
L03-1MIT 6.823 Fall 2021

Daniel Sanchez
Computer Science and Artificial Intelligence Laboratory

M.I.T.

Caches (continued)

MIT 6.823 Fall 2021

Reminder: Inside a Cache

September 15, 2021

CACHEProcessor Main
Memory

Address Address

DataData

Address
Tag

Data Block

Data
Byte

Data
Byte

Data
Byte

Line100

304

6848

copy of main memory
location 100

copy of main memory
location 101

416

L03-2

MIT 6.823 Fall 2021

Reminder: Direct-Mapped Cache

September 15, 2021

Tag Data BlockV k

=

t

t

HIT

b

Data Word or Byte

2k

lines

OffsetTag Index

Block number Block offset

L03-3

MIT 6.823 Fall 2021

2-Way Set-Associative Cache

September 15, 2021

Tag Data BlockV

Block
Offset

Tag Index

k
Tag Data BlockV

b

Data
Word
or Byte

=

t

HIT

=

t

L03-4

MIT 6.823 Fall 2021

Fully Associative Cache

September 15, 2021

Tag Data BlockV

=

B
lo

c
k

O
ff

s
e
t

T
a
g

t

b

HIT

Data
Word

=

=

t

Q: Where are the index bits? ________________________Not needed

L03-5

MIT 6.823 Fall 2021

Placement Policy

September 15, 2021

Set Number

Cache

0 1 2 3 4 5 6 7 8 9

1 1 1 1 1 1 1 1 1 1
0 1 2 3 4 5 6 7 8 9

2 2 2 2 2 2 2 2 2 2
0 1 2 3 4 5 6 7 8 9

3 3
0 1

Memory

Block Number

block 12
can be placed

0 1 2 3 4 5 6 7

Direct
Mapped
only into
block 4

(12 mod 8)

Fully
Associative
anywhere

0 1 2 3

(2-way) Set
Associative
anywhere in

set 0
(12 mod 4)

L03-6

MIT 6.823 Fall 2021

Improving Cache Performance

September 15, 2021

Average memory access time (AMAT) =
Hit time + Miss rate x Miss penalty

To improve performance:
• reduce the hit time
• reduce the miss rate (e.g., larger, better policy)
• reduce the miss penalty (e.g., L2 cache)

What is the simplest design strategy?

Biggest cache that doesn’t increase hit time past 1-2 cycles
(approx. 16-64KB in modern technology)

[design issues more complex with out-of-order superscalar processors]

L03-7

MIT 6.823 Fall 2021

Causes for Cache Misses [Hill, 1989]

September 15, 2021

• Compulsory:

First reference to a block a.k.a. cold start misses
- misses that would occur even with infinite cache

• Capacity:
cache is too small to hold all data the program needs

- misses that would occur even under perfect
placement & replacement policy

• Conflict:
misses from collisions due to block-placement strategy

- misses that would not occur with full associativity

L03-8

MIT 6.823 Fall 2021

Effect of Cache Parameters on Performance

September 15, 2021

Larger
capacity

cache

Higher
associativity

cache

Larger block
size cache *

Compulsory misses

Capacity misses

Conflict misses

Hit latency

Miss latency

?

* Assume substantial spatial locality

L03-9

MIT 6.823 Fall 2021

Block-level Optimizations

• Tags are too large, i.e., too much overhead

– Simple solution: Larger blocks, but miss penalty could be
large.

• Sub-block placement (aka sector cache)

– A valid bit added to units smaller than the full block, called
sub-blocks

– Only read a sub-block on a miss

– If a tag matches, is the sub-block in the cache?

September 15, 2021

100

300

204

1 1 1 1

1 1 0 0

0 1 0 1

L03-10

MIT 6.823 Fall 2021

Replacement Policy

September 15, 2021

Which block from a set should be evicted?

• Random

• Least Recently Used (LRU)
• LRU cache state must be updated on every access
• true implementation only feasible for small sets (2-way)
• pseudo-LRU binary tree was often used for 4-8 way

• First In, First Out (FIFO) a.k.a. Round-Robin
• used in highly associative caches

• Not Least Recently Used (NLRU)
• FIFO with exception for most recently used block or blocks

• One-bit LRU
• Each way represented by a bit. Set on use, replace first unused.

L03-11

MIT 6.823 Fall 2021

Multiple replacement policies

September 15, 2021

0: Policy A
1: Policy B

Counter

+1

>0

-1

0: Policy A Missed
1: Policy B Missed

Policy A
Policy B

S
e
ts

Cache

Miss

How do we decide
which policy to use?

