNIVAC - the first commercial computer, 1951

Alan Turing’s direct influence on these developments
is often debated by historians.

September 8, 2021 L01-24

MIT 6.823 Fall 2021

Dominant Technology Issue:
Reliability

Mean time between failures (MTBF)
MIT’s Whirlwind with an MTBF of 20 min. was perhaps
the most reliable machine!

Reasons for unreliability:
1. Vacuum tubes

2. Storage medium
Acoustic delay lines
Mercury delay lines
Williams tubes
Selections

ENIAC EDVAC
18,000 tubes 4,000 tubes
20 10-digit numbers 2000 word storage

mercury delay lines

September 8, 2021 L01-25

MIT 6.823 Fall 2021

Dominant Technology Issue:
Reliability

Mean time between failures (MTBF)
MIT’s Whirlwind with an MTBF of 20 min. was perhaps
the most reliable machine!

Reasons for unreliability:
1. Vacuum tubes

2. Storage medium
Acoustic delay lines
Mercury delay lines
Williams tubes
Selections

CORE J. Forrester 1954

ENIAC EDVAC
18,000 tubes 4,000 tubes
20 10-digit numbers 2000 word storage

mercury delay lines

September 8, 2021 L01-25

MIT 6.823 Fall 2021

Computers in the mid 50’s

September 8, 2021 L01-26

MIT 6.823 Fall 2021

Computers in the mid 50’s
• Hardware was expensive

September 8, 2021 L01-26

MIT 6.823 Fall 2021

Computers in the mid 50’s
• Hardware was expensive

• Stores were small (1000 words)

September 8, 2021 L01-26

MIT 6.823 Fall 2021

Computers in the mid 50’s
• Hardware was expensive

• Stores were small (1000 words)

 No resident system-software!

September 8, 2021 L01-26

MIT 6.823 Fall 2021

Computers in the mid 50’s
• Hardware was expensive

• Stores were small (1000 words)

 No resident system-software!

• Memory access time was 10 to 50 times slower
than the processor cycle

September 8, 2021 L01-26

MIT 6.823 Fall 2021

Computers in the mid 50’s
• Hardware was expensive

• Stores were small (1000 words)

 No resident system-software!

• Memory access time was 10 to 50 times slower
than the processor cycle

 Instruction execution time was totally dominated by the
memory reference time

September 8, 2021 L01-26

MIT 6.823 Fall 2021

Computers in the mid 50’s
• Hardware was expensive

• Stores were small (1000 words)

 No resident system-software!

• Memory access time was 10 to 50 times slower
than the processor cycle

 Instruction execution time was totally dominated by the
memory reference time

• The ability to design complex control circuits to
execute an instruction was the central design
concern as opposed to the speed of decoding or an
ALU operation

September 8, 2021 L01-26

MIT 6.823 Fall 2021

Computers in the mid 50’s
• Hardware was expensive

• Stores were small (1000 words)

 No resident system-software!

• Memory access time was 10 to 50 times slower
than the processor cycle

 Instruction execution time was totally dominated by the
memory reference time

• The ability to design complex control circuits to
execute an instruction was the central design
concern as opposed to the speed of decoding or an
ALU operation

• Programmer’s view of the machine was inseparable
from the actual hardware implementation

September 8, 2021 L01-26

MIT 6.823 Fall 2021

Accumulator-based computing

• Single Accumulator
– Calculator design

carried over to
computers

September 8, 2021 L01-27

MIT 6.823 Fall 2021

Accumulator-based computing

• Single Accumulator
– Calculator design

carried over to
computers

September 8, 2021

Why?

L01-27

MIT 6.823 Fall 2021

Accumulator-based computing

• Single Accumulator
– Calculator design

carried over to
computers

September 8, 2021

Why?

