
L03-1MIT 6.823 Fall 2021

Daniel Sanchez
Computer Science and Artificial Intelligence Laboratory

M.I.T.

Caches (continued)



MIT 6.823 Fall 2021

Reminder: Inside a Cache

September 15, 2021
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Reminder: Direct-Mapped Cache
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2-Way Set-Associative Cache
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Fully Associative Cache
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Placement Policy
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Set Number
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set 0
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Improving Cache Performance

September 15, 2021

Average memory access time (AMAT) =
Hit time + Miss rate x Miss penalty

To improve performance:
• reduce the hit time
• reduce the miss rate (e.g., larger, better policy)
• reduce the miss penalty (e.g., L2 cache)

What is the simplest design strategy?

Biggest cache that doesn’t increase hit time past 1-2 cycles 
(approx. 16-64KB in modern technology)

[design issues more complex with out-of-order superscalar processors]
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Causes for Cache Misses [Hill, 1989]

September 15, 2021

• Compulsory:  

First reference to a block a.k.a. cold start misses
- misses that would occur even with infinite cache

• Capacity:
cache is too small to hold all data the program needs

- misses that would occur even under perfect
placement & replacement policy

• Conflict:
misses from collisions due to block-placement strategy

- misses that would not occur with full associativity
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Effect of Cache Parameters on Performance

September 15, 2021

Larger
capacity 

cache

Higher 
associativity 

cache

Larger block 
size cache *

Compulsory misses

Capacity misses

Conflict misses

Hit latency

Miss latency

?

* Assume substantial spatial locality
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Block-level Optimizations

• Tags are too large, i.e., too much overhead

– Simple solution: Larger blocks, but miss penalty could be 
large.

• Sub-block placement (aka sector cache)

– A valid bit added to units smaller than the full block, called 
sub-blocks

– Only read a sub-block on a miss

– If a tag matches, is the sub-block in the cache?

September 15, 2021
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Replacement Policy

September 15, 2021

Which block from a set should be evicted?

• Random

• Least Recently Used (LRU)
• LRU cache state must be updated on every access
• true implementation only feasible for small sets (2-way)
• pseudo-LRU binary tree was often used for 4-8 way

• First In, First Out (FIFO) a.k.a. Round-Robin
• used in highly associative caches

• Not Least Recently Used (NLRU)
• FIFO with exception for most recently used block or blocks

• One-bit LRU
• Each way represented by a bit. Set on use, replace first unused.
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Multiple replacement policies

September 15, 2021

0: Policy A
1: Policy B

Counter

+1

>0

-1

0: Policy A Missed
1: Policy B Missed

Policy A
Policy B

S
e
ts

Cache

Miss

How do we decide 
which policy to use?

Use the best replacement policy for a program
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Multilevel Caches

• A memory cannot be large and fast

• Add level of cache to reduce miss penalty
– Each level can have longer latency than level above

– So, increase sizes of cache at each level

September 15, 2021

CPU L1 L2 DRAM

Metrics:

Local miss rate = misses in cache/ accesses to cache

Global miss rate = misses in cache / CPU memory accesses

Misses per instruction (MPI) = misses in cache / number of instructions
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Inclusion Policy

• Inclusive multilevel cache: 
– Inner cache holds copies of data in outer cache

– On miss, line inserted in inner and outer cache; replacement in 
outer cache invalidates line in inner cache

– External accesses need only check outer cache

– Commonly used (e.g., Intel CPUs up to Broadwell)  

• Non-inclusive multilevel caches:
– Inner cache may hold data not in outer cache

– Replacement in outer cache doesn’t invalidate line in inner cache
– Used in Intel Skylake, ARM

• Exclusive multilevel caches:
– Inner cache and outer cache hold different data 

– Swap lines between inner/outer caches on miss

– Used in AMD processors

Why choose one type or the other?
September 15, 2021 L03-14
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Victim Caches (HP 7200)
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Victim cache is a small associative back up cache, added to a direct 
mapped cache, which holds recently evicted lines
• First look up in direct mapped cache
• If miss, look in victim cache
• If hit in victim cache, swap hit line with line now evicted from L1
• If miss in victim cache, L1 victim -> VC, VC victim->?
Fast hit time of direct mapped but with reduced conflict misses

L1 Data 
Cache

Unified L2 
Cache

RF

CPU

Evicted data from L1

Evicted data from VC

where ?