Use the best replacement policy for a program

L03-12

MIT 6.823 Fall 2021

Multilevel Caches

• A memory cannot be large and fast

• Add level of cache to reduce miss penalty
– Each level can have longer latency than level above

– So, increase sizes of cache at each level

September 15, 2021

CPU L1 L2 DRAM

Metrics:

Local miss rate = misses in cache/ accesses to cache

Global miss rate = misses in cache / CPU memory accesses

Misses per instruction (MPI) = misses in cache / number of instructions

L03-13

MIT 6.823 Fall 2021

Inclusion Policy

• Inclusive multilevel cache:
– Inner cache holds copies of data in outer cache

– On miss, line inserted in inner and outer cache; replacement in
outer cache invalidates line in inner cache

– External accesses need only check outer cache

– Commonly used (e.g., Intel CPUs up to Broadwell)

• Non-inclusive multilevel caches:
– Inner cache may hold data not in outer cache

– Replacement in outer cache doesn’t invalidate line in inner cache
– Used in Intel Skylake, ARM

• Exclusive multilevel caches:
– Inner cache and outer cache hold different data

– Swap lines between inner/outer caches on miss

– Used in AMD processors

Why choose one type or the other?
September 15, 2021 L03-14

MIT 6.823 Fall 2021

Victim Caches (HP 7200)

September 15, 2021

Victim cache is a small associative back up cache, added to a direct
mapped cache, which holds recently evicted lines
• First look up in direct mapped cache
• If miss, look in victim cache
• If hit in victim cache, swap hit line with line now evicted from L1
• If miss in victim cache, L1 victim -> VC, VC victim->?
Fast hit time of direct mapped but with reduced conflict misses

L1 Data
Cache

Unified L2
Cache

RF

CPU

Evicted data from L1

Evicted data from VC

where ?

Hit data (miss in L1)
Victim Cache
FA, 4 blocks

L03-15

MIT 6.823 Fall 2021

Typical memory hierarchies

September 15, 2021 L03-16

L03-17MIT 6.823 Fall 2021

Daniel Sanchez
Computer Science and Artificial Intelligence Laboratory

M.I.T.

Memory Management:
From Absolute Addresses

to Demand Paging

MIT 6.823 Fall 2021

Memory Management

September 15, 2021

• The Fifties

- Absolute Addresses

- Dynamic address translation

• The Sixties

- Atlas and Demand Paging

- Paged memory systems and TLBs

• Modern Virtual Memory Systems

L03-18

MIT 6.823 Fall 2021

Names for Memory Locations

• Machine language address

– as specified in machine code

• Virtual address

– ISA specifies translation of machine code address into
virtual address of program variable (sometimes called
effective address)

• Physical address

 operating system specifies mapping of virtual address into
name for a physical memory location

September 15, 2021

physical
address

virtual
address

machine
language
address

Address
Mapping

ISA
Physical
Memory
(DRAM)

L03-19

MIT 6.823 Fall 2021

Absolute Addresses

• Only one program ran at a time, with unrestricted
access to entire machine (RAM + I/O devices)

• Addresses in a program depended upon where the
program was to be loaded in memory

• But it was more convenient for programmers to
write location-independent subroutines

September 15, 2021

virtual address = physical memory address

EDSAC, early 50’s

How could location independence be achieved?

Linker and/or loader modify addresses of subroutines
and callers when building a program memory image

L03-20

MIT 6.823 Fall 2021

Multiprogramming

September 15, 2021

Motivation
In the early machines, I/O operations were slow
and each word transferred involved the CPU

Higher throughput if CPU and I/O of 2 or more
programs were overlapped. How?

 multiprogramming

Location-independent programs
Programming and storage management ease

 need for a base register

Protection
Independent programs should not affect
each other inadvertently

 need for a bound register

prog1

prog2 P
h
y
s
ic

a
l
M

e
m

o
ry

L03-21

MIT 6.823 Fall 2021

Simple Base and Bound Translation

September 15, 2021

Base and bounds registers are visible/accessible only
when processor is running in supervisor mode

Load X

Program
Address
Space

Bound
Register

Bounds
Violation?