Registers expensive

L01-27

MIT 6.823 Fall 2021

The Earliest Instruction Sets
Burks, Goldstein & von Neumann ~1946

September 8, 2021 L01-28

MIT 6.823 Fall 2021

The Earliest Instruction Sets
Burks, Goldstein & von Neumann ~1946

September 8, 2021

LOAD x AC M[x]
STORE x M[x] (AC)

ADD x AC (AC) + M[x]
SUB x

MUL x Involved a quotient register
DIV x

SHIFT LEFT AC 2 (AC)
SHIFT RIGHT

L01-28

MIT 6.823 Fall 2021

The Earliest Instruction Sets
Burks, Goldstein & von Neumann ~1946

September 8, 2021

LOAD x AC M[x]
STORE x M[x] (AC)

ADD x AC (AC) + M[x]
SUB x

MUL x Involved a quotient register
DIV x

SHIFT LEFT AC 2 (AC)
SHIFT RIGHT

JUMP x PC x
JGE x if (AC) 0 then PC x

L01-28

MIT 6.823 Fall 2021

The Earliest Instruction Sets
Burks, Goldstein & von Neumann ~1946

September 8, 2021

LOAD x AC M[x]
STORE x M[x] (AC)

ADD x AC (AC) + M[x]
SUB x

MUL x Involved a quotient register
DIV x

SHIFT LEFT AC 2 (AC)
SHIFT RIGHT

JUMP x PC x
JGE x if (AC) 0 then PC x

LOAD ADR x AC Extract address field(M[x])
STORE ADR x

L01-28

MIT 6.823 Fall 2021

The Earliest Instruction Sets
Burks, Goldstein & von Neumann ~1946

September 8, 2021

LOAD x AC M[x]
STORE x M[x] (AC)

ADD x AC (AC) + M[x]
SUB x

MUL x Involved a quotient register
DIV x

SHIFT LEFT AC 2 (AC)
SHIFT RIGHT

JUMP x PC x
JGE x if (AC) 0 then PC x

LOAD ADR x AC Extract address field(M[x])
STORE ADR x

Typically less than 2 dozen instructions!

L01-28

MIT 6.823 Fall 2021

Programming:
Single Accumulator Machine

September 8, 2021

Ci Ai + Bi, 1 i n A

B

C

N

ONE

code

-n

1

L01-29

MIT 6.823 Fall 2021

Programming:
Single Accumulator Machine

September 8, 2021

LOOP LOAD N
JGE DONE
ADD ONE
STORE N

F1 LOAD A
F2 ADD B
F3 STORE C

JUMP LOOP
DONE HLT

Ci Ai + Bi, 1 i n A

B

C

N

ONE

code

-n

1

L01-29

MIT 6.823 Fall 2021

Programming:
Single Accumulator Machine

September 8, 2021

LOOP LOAD N
JGE DONE
ADD ONE
STORE N

F1 LOAD A
F2 ADD B
F3 STORE C

JUMP LOOP
DONE HLT

Ci Ai + Bi, 1 i n A

B

C

N

ONE

code

-n

1

Problem?

L01-29

MIT 6.823 Fall 2021

Programming:
Single Accumulator Machine

September 8, 2021

LOOP LOAD N
JGE DONE
ADD ONE
STORE N

F1 LOAD A
F2 ADD B
F3 STORE C

JUMP LOOP
DONE HLT

Ci Ai + Bi, 1 i n

How to modify the addresses A, B and C ?

A

B

C

N

ONE

code

-n

1

Problem?