Hit data (miss in L1)
Victim Cache
FA, 4 blocks
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Typical memory hierarchies
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Memory Management:
From Absolute Addresses

to Demand Paging
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Memory Management

September 15, 2021

• The Fifties

- Absolute Addresses

- Dynamic address translation

• The Sixties

- Atlas and Demand Paging

- Paged memory systems and TLBs

• Modern Virtual Memory Systems
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Names for Memory Locations

• Machine language address

– as specified in machine code

• Virtual address

– ISA specifies translation of machine code address into 
virtual address of program variable (sometimes called 
effective address)

• Physical address

 operating system specifies mapping of virtual address into 
name for a physical memory location

September 15, 2021

physical
address

virtual
address

machine
language
address

Address
Mapping

ISA
Physical 
Memory
(DRAM)
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Absolute Addresses

• Only one program ran at a time, with unrestricted 
access to entire machine (RAM + I/O devices)

• Addresses in a program depended upon where the 
program was to be loaded in memory

• But it was more convenient for programmers to 
write location-independent subroutines

September 15, 2021

virtual address  =  physical memory address

EDSAC, early 50’s

How could location independence be achieved?

Linker and/or loader modify addresses of subroutines 
and callers when building a program memory image
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Multiprogramming

September 15, 2021

Motivation
In the early machines, I/O operations were slow 
and each word transferred involved the CPU 

Higher throughput if CPU and I/O of 2 or more 
programs were overlapped.  How?

 multiprogramming

Location-independent programs
Programming and storage management ease

 need for a base register

Protection
Independent programs should not affect
each other inadvertently

 need for a bound register

prog1

prog2 P
h
y
s
ic

a
l 
M

e
m

o
ry
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Simple Base and Bound Translation

September 15, 2021

Base and bounds registers are visible/accessible only 
when processor is running in supervisor mode

Load X

Program
Address
Space

Bound
Register 

Bounds
Violation?

M
a
in

 M
e
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o
ry

current
segment

Base
Register

+

Physical
AddressEffective

Address

Base Physical Address

Segment Length
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Separate Areas for Code and Data
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What is an advantage of this separation?
(Scheme used on all Cray vector supercomputers prior to X1, 2002)

Load X
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Memory Fragmentation

September 15, 2021

As users come and go, the storage is “fragmented”. 
Therefore, at some stage programs have to be moved
around to compact the storage.

OS
Space

16K

24K

24K

32K

24K

user 1

user 2

user 3

OS
Space

16K

24K

16K

32K

24K

user 1
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user 3

user 5

user 4

8K

Users 4 & 5 
arrive

Users 2 & 5
leave

OS
Space

16K

24K

16K

32K

24K

user 1

user 4

8K

user 3

free
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Paged Memory Systems

• Processor-generated address can be interpreted as 
a pair <page number, offset>

• A page table contains the physical address of the 
base of each page

September 15, 2021

Page tables make it possible to store the 
pages of a program non-contiguously.

0

1

2

3

0

1

2

3

Address Space
of User-1

Page Table 
of User-1

1

0

2

3

page number      offset
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Private Address Space per User

September 15, 2021

• Each user has a page table 
• Page table contains an entry for each user page

VA1User 1

Page Table 

VA1User 2

Page Table

VA1User 3

Page Table

P
h
y
s
ic
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l

M
e
m
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ry

free

OS
pages
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Where Should Page Tables Reside?

• Space required by the page tables (PT) is 
proportional to the address space, number of 
users, ...

 Space requirement is large 

 Too expensive to keep in registers

• Idea: Keep PT of the current user in special 
registers
– may not be feasible for large page tables 

– Increases the cost of context swap

• Idea: Keep PTs in the main memory
– needs one reference to retrieve the page base address and 

another to access the data word

 doubles the number of memory references!

September 15, 2021 L03-27
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Page Tables in Physical Memory

September 15, 2021

VA1

User 1

PT User 1 

PT User 2 

VA1

User 2

Idea: cache the 
address translation 
of frequently used 
pages -- TLBs
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A Problem in Early Sixties

• There were many applications whose data could not 
fit in the main memory, e.g., payroll
– Paged memory system reduced fragmentation but still required 

the whole program to be resident in the main memory

• Programmers moved the data back and forth from 
the secondary store by overlaying it repeatedly on 
the primary store

tricky programming!

September 15, 2021 L03-29
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Manual Overlays

• Assume an instruction can address all the 
storage on the drum

• Method 1: programmer keeps track of 
addresses in the main memory and 
initiates an I/O transfer when required

• Method 2: automatic initiation of I/O 
transfers by software address translation 

Brooker’s interpretive coding, 1960

September 15, 2021

Ferranti Mercury
1956

40k bits
main

640k bits
drum

Central Store

Problems? Method1: Difficult, error prone
Method2: Inefficient
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Demand Paging in Atlas (1962)

September 15, 2021

Secondary
(Drum)

32x6 pages

Primary
32 Pages

512 words/page

Central 
MemoryUser sees 32 x 6 x 512 words

of storage

“A page from secondary
storage is brought into the 
primary storage whenever 
it is (implicitly) demanded 
by the processor.”

