
L02-1MIT 6.823 Fall 2021

Joel Emer
Computer Science & Artificial Intelligence Lab

M.I.T.

Instruction Set Architecture

MIT 6.823 Fall 2021

The IBM 650 (1953-4)

September 13, 2021

[From 650 Manual, © IBM]

Magnetic Drum

(1,000 or 2,000

10-digit decimal

words)

20-digit

accumulator

Active instruction

(including next

program counter)

Digit-serial

ALU

L02-2

MIT 6.823 Fall 2021

Programmer’s view of a machine:
IBM 650

� Programmer’s view of the machine was inseparable
from the actual hardware implementation

� Good programmers optimized the placement of
instructions on the drum to reduce latency!

September 13, 2021

A drum machine with 44 instructions

Instruction: 60 1234 1009
� “Load the contents of location 1234 into the

distribution; put it also into the upper accumulator;
set lower accumulator to zero; and then go to
location 1009 for the next instruction.”

L02-3

MIT 6.823 Fall 2021

Compatibility Problem at IBM

September 13, 2021

By early 60’s, IBM had 4 incompatible lines of
computers!

701 7094
650 7074
702 7080
1401 7010

Each system had its own
� Instruction set
� I/O system and Secondary Storage:

magnetic tapes, drums and disks
� Assemblers, compilers, libraries,...
� Market niche

business, scientific, real time, ...

 IBM 360

L02-4

MIT 6.823 Fall 2021

IBM 360: Design Premises
Amdahl, Blaauw, and Brooks, 1964

The design must lend itself to growth and successor
machines

� General method for connecting I/O devices

� Total performance - answers per month rather than bits per
microsecond programming aids

� Machine must be capable of supervising itself without manual
intervention

� Built-in hardware fault checking and locating aids to reduce
down time

� Simple to assemble systems with redundant I/O devices,
memories, etc. for fault tolerance

� Some problems required floating point words larger than 36
bits

September 13, 2021 L02-5

MIT 6.823 Fall 2021

Processor State and Data Types

September 13, 2021

� If the processing of an instruction can be interrupted
then the hardware must save and restore the state in
a transparent manner

The information held in the processor at the end of
an instruction to provide the processing context for
the next instruction.

Program Counter, Accumulator, ...

Programmer’s machine model is a contract
between the hardware and software

� The information held in the processor will be
interpreted as having data types manipulated by the
instructions.

L02-6

MIT 6.823 Fall 2021

Instruction Set

September 13, 2021

Some things an ISA must specify:
� A way to reference registers and memory
� The computational operations available
� How to control the sequence of instructions

� A binary representation for all of the above

The control for changing the information held in the
processor are specified by the instructions available
in the instruction set architecture or ISA.

ISA must satisfy the needs of the software:
- assembler, compiler, OS, VM

L02-7

MIT 6.823 Fall 2021

IBM 360: A General-Purpose
Register (GPR) Machine
� Processor State

– 16 General-Purpose 32-bit Registers

– 4 Floating Point 64-bit Registers

– A Program Status Word (PSW)

� PC, Condition codes, Control flags

� Data Formats

– 8-bit bytes, 16-bit half-words, 32-bit words,
64-bit double-words

– 24-bit addresses

� A 32-bit machine with 24-bit addresses

– No instruction contains a 24-bit address!

� Precise interrupts

September 13, 2021 L02-8

MIT 6.823 Fall 2021

IBM 360: Initial Implementations (1964)

September 13, 2021

� Six implementations (Models, 30, 40, 50, 60, 62, 70)

� 50x performance difference across models

� ISA completely hid the underlying technological
differences between various models