L01-29

MIT 6.823 Fall 2021

Self-Modifying Code

September 8, 2021

LOOP LOAD N
JGE DONE
ADD ONE
STORE N

F1 LOAD A
F2 ADD B
F3 STORE C

JUMP LOOP
DONE HLT

Ci Ai + Bi, 1 i n

L01-30

MIT 6.823 Fall 2021

Self-Modifying Code

September 8, 2021

LOOP LOAD N
JGE DONE
ADD ONE
STORE N

F1 LOAD A
F2 ADD B
F3 STORE C

JUMP LOOP
DONE HLT

modify the
program
for the next
iteration

Ci Ai + Bi, 1 i n

L01-30

MIT 6.823 Fall 2021

Self-Modifying Code

September 8, 2021

LOOP LOAD N
JGE DONE
ADD ONE
STORE N

F1 LOAD A
F2 ADD B
F3 STORE C

JUMP LOOP
DONE HLT

modify the
program
for the next
iteration

Ci Ai + Bi, 1 i n

LOAD ADR F1
ADD ONE
STORE ADR F1
LOAD ADR F2
ADD ONE
STORE ADR F2
LOAD ADR F3
ADD ONE
STORE ADR F3
JUMP LOOP

DONE HLT

L01-30

MIT 6.823 Fall 2021

Self-Modifying Code

September 8, 2021

LOOP LOAD N
JGE DONE
ADD ONE
STORE N

F1 LOAD A
F2 ADD B
F3 STORE C

JUMP LOOP
DONE HLT

modify the
program
for the next
iteration

Each iteration involves
total book-

keeping
instruction
fetches

operand
fetches

stores

Ci Ai + Bi, 1 i n

LOAD ADR F1
ADD ONE
STORE ADR F1
LOAD ADR F2
ADD ONE
STORE ADR F2
LOAD ADR F3
ADD ONE
STORE ADR F3
JUMP LOOP

DONE HLT

L01-30

MIT 6.823 Fall 2021

Self-Modifying Code

September 8, 2021

LOOP LOAD N
JGE DONE
ADD ONE
STORE N

F1 LOAD A
F2 ADD B
F3 STORE C

JUMP LOOP
DONE HLT

modify the
program
for the next
iteration

Each iteration involves
total book-

keeping
instruction
fetches

operand
fetches

stores

Ci Ai + Bi, 1 i n

LOAD ADR F1
ADD ONE
STORE ADR F1
LOAD ADR F2
ADD ONE
STORE ADR F2
LOAD ADR F3
ADD ONE
STORE ADR F3
JUMP LOOP

DONE HLT

17

L01-30

MIT 6.823 Fall 2021

Self-Modifying Code

September 8, 2021

LOOP LOAD N
JGE DONE
ADD ONE
STORE N

F1 LOAD A
F2 ADD B
F3 STORE C

JUMP LOOP
DONE HLT

modify the
program
for the next
iteration

Each iteration involves
total book-

keeping
instruction
fetches

operand
fetches

stores

Ci Ai + Bi, 1 i n

LOAD ADR F1
ADD ONE
STORE ADR F1
LOAD ADR F2
ADD ONE
STORE ADR F2
LOAD ADR F3
ADD ONE
STORE ADR F3
JUMP LOOP

DONE HLT

17

10

L01-30

MIT 6.823 Fall 2021

Self-Modifying Code

September 8, 2021

LOOP LOAD N
JGE DONE
ADD ONE
STORE N

F1 LOAD A
F2 ADD B
F3 STORE C

JUMP LOOP
DONE HLT

modify the
program
for the next
iteration

Each iteration involves
total book-

keeping
instruction
fetches

operand
fetches

stores

Ci Ai + Bi, 1 i n

LOAD ADR F1
ADD ONE
STORE ADR F1
LOAD ADR F2
ADD ONE
STORE ADR F2
LOAD ADR F3
ADD ONE
STORE ADR F3
JUMP LOOP

DONE HLT

17

10

5

L01-30

MIT 6.823 Fall 2021

Self-Modifying Code

September 8, 2021

LOOP LOAD N
JGE DONE
ADD ONE
STORE N

F1 LOAD A
F2 ADD B
F3 STORE C

JUMP LOOP
DONE HLT

modify the
program
for the next
iteration

Each iteration involves
total book-

keeping
instruction
fetches

operand
fetches

stores

Ci Ai + Bi, 1 i n

LOAD ADR F1
ADD ONE
STORE ADR F1
LOAD ADR F2
ADD ONE
STORE ADR F2
LOAD ADR F3
ADD ONE
STORE ADR F3
JUMP LOOP

DONE HLT

17

10

5

14

L01-30

MIT 6.823 Fall 2021

Self-Modifying Code

September 8, 2021

LOOP LOAD N
JGE DONE
ADD ONE
STORE N

F1 LOAD A
F2 ADD B
F3 STORE C

JUMP LOOP
DONE HLT

modify the
program
for the next
iteration

Each iteration involves
total book-

keeping
instruction
fetches

operand
fetches

stores

Ci Ai + Bi, 1 i n

LOAD ADR F1
ADD ONE
STORE ADR F1
LOAD ADR F2
ADD ONE
STORE ADR F2
LOAD ADR F3
ADD ONE
STORE ADR F3
JUMP LOOP

DONE HLT

17

10

5

14

8