Tom Kilburn

Primary memory as a cache
for secondary memory
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Hardware Organization of Atlas 

September 15, 2021

Initial
Address
Decode

16 ROM pages
0.4 ~1 sec

2 subsidiary pages
1.4 sec

Main
32 pages
1.4 sec

Drum (4)
192 pages

8 Tape decks
88 sec/word

48-bit words
512-word pages

1 Page Address 
Register (PAR) 

per page frame

Compare the effective page address against all 32 PARs
match  normal access
no match  page fault

save the state of the partially executed
instruction

Effective
Address

system code
(not swapped)

system data
(not swapped)

0

31

PARs

<effective PN , status>
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Atlas Demand Paging Scheme

• On a page fault: 
– Input transfer into a free page is initiated

– The Page Address Register (PAR) is updated

– If no free page is left, a page is selected to be 
replaced (based on usage)

– The replaced page is written on the drum

• to minimize the drum latency effect, the first 
empty page on the drum was selected

– The page table is updated to point to the new 
location of the page on the drum

September 15, 2021 L03-33
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Caching vs. Demand Paging

September 15, 2021

CPU cache
primary
memory

secondary
memory

Caching Demand paging
cache entry page frame
cache block (~32 bytes) page (~4K bytes)
cache miss rate (1% to 20%) page miss rate (<0.001%)
cache hit (~1 cycle) page hit (~100 cycles)
cache miss (~100 cycles) page miss (~5M cycles)
a miss is handled a miss is handled 

in hardware mostly in software

primary
memory

CPU
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Modern Virtual Memory Systems
Illusion of a large, private, uniform store

September 15, 2021

Protection & Privacy
several users, each with their private 
address space and one or more 
shared address spaces

page table  name space

Demand Paging
Provides the ability to run programs 
larger than the primary memory

Hides differences in machine 
configurations

The price is address translation on 
each memory reference

OS

useri

Primary
Memory

Swapping
Store

VA PAmapping

TLB
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Linear Page Table

September 15, 2021

VPN Offset

Virtual address

PT Base Register

VPN

Data word

Data Pages

Offset

PPN
PPN

DPN
PPN

PPN
PPN

Page Table

DPN

PPN

DPN
DPN

DPN
PPN

• Page Table Entry (PTE) 
contains:
– A bit to indicate if a page 

exists

– PPN (physical page number) 
for a memory-resident page

– DPN (disk page number) for 
a page on the disk

– Status bits for protection 
and usage

• OS sets the Page Table 
Base Register 
whenever active user 
process changes
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Size of Linear Page Table

September 15, 2021

With 32-bit addresses, 4 KB pages & 4-byte PTEs:

 220 PTEs, i.e, 4 MB page table per user

 4 GB of swap space needed to back up the full virtual 
address space

Larger pages?

• Internal fragmentation (Not all memory in a page is 
used)

• Larger page fault penalty (more time to read from disk)

What about 64-bit virtual address space???

• Even 1MB pages would require 244  8-byte PTEs (35 TB!)

What is the “saving grace”?
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Hierarchical Page Table

September 15, 2021

Level 1 
Page Table

Level 2

Page Tables

Data Pages

page in primary memory 
page in secondary memory

Root of the Current
Page Table

p1

offset

p2

Virtual Address

(Processor
Register)

PTE of a nonexistent page

p1 p2   offset

01112212231

10-bit
L1 index

10-bit 
L2 index
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Address Translation & Protection

September 15, 2021

• Every instruction and data access needs address 

translation and protection checks

A good VM design needs to be fast (~ one cycle) and 
space-efficient

Physical Address

Virtual Address

Address
Translation

Virtual Page No. (VPN) offset

Physical Page No. (PPN) offset

Protection
Check

Exception?

Kernel/User Mode

Read/Write
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Translation Lookaside Buffers

September 15, 2021

Address translation is very expensive!
In a two-level page table, each reference 
becomes several memory accesses

Solution: Cache translations in TLB
TLB hit  Single-cycle Translation

TLB miss  Page Table Walk to refill 

VPN   offset

V R W D    tag        PPN

physical address PPN offset

virtual address

hit?

(VPN = virtual page number)

(PPN = physical page number)
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TLB Designs

• Typically 32-128 entries, usually highly associative
– Each entry maps a large page, hence less spatial locality across 

pages  more likely that two entries conflict

– Sometimes larger TLBs (256-512 entries) are 4-8 way set-
associative

• Random or FIFO replacement policy

• No process information in TLB?

• TLB Reach: Size of largest virtual address space 
that can be simultaneously mapped by TLB

Example: 64 TLB entries, 4KB pages, one page per entry

TLB Reach = _____________________________________?

September 15, 2021

64 entries * 4 KB = 256 KB (if contiguous)
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Next lecture:

Modern Virtual Memory Systems