With minor modifications, IBM 360 ISA is still in use

Model 30 . . . Model 70

Memory Capacity 8K - 64 KB 256K - 512 KB

Memory Cycle 2.0µs ... 1.0µs

Datapath 8-bit 64-bit

Circuit Delay 30 nsec/level 5 nsec/level

Registers in Main Store in Transistor

Control Store Read only 1sec Dedicated circuits

L02-9

MIT 6.823 Fall 2021

IBM 360: Fifty-five years later…
z15 Microprocessor

September 13, 2021

� 9.2 billion transistors, 12-core design

� Up to 190 cores (2 spare) per system

� 5.2 GHz, 14nm CMOS technology

� 64-bit virtual addressing
– Original 360 was 24-bit; 370 was a 31-bit extension

� Superscalar, out-of-order
– 12-wide issue

– Up to 180 instructions in flight

� 16K-entry Branch Target Buffer
– Very large buffer to support commercial workloads

� Four Levels of caches
– 128KB L1 I-cache, 128KB L1 D-cache

– 4MB L2 cache per core

– 256MB shared on-chip L3 cache

– 960MB shared off-chip L4 cache

� Up to 40TB of main memory per system

September 2019
Image credit: IBM

L02-10

MIT 6.823 Fall 2021

Instruction Set Architecture (ISA)
versus Implementation
� ISA is the hardware/software interface

– Defines set of programmer visible state

– Defines data types

– Defines instruction semantics (operations, sequencing)

– Defines instruction format (bit encoding)

– Examples: MIPS, RISC-V, Alpha, x86, IBM 360, VAX, ARM, JVM

� Many possible implementations of one ISA
– 360 implementations: model 30 (c. 1964), z15 (c. 2019)

– x86 implementations: 8086 (c. 1978), 80186, 286, 386, 486,
Pentium, Pentium Pro, Pentium-4, Core i7, AMD Athlon, AMD
Opteron, Transmeta Crusoe, SoftPC

– MIPS implementations: R2000, R4000, R10000, ...

– JVM: HotSpot, PicoJava, ARM Jazelle, ...

September 13, 2021 L02-11

MIT 6.823 Fall 2021

Processor Performance

September 13, 2021

Time = Instructions Cycles Time
Program Program * Instruction * Cycle

Microarchitecture CPI cycle time

Microcoded >1 short

Single-cycle unpipelined 1 long

Pipelined 1 short

– Instructions per program depends on source code, compiler
technology and ISA

– Cycles per instructions (CPI) depends upon the ISA and the
microarchitecture

– Time per cycle depends upon the microarchitecture and the
base technology

Recitation

L02-12

L02-13MIT 6.823 Fall 2021

Joel Emer
Computer Science and Artificial Intelligence Laboratory

M.I.T.

Memory and Caches

MIT 6.823 Fall 2021

Memory Technology

� Early machines used a variety of memory technologies
– Manchester Mark I used CRT Memory Storage
– EDVAC used a mercury delay line

� Core memory was first large scale reliable main memory
– Invented by Forrester in late 40s at MIT for Whirlwind project
– Bits stored as magnetization polarity on small ferrite cores threaded onto 2

dimensional grid of wires

� First commercial DRAM was Intel 1103
– 1Kbit of storage on single chip
– charge on a capacitor used to hold value

� Semiconductor memory quickly replaced core in 1970s
– Intel formed to exploit market for semiconductor memory

� Flash memory
– Slower, but denser than DRAM. Also non-volatile, but with wearout issues

� Phase change memory (PCM, 3D XPoint)
– Slightly slower, but much denser than DRAM and non-volatile

September 13, 2021 L02-14

MIT 6.823 Fall 2021

DRAM Architecture

September 13, 2021

R
o
w

 A
d
d
re

s
s

D
e
c
o
d
e
r

Col.
1

Col.
2M

Row 1

Row 2N

Column Decoder &
Sense Amplifiers

M

N

N+M

bit lines
word lines

DData

� Bits stored in 2-dimensional arrays on chip

� Modern chips have around 8 logical banks on each chip

– Each logical bank physically implemented as many smaller arrays

Memory cell
(one bit)

L02-15

MIT 6.823 Fall 2021

CPU-Memory Metrics

September 13, 2021

MemoryCPU

� Latency (time for a single access)
Memory access time >> Processor cycle time

� Bandwidth (number of accesses per unit time)
if fraction m of instructions access memory,

1+m memory references / instruction

 CPI = 1 requires 1+m memory refs / cycle

�Energy (nJ per access)

L02-16

MIT 6.823 Fall 2021

Processor-DRAM Gap (latency)

September 13, 2021

Four-issue 2GHz superscalar accessing 100ns DRAM could
execute 800 instructions during time for one memory access!