L01-30

MIT 6.823 Fall 2021

Self-Modifying Code

September 8, 2021

LOOP LOAD N
JGE DONE
ADD ONE
STORE N

F1 LOAD A
F2 ADD B
F3 STORE C

JUMP LOOP
DONE HLT

modify the
program
for the next
iteration

Each iteration involves
total book-

keeping
instruction
fetches

operand
fetches

stores

Ci Ai + Bi, 1 i n

LOAD ADR F1
ADD ONE
STORE ADR F1
LOAD ADR F2
ADD ONE
STORE ADR F2
LOAD ADR F3
ADD ONE
STORE ADR F3
JUMP LOOP

DONE HLT

17

10

5

14

8

4

L01-30

MIT 6.823 Fall 2021

Self-Modifying Code

September 8, 2021

LOOP LOAD N
JGE DONE
ADD ONE
STORE N

F1 LOAD A
F2 ADD B
F3 STORE C

JUMP LOOP
DONE HLT

modify the
program
for the next
iteration

Each iteration involves
total book-

keeping
instruction
fetches

operand
fetches

stores

Ci Ai + Bi, 1 i n

LOAD ADR F1
ADD ONE
STORE ADR F1
LOAD ADR F2
ADD ONE
STORE ADR F2
LOAD ADR F3
ADD ONE
STORE ADR F3
JUMP LOOP

DONE HLT

17

10

5

14

8

4

Most of the executed
instructions are for
bookkeeping!

L01-30

MIT 6.823 Fall 2021

Processor-Memory Bottleneck:
Early Solutions
• Indexing capability

• Fast local storage in the processor
– 8-16 registers as opposed to one accumulator

• Complex instructions

• Compact instructions
– implicit address bits for operands

September 8, 2021

Memory

Processor

L01-31

MIT 6.823 Fall 2021

Processor-Memory Bottleneck:
Early Solutions
• Indexing capability

– to reduce bookkeeping instructions

• Fast local storage in the processor
– 8-16 registers as opposed to one accumulator

• Complex instructions

• Compact instructions
– implicit address bits for operands

September 8, 2021

Memory

Processor

L01-31

MIT 6.823 Fall 2021

Processor-Memory Bottleneck:
Early Solutions
• Indexing capability

– to reduce bookkeeping instructions

• Fast local storage in the processor
– 8-16 registers as opposed to one accumulator
– to reduce loads/stores

• Complex instructions

• Compact instructions
– implicit address bits for operands

September 8, 2021

Memory

Processor

L01-31

MIT 6.823 Fall 2021

Processor-Memory Bottleneck:
Early Solutions
• Indexing capability

– to reduce bookkeeping instructions

• Fast local storage in the processor
– 8-16 registers as opposed to one accumulator
– to reduce loads/stores

• Complex instructions
– to reduce instruction fetches

• Compact instructions
– implicit address bits for operands

September 8, 2021

Memory

Processor

L01-31

MIT 6.823 Fall 2021

Processor-Memory Bottleneck:
Early Solutions
• Indexing capability

– to reduce bookkeeping instructions

• Fast local storage in the processor
– 8-16 registers as opposed to one accumulator
– to reduce loads/stores

• Complex instructions
– to reduce instruction fetches

• Compact instructions
– implicit address bits for operands
– to reduce instruction fetch cost

September 8, 2021

Memory

Processor

L01-31

MIT 6.823 Fall 2021

Index Registers
Tom Kilburn, Manchester University, mid 50’s

September 8, 2021

One or more specialized registers to simplify
address calculation

L01-32

MIT 6.823 Fall 2021

Modify existing instructions
LOAD x, IX AC M[x + (IX)]
ADD x, IX AC (AC) + M[x + (IX)]
...

Index Registers
Tom Kilburn, Manchester University, mid 50’s

September 8, 2021

One or more specialized registers to simplify
address calculation

L01-32

MIT 6.823 Fall 2021

Modify existing instructions
LOAD x, IX AC M[x + (IX)]
ADD x, IX AC (AC) + M[x + (IX)]
...