M
a
in

 M
e
m

o
ry

current
segment

Base
Register

+

Physical
AddressEffective

Address

Base Physical Address

Segment Length

L03-22

MIT 6.823 Fall 2021

Separate Areas for Code and Data

September 15, 2021

What is an advantage of this separation?
(Scheme used on all Cray vector supercomputers prior to X1, 2002)

Load X

Program
Address
Space

M
a
in

 M
e
m

o
ry

data
segment

Data Bound
Register

Effective Addr
Register

Data Base
Register

+

Bounds
Violation?

Code Bound
Register

Program
Counter

Code Base
Register

+

Bounds
Violation?

code
segment

L03-23

MIT 6.823 Fall 2021

Memory Fragmentation

September 15, 2021

As users come and go, the storage is “fragmented”.
Therefore, at some stage programs have to be moved
around to compact the storage.

OS
Space

16K

24K

24K

32K

24K

user 1

user 2

user 3

OS
Space

16K

24K

16K

32K

24K

user 1

user 2

user 3

user 5

user 4

8K

Users 4 & 5
arrive

Users 2 & 5
leave

OS
Space

16K

24K

16K

32K

24K

user 1

user 4

8K

user 3

free

L03-24

MIT 6.823 Fall 2021

Paged Memory Systems

• Processor-generated address can be interpreted as
a pair <page number, offset>

• A page table contains the physical address of the
base of each page

September 15, 2021

Page tables make it possible to store the
pages of a program non-contiguously.

0

1

2

3

0

1

2

3

Address Space
of User-1

Page Table
of User-1

1

0

2

3

page number offset

L03-25

MIT 6.823 Fall 2021

Private Address Space per User

September 15, 2021

• Each user has a page table
• Page table contains an entry for each user page

VA1User 1

Page Table

VA1User 2

Page Table

VA1User 3

Page Table

P
h
y
s
ic

a
l

M
e
m

o
ry

free

OS
pages

L03-26

MIT 6.823 Fall 2021

Where Should Page Tables Reside?

• Space required by the page tables (PT) is
proportional to the address space, number of
users, ...

 Space requirement is large

 Too expensive to keep in registers

• Idea: Keep PT of the current user in special
registers
– may not be feasible for large page tables

– Increases the cost of context swap

• Idea: Keep PTs in the main memory
– needs one reference to retrieve the page base address and

another to access the data word

 doubles the number of memory references!

September 15, 2021 L03-27

MIT 6.823 Fall 2021

Page Tables in Physical Memory

September 15, 2021

VA1

User 1

PT User 1

PT User 2

VA1

User 2

Idea: cache the
address translation
of frequently used
pages -- TLBs

L03-28

MIT 6.823 Fall 2021

A Problem in Early Sixties

• There were many applications whose data could not
fit in the main memory, e.g., payroll
– Paged memory system reduced fragmentation but still required

the whole program to be resident in the main memory

• Programmers moved the data back and forth from
the secondary store by overlaying it repeatedly on
the primary store

tricky programming!

September 15, 2021 L03-29

MIT 6.823 Fall 2021

Manual Overlays

• Assume an instruction can address all the
storage on the drum

• Method 1: programmer keeps track of
addresses in the main memory and
initiates an I/O transfer when required

• Method 2: automatic initiation of I/O
transfers by software address translation

Brooker’s interpretive coding, 1960

September 15, 2021

Ferranti Mercury
1956

40k bits
main

640k bits
drum

Central Store

Problems? Method1: Difficult, error prone
Method2: Inefficient

L03-30

MIT 6.823 Fall 2021

Demand Paging in Atlas (1962)

September 15, 2021

Secondary
(Drum)

32x6 pages

Primary
32 Pages

512 words/page

Central
MemoryUser sees 32 x 6 x 512 words

of storage

“A page from secondary
storage is brought into the
primary storage whenever
it is (implicitly) demanded
by the processor.”

Tom Kilburn

Primary memory as a cache
for secondary memory

L03-31

MIT 6.823 Fall 2021

Hardware Organization of Atlas

September 15, 2021

Initial
Address
Decode

16 ROM pages
0.4 ~1 sec

2 subsidiary pages
1.4 sec

Main
32 pages
1.4 sec

Drum (4)
192 pages

8 Tape decks
88 sec/word

48-bit words
512-word pages

1 Page Address
Register (PAR)

per page frame

Compare the effective page address against all 32 PARs
match normal access
no match page fault

save the state of the partially executed
instruction

Effective
Address

system code
(not swapped)

system data
(not swapped)