L02-17

MIT 6.823 Fall 2021

Little’s Law

September 13, 2021

Throughput (T) = Number in Flight (N) / Latency (L)

MemoryCPU
Table of

accesses in
flight

Example:
--- Assume infinite-bandwidth memory
--- 100 cycles / memory reference
--- 1 + 0.2 memory references / instruction

 Table size = 1.2 * 100 = 120 entries

120 independent memory operations in flight!

L02-18

MIT 6.823 Fall 2021

6-Transistor SRAM Cell

bit bit

word

(row select)

10

0 1

Basic Static RAM Cell

September 13, 2021

� Write:

1. Drive bit lines (bit=1, bit=0)

2. Select word line

� Read:

1. Precharge bit and bit to Vdd

2. Select word line

3. Cell pulls one bit line low

4. Column sense amp detects difference between bit & bit

bit bit

word

1
0

L02-19

MIT 6.823 Fall 2021

Memory Hierarchy

September 13, 2021

� size: Register << SRAM << DRAM why?
� latency: Register << SRAM << DRAM why?
� bandwidth: on-chip >> off-chip why?

On a data access:
data fast memory low latency access
data fast memory long latency access (DRAM)

Small,
Fast

Memory
(RF, SRAM)

CPU
Big, Slow
Memory
(DRAM)

A B

holds frequently used data

L02-20

MIT 6.823 Fall 2021

Data Orchestration Techniques

Two approaches to controlling data movement in the
memory hierarchy:

– Explicit: Manually at the direction of the
programmer using instructions

– Implicit: Automatically by the hardware in
response to a request by an instruction, but
transparent to the programmer.

September 13, 2021 L02-21

MIT 6.823 Fall 2021

Multilevel Memory

September 13, 2021

Strategy: Reduce average latency using small, fast
memories called caches.

Caches are a mechanism to reduce memory latency
based on the empirical observation that the patterns
of memory references made by a processor are often
highly predictable:

PC

… 96

loop: add r2, r1, r1 100

subi r3, r3, #1 104

bnez r3, loop 108

… 112

L02-22

MIT 6.823 Fall 2021

Typical Memory Reference Patterns

September 13, 2021

Address

Time

Instruction

fetches

Stack

accesses

Data

accesses

n loop iterations

subroutine

call
subroutine

return

argument access

scalar accesses

L02-23

MIT 6.823 Fall 2021

Common Predictable Patterns

Two predictable properties of memory references:

– Temporal Locality: If a location is referenced, it
is likely to be referenced again in the near future

– Spatial Locality: If a location is referenced, it is
likely that locations near it will be referenced in
the near future

September 13, 2021 L02-24

MIT 6.823 Fall 2021

Management of Memory Hierarchy

September 13, 2021

� Small/fast storage, e.g., registers

– Address usually specified directly in instruction

– Generally implemented using explicit data orchestration

� e.g., directly as a register file

� but hardware might do things behind software’s back, e.g.,
stack management, register renaming

� Large/slower storage, e.g., memory

– Address usually computed from values in register

– Generally implemented using implicit data orchestration

� e.g., as a cache hierarchy where hardware decides
what is kept in fast memory

� but software may provide “hints”, e.g., don’t cache or
prefetch

L02-25

MIT 6.823 Fall 2021

Inside a Cache

September 13, 2021

CACHEProcessor Main
Memory

Address Address

DataData

Address
Tag

Data Block

Data
Byte

Data
Byte

Data
Byte

Line100

304

6848

copy of main memory
location 100

copy of main memory
location 101

416

Q: How many bits needed in tag? ___________________________Enough to uniquely identify block

L02-26

MIT 6.823 Fall 2021

Cache Algorithm (Read)

September 13, 2021

Look at Processor Address, search cache tags to find match.
Then either

Found in cache
a.k.a. HIT

Return copy
of data from
cache

Not in cache
a.k.a. MISS

Read block of data from
Main Memory

Wait …

Return data to processor
and update cache

Which line do we replace?