Add new instructions to manipulate index registers
JZi x, IX if (IX)=0 then PC x

else IX (IX) + 1
LOADi x, IX IX M[x] (truncated to fit IX)
...

Index Registers
Tom Kilburn, Manchester University, mid 50’s

September 8, 2021

One or more specialized registers to simplify
address calculation

L01-32

MIT 6.823 Fall 2021

Modify existing instructions
LOAD x, IX AC M[x + (IX)]
ADD x, IX AC (AC) + M[x + (IX)]
...

Add new instructions to manipulate index registers
JZi x, IX if (IX)=0 then PC x

else IX (IX) + 1
LOADi x, IX IX M[x] (truncated to fit IX)
...

Index Registers
Tom Kilburn, Manchester University, mid 50’s

September 8, 2021

One or more specialized registers to simplify
address calculation

Index registers have accumulator-like
characteristics

L01-32

MIT 6.823 Fall 2021

Using Index Registers

September 8, 2021

LOADi N, IX
LOOP JZi DONE, IX

LOAD LASTA, IX
ADD LASTB, IX
STORE LASTC, IX
JUMP LOOP

DONE HALT

A

LASTA

Ci Ai + Bi, 1 i n

N starts with -n

L01-33

MIT 6.823 Fall 2021

Using Index Registers

September 8, 2021

LOADi N, IX
LOOP JZi DONE, IX

LOAD LASTA, IX
ADD LASTB, IX
STORE LASTC, IX
JUMP LOOP

DONE HALT

• Program does not modify itself

A

LASTA

Ci Ai + Bi, 1 i n

N starts with -n

L01-33

MIT 6.823 Fall 2021

Using Index Registers

September 8, 2021

LOADi N, IX
LOOP JZi DONE, IX

LOAD LASTA, IX
ADD LASTB, IX
STORE LASTC, IX
JUMP LOOP

DONE HALT

• Program does not modify itself

• Efficiency has improved dramatically (ops / iter)

A

LASTA

Ci Ai + Bi, 1 i n

N starts with -n

L01-33

MIT 6.823 Fall 2021

Using Index Registers

September 8, 2021

LOADi N, IX
LOOP JZi DONE, IX

LOAD LASTA, IX
ADD LASTB, IX
STORE LASTC, IX
JUMP LOOP

DONE HALT

• Program does not modify itself

• Efficiency has improved dramatically (ops / iter)
with index regs without index regs

instruction fetch 17 (14)
operand fetch 10 (8)
store 5 (4)

A

LASTA

Ci Ai + Bi, 1 i n

N starts with -n

L01-33

MIT 6.823 Fall 2021

Using Index Registers

September 8, 2021

LOADi N, IX
LOOP JZi DONE, IX

LOAD LASTA, IX
ADD LASTB, IX
STORE LASTC, IX
JUMP LOOP

DONE HALT

• Program does not modify itself

• Efficiency has improved dramatically (ops / iter)
with index regs without index regs

instruction fetch 17 (14)
operand fetch 10 (8)
store 5 (4)

A

LASTA

Ci Ai + Bi, 1 i n

5(2)

N starts with -n

L01-33

MIT 6.823 Fall 2021

Using Index Registers

September 8, 2021

LOADi N, IX
LOOP JZi DONE, IX

LOAD LASTA, IX
ADD LASTB, IX
STORE LASTC, IX
JUMP LOOP

DONE HALT

• Program does not modify itself

• Efficiency has improved dramatically (ops / iter)
with index regs without index regs

instruction fetch 17 (14)
operand fetch 10 (8)
store 5 (4)

A

LASTA

Ci Ai + Bi, 1 i n

5(2)
2

N starts with -n

L01-33

MIT 6.823 Fall 2021

Using Index Registers

September 8, 2021

LOADi N, IX
LOOP JZi DONE, IX

LOAD LASTA, IX
ADD LASTB, IX
STORE LASTC, IX
JUMP LOOP

DONE HALT

• Program does not modify itself

• Efficiency has improved dramatically (ops / iter)
with index regs without index regs

instruction fetch 17 (14)
operand fetch 10 (8)
store 5 (4)

A

LASTA

Ci Ai + Bi, 1 i n

5(2)
2
1

N starts with -n

L01-33

MIT 6.823 Fall 2021

Using Index Registers

September 8, 2021

LOADi N, IX
LOOP JZi DONE, IX

LOAD LASTA, IX
ADD LASTB, IX
STORE LASTC, IX
JUMP LOOP

DONE HALT

• Program does not modify itself

• Efficiency has improved dramatically (ops / iter)
with index regs without index regs

instruction fetch 17 (14)
operand fetch 10 (8)
store 5 (4)

• Costs?