0

31

PARs

<effective PN , status>

L03-32

MIT 6.823 Fall 2021

Atlas Demand Paging Scheme

• On a page fault:
– Input transfer into a free page is initiated

– The Page Address Register (PAR) is updated

– If no free page is left, a page is selected to be
replaced (based on usage)

– The replaced page is written on the drum

• to minimize the drum latency effect, the first
empty page on the drum was selected

– The page table is updated to point to the new
location of the page on the drum

September 15, 2021 L03-33

MIT 6.823 Fall 2021

Caching vs. Demand Paging

September 15, 2021

CPU cache
primary
memory

secondary
memory

Caching Demand paging
cache entry page frame
cache block (~32 bytes) page (~4K bytes)
cache miss rate (1% to 20%) page miss rate (<0.001%)
cache hit (~1 cycle) page hit (~100 cycles)
cache miss (~100 cycles) page miss (~5M cycles)
a miss is handled a miss is handled

in hardware mostly in software

primary
memory

CPU

L03-34

MIT 6.823 Fall 2021

Modern Virtual Memory Systems
Illusion of a large, private, uniform store

September 15, 2021

Protection & Privacy
several users, each with their private
address space and one or more
shared address spaces

page table name space

Demand Paging
Provides the ability to run programs
larger than the primary memory

Hides differences in machine
configurations

The price is address translation on
each memory reference

OS

useri

Primary
Memory

Swapping
Store

VA PAmapping

TLB

L03-35

MIT 6.823 Fall 2021

Linear Page Table

September 15, 2021

VPN Offset

Virtual address

PT Base Register

VPN

Data word

Data Pages

Offset

PPN
PPN

DPN
PPN

PPN
PPN

Page Table

DPN

PPN

DPN
DPN

DPN
PPN

• Page Table Entry (PTE)
contains:
– A bit to indicate if a page

exists

– PPN (physical page number)
for a memory-resident page

– DPN (disk page number) for
a page on the disk

– Status bits for protection
and usage

• OS sets the Page Table
Base Register
whenever active user
process changes

L03-36

MIT 6.823 Fall 2021

Size of Linear Page Table

September 15, 2021

With 32-bit addresses, 4 KB pages & 4-byte PTEs:

 220 PTEs, i.e, 4 MB page table per user

 4 GB of swap space needed to back up the full virtual
address space

Larger pages?

• Internal fragmentation (Not all memory in a page is
used)

• Larger page fault penalty (more time to read from disk)

What about 64-bit virtual address space???

• Even 1MB pages would require 244 8-byte PTEs (35 TB!)

What is the “saving grace”?

L03-37

MIT 6.823 Fall 2021

Hierarchical Page Table

September 15, 2021

Level 1
Page Table

Level 2

Page Tables

Data Pages

page in primary memory
page in secondary memory

Root of the Current
Page Table

p1

offset

p2

Virtual Address

(Processor
Register)

PTE of a nonexistent page

p1 p2 offset

01112212231

10-bit
L1 index

10-bit
L2 index

L03-38

MIT 6.823 Fall 2021

Address Translation & Protection

September 15, 2021

• Every instruction and data access needs address

translation and protection checks

A good VM design needs to be fast (~ one cycle) and
space-efficient

Physical Address

Virtual Address

Address
Translation

Virtual Page No. (VPN) offset

Physical Page No. (PPN) offset

Protection
Check

Exception?

Kernel/User Mode

Read/Write

L03-39

MIT 6.823 Fall 2021

Translation Lookaside Buffers

September 15, 2021

Address translation is very expensive!
In a two-level page table, each reference
becomes several memory accesses

Solution: Cache translations in TLB
TLB hit Single-cycle Translation

TLB miss Page Table Walk to refill

VPN offset

V R W D tag PPN

physical address PPN offset

virtual address

hit?

(VPN = virtual page number)

(PPN = physical page number)

L03-40

MIT 6.823 Fall 2021

TLB Designs

• Typically 32-128 entries, usually highly associative
– Each entry maps a large page, hence less spatial locality across

pages more likely that two entries conflict

– Sometimes larger TLBs (256-512 entries) are 4-8 way set-
associative

• Random or FIFO replacement policy

• No process information in TLB?

• TLB Reach: Size of largest virtual address space
that can be simultaneously mapped by TLB

Example: 64 TLB entries, 4KB pages, one page per entry

TLB Reach = _____________________________________?

September 15, 2021

64 entries * 4 KB = 256 KB (if contiguous)

L03-41

L03-42MIT 6.823 Fall 2021

Next lecture:

Modern Virtual Memory Systems