L02-27

MIT 6.823 Fall 2021

Direct-Mapped Cache

September 13, 2021

Tag Data BlockV k

=

t

t

HIT

b

Data Word or Byte

2k

lines

OffsetTag Index

Block number Block offset

Q: What is a bad reference pattern? ____________________Strided at size of cache

L02-28

MIT 6.823 Fall 2021

Direct Map Address Selection
higher-order vs. lower-order address bits

September 13, 2021

Tag Data BlockV

=

OffsetIndex

tk
b

t

HIT Data Word or Byte

2k

lines

Tag

Q: Why might this be undesirable? ________________________Spatially local blocks conflict

L02-29

MIT 6.823 Fall 2021

Hashed Address Mapping

September 13, 2021

Tag Data BlockV

=

Offset

t
b

t

HIT Data Word or Byte

2k

lines

Address

Hash

Q: What are the tradeoffs of hashing?

Good: Regular strides don’t conflict
Bad: Hash adds latency

Tag is larger
L02-30

MIT 6.823 Fall 2021

2-Way Set-Associative Cache

September 13, 2021

Tag Data BlockV

Block
Offset

Tag Index

k
Tag Data BlockV

b

Data
Word
or Byte

=

t

HIT

=

t

L02-31

MIT 6.823 Fall 2021

Fully Associative Cache

September 13, 2021

Tag Data BlockV

=

B
lo

c
k

O
ff
s
e
t

T
a
g

t

b

HIT

Data
Word

=

=

t

Q: Where are the index bits? ________________________Not needed

L02-32

MIT 6.823 Fall 2021

Placement Policy

September 13, 2021

Set Number

Cache

0 1 2 3 4 5 6 7 8 9

1 1 1 1 1 1 1 1 1 1
0 1 2 3 4 5 6 7 8 9

2 2 2 2 2 2 2 2 2 2
0 1 2 3 4 5 6 7 8 9

3 3
0 1

Memory

Block Number

block 12
can be placed

0 1 2 3 4 5 6 7

Direct
Mapped
only into
block 4

(12 mod 8)

Fully
Associative
anywhere

0 1 2 3

(2-way) Set
Associative
anywhere in

set 0
(12 mod 4)

L02-33

MIT 6.823 Fall 2021

Improving Cache Performance

September 13, 2021

Average memory access time (AMAT) =
Hit time + Miss rate x Miss penalty

To improve performance:
� reduce the hit time
� reduce the miss rate (e.g., larger, better policy)
� reduce the miss penalty (e.g., L2 cache)

What is the simplest design strategy?

Biggest cache that doesn’t increase hit time past 1-2 cycles
(approx. 16-64KB in modern technology)

[design issues more complex with out-of-order superscalar processors]

L02-34

MIT 6.823 Fall 2021

Causes for Cache Misses

September 13, 2021

� Compulsory:

First reference to a block a.k.a. cold start misses
- misses that would occur even with infinite cache

� Capacity:
cache is too small to hold all data the program needs

- misses that would occur even under perfect
placement & replacement policy

� Conflict:
misses from collisions due to block-placement strategy

- misses that would not occur with full associativity

L02-35

MIT 6.823 Fall 2021

Effect of Cache Parameters on
Performance

September 13, 2021

Larger
capacity

cache

Higher
associativity

cache

Larger block
size cache *

Compulsory misses

Capacity misses

Conflict misses

Hit latency

Miss latency

?