A

LASTA

Ci Ai + Bi, 1 i n

5(2)
2
1

N starts with -n

L01-33

MIT 6.823 Fall 2021

Using Index Registers

September 8, 2021

LOADi N, IX
LOOP JZi DONE, IX

LOAD LASTA, IX
ADD LASTB, IX
STORE LASTC, IX
JUMP LOOP

DONE HALT

• Program does not modify itself

• Efficiency has improved dramatically (ops / iter)
with index regs without index regs

instruction fetch 17 (14)
operand fetch 10 (8)
store 5 (4)

• Costs?

A

LASTA

Ci Ai + Bi, 1 i n

5(2)
2
1

- Complex control
- Index register computations (ALU-like circuitry)
- Instructions 1 to 2 bits longer

N starts with -n

L01-33

MIT 6.823 Fall 2021

Operations on Index Registers

September 8, 2021 L01-34

MIT 6.823 Fall 2021

Operations on Index Registers

September 8, 2021

To increment index register by k
AC (IX) new instruction
AC (AC) + k
IX (AC) new instruction

L01-34

MIT 6.823 Fall 2021

Operations on Index Registers

September 8, 2021

To increment index register by k
AC (IX) new instruction
AC (AC) + k
IX (AC) new instruction

also the AC must be saved and restored

L01-34

MIT 6.823 Fall 2021

Operations on Index Registers

September 8, 2021

To increment index register by k
AC (IX) new instruction
AC (AC) + k
IX (AC) new instruction

also the AC must be saved and restored

It may be better to increment IX directly
INCi k, IX IX (IX) + k

L01-34

MIT 6.823 Fall 2021

Operations on Index Registers

September 8, 2021

To increment index register by k
AC (IX) new instruction
AC (AC) + k
IX (AC) new instruction

also the AC must be saved and restored

It may be better to increment IX directly
INCi k, IX IX (IX) + k

More instructions to manipulate index register
STOREi x, IX M[x] (IX) (extended to fit a word)

...

L01-34

MIT 6.823 Fall 2021

Operations on Index Registers

September 8, 2021

To increment index register by k
AC (IX) new instruction
AC (AC) + k
IX (AC) new instruction

also the AC must be saved and restored

It may be better to increment IX directly
INCi k, IX IX (IX) + k

More instructions to manipulate index register
STOREi x, IX M[x] (IX) (extended to fit a word)

...

IX begins to look like an accumulator
several index registers

several accumulators
General Purpose Registers

L01-34

MIT 6.823 Fall 2021

Evolution of Addressing Modes

September 8, 2021 L01-35

MIT 6.823 Fall 2021

Evolution of Addressing Modes

September 8, 2021

1. Single accumulator, absolute address

LOAD x

L01-35

MIT 6.823 Fall 2021

Evolution of Addressing Modes

September 8, 2021

1. Single accumulator, absolute address

LOAD x

2. Single accumulator, index registers

LOAD x, IX

L01-35

MIT 6.823 Fall 2021

Evolution of Addressing Modes

September 8, 2021

1. Single accumulator, absolute address

LOAD x

2. Single accumulator, index registers

LOAD x, IX

3. Indirection

LOAD (x)

L01-35

MIT 6.823 Fall 2021

Evolution of Addressing Modes

September 8, 2021

1. Single accumulator, absolute address

LOAD x

2. Single accumulator, index registers

LOAD x, IX

3. Indirection

LOAD (x)

4. Multiple accumulators, index registers, indirection

LOAD R, IX, x

or LOAD R, IX, (x) the meaning?

R M[M[x] + (IX)]

or R M[M[x + (IX)]]

L01-35

MIT 6.823 Fall 2021

Evolution of Addressing Modes

September 8, 2021

1. Single accumulator, absolute address

LOAD x

2. Single accumulator, index registers

LOAD x, IX

3. Indirection

LOAD (x)

4. Multiple accumulators, index registers, indirection

LOAD R, IX, x

or LOAD R, IX, (x) the meaning?

R M[M[x] + (IX)]

or R M[M[x + (IX)]]

5. Indirect through registers

LOAD RI, (RJ)

L01-35

MIT 6.823 Fall 2021

Evolution of Addressing Modes

September 8, 2021

1. Single accumulator, absolute address

LOAD x

2. Single accumulator, index registers

LOAD x, IX

3. Indirection

LOAD (x)

4. Multiple accumulators, index registers, indirection

LOAD R, IX, x

or LOAD R, IX, (x) the meaning?

R M[M[x] + (IX)]

or R M[M[x + (IX)]]

5. Indirect through registers

LOAD RI, (RJ)

6. The works

LOAD RI, RJ, (RK) RJ = index, RK = base addr

L01-35

MIT 6.823 Fall 2021

Variety of Instruction Formats

September 8, 2021 L01-36

MIT 6.823 Fall 2021

Variety of Instruction Formats

• Three address formats: One destination and up to
two operand sources per instruction

(Reg op Reg) to Reg RI (RJ) op (RK)
(Reg op Mem) to Reg RI (RJ) op M[x]

– x can be specified directly or via a register
– effective address calculation for x could include indexing,

indirection, ...

September 8, 2021 L01-36

MIT 6.823 Fall 2021

Variety of Instruction Formats

• Three address formats: One destination and up to
two operand sources per instruction

(Reg op Reg) to Reg RI (RJ) op (RK)
(Reg op Mem) to Reg RI (RJ) op M[x]

– x can be specified directly or via a register
– effective address calculation for x could include indexing,

indirection, ...

• Two address formats: the destination is same as
one of the operand sources

(Reg op Reg) to Reg RI (RI) op (RJ)
(Reg op Mem) to Reg RI (RI) op M[x]

September 8, 2021 L01-36

MIT 6.823 Fall 2021

More Instruction Formats

September 8, 2021 L01-37

MIT 6.823 Fall 2021

More Instruction Formats

• One address formats: Accumulator
machines
– Accumulator is always other implicit operand

September 8, 2021 L01-37

MIT 6.823 Fall 2021

More Instruction Formats

• One address formats: Accumulator
machines
– Accumulator is always other implicit operand

• Zero address formats: operands on a stack

add M[sp-1] M[sp] + M[sp-1]
load M[sp] M[M[sp]]

– Stack can be in registers or in memory
– usually top of stack cached in registers

September 8, 2021 L01-37

MIT 6.823 Fall 2021

More Instruction Formats

• One address formats: Accumulator
machines
– Accumulator is always other implicit operand

• Zero address formats: operands on a stack

add M[sp-1] M[sp] + M[sp-1]
load M[sp] M[M[sp]]

– Stack can be in registers or in memory
– usually top of stack cached in registers

September 8, 2021

C

B

A
SP

Register

Memory

L01-37

MIT 6.823 Fall 2021

More Instruction Formats

• One address formats: Accumulator
machines
– Accumulator is always other implicit operand

• Zero address formats: operands on a stack

add M[sp-1] M[sp] + M[sp-1]
load M[sp] M[M[sp]]

– Stack can be in registers or in memory
– usually top of stack cached in registers

September 8, 2021

Many different formats are possible!

C

B

A
SP

Register

Memory

L01-37

MIT 6.823 Fall 2021

Instruction sets in the mid 50’s
• Great variety of instruction sets, but all intimately

tied to implementation details

• Programmer’s view of the machine was inseparable
from the actual hardware implementation!

September 8, 2021 L01-38

MIT 6.823 Fall 2021

Instruction sets in the mid 50’s
• Great variety of instruction sets, but all intimately

tied to implementation details

• Programmer’s view of the machine was inseparable
from the actual hardware implementation!

September 8, 2021

Next Lecture:

Instruction Set Architectures:
Decoupling Interface and

Implementation

L01-38