* Assume substantial spatial locality

L02-36

MIT 6.823 Fall 2021

Block-level Optimizations

� Tags are too large, i.e., too much overhead

– Simple solution: Larger blocks, but miss penalty could be
large.

� Sub-block placement (aka sector cache)

– A valid bit added to units smaller than the full block, called
sub-blocks

– Only read a sub-block on a miss

– If a tag matches, is the sub-block in the cache?

September 13, 2021

100

300

204

1 1 1 1

1 1 0 0

0 1 0 1

L02-37

MIT 6.823 Fall 2021

Replacement Policy

September 13, 2021

Which block from a set should be evicted?

� Random

� Least Recently Used (LRU)
� LRU cache state must be updated on every access
� true implementation only feasible for small sets (2-way)
� pseudo-LRU binary tree was often used for 4-8 way

� First In, First Out (FIFO) a.k.a. Round-Robin
� used in highly associative caches

� Not Least Recently Used (NLRU)
� FIFO with exception for most recently used block or blocks

� One-bit LRU
� Each way represented by a bit. Set on use, replace first unused.

L02-38

MIT 6.823 Fall 2021

Multiple replacement policies

September 13, 2021

0: Policy A
1: Policy B

Counter

+1

>0

-1

0: Policy A Missed
1: Policy B Missed

Policy A
Policy B

S
e
ts

Cache

Miss

How do we decide
which policy to use?

Use the best replacement policy for a program

L02-39

MIT 6.823 Fall 2021

Multilevel Caches

� A memory cannot be large and fast

� Add level of cache to reduce miss penalty
– Each level can have longer latency than level above

– So, increase sizes of cache at each level

September 13, 2021

CPU L1 L2 DRAM

Metrics:

Local miss rate = misses in cache/ accesses to cache

Global miss rate = misses in cache / CPU memory accesses

Misses per instruction (MPI) = misses in cache / number of instructions

L02-40

MIT 6.823 Fall 2021

Inclusion Policy

� Inclusive multilevel cache:
– Inner cache holds copies of data in outer cache

– On miss, line inserted in inner and outer cache; replacement in
outer cache invalidates line in inner cache

– External accesses need only check outer cache

– Commonly used (e.g., Intel CPUs up to Broadwell)

� Non-inclusive multilevel caches:
– Inner cache may hold data not in outer cache

– Replacement in outer cache doesn’t invalidate line in inner cache

– Used in Intel Skylake, ARM

� Exclusive multilevel caches:
– Inner cache and outer cache hold different data

– Swap lines between inner/outer caches on miss

– Used in AMD processors

Why choose one type or the other?
September 13, 2021 L02-41

MIT 6.823 Fall 2021

Victim Caches (HP 7200)

September 13, 2021

Victim cache is a small associative back up cache, added to a direct
mapped cache, which holds recently evicted lines
� First look up in direct mapped cache
� If miss, look in victim cache
� If hit in victim cache, swap hit line with line now evicted from L1
� If miss in victim cache, L1 victim -> VC, VC victim->?
Fast hit time of direct mapped but with reduced conflict misses

L1 Data
Cache

Unified L2
Cache

RF

CPU

Evicted data from L1

Evicted data from VC

where ?

Hit data (miss in L1)
Victim Cache
FA, 4 blocks

L02-42

MIT 6.823 Fall 2021

Typical memory hierarchies

September 13, 2021 L02-43

MIT 6.823 Fall 2021

HBM DRAM or MCDRAM

September 13, 2021

Source: AMD

L02-44

MIT 6.823 Fall 2021

Mixed technology caching
(Intel Knights Landing)

September 13, 2021

MCDRAM
(as mem)

DDR
L2

CPU

MCDRAM
(as cache)

L2

CPU
DDR

MCDRAM
(as cache)

MCDRAM
(as mem)

L2

CPU DDR

L02-45

L02-46MIT 6.823 Fall 2021

Thank you!

Next lecture:
Virtual memory

