
MIT 6.823 Fall 2021

CDC Programing Card

March 8, 2017

L09-1

L07-2MIT 6.823 Fall 2021

Joel Emer
Computer Science and Artificial Intelligence Laboratory

M.I.T.

Complex Pipelining:

Out-of-Order Execution,
Register Renaming,

and Exceptions

MIT 6.823 Fall 2021

CDC 6600-style Scoreboard

September 29, 2021

Instructions are issued in order.

An instruction is issued only if
– It cannot cause a RAW hazard

– It cannot cause a WAW hazard
ÞThere can be at most instruction

in the execute phase that can
write in a particular register

WAR hazards are not possible

– Due to in-order issue +
operands read immediately

IF ID WB

ALU Mem

Fadd

Fmul

Fdiv

Issue

GPR’s

FPR’s

Busy[FU#]: Indicates FU’s availability
These bits are hardwired to FU's.

WP[reg#]: Records if a write is pending
for a register

Set to true by the Issue stage and
set to false by the WB stage

Scoreboard:
Two bit-vectors

L07-3

MIT 6.823 Fall 2021

Scoreboard Dynamics

September 27, 2021

I1 DIVD f6, f6, f4
I2 LD f2, 45(r3)
I3 MULTD f0, f2, f4
I4 DIVD f8, f6, f2

I5 SUBD f10, f0, f6
I6 ADDD f6, f8, f2

Functional Unit Status Registers Reserved
Int(1) Add(1) Mult(3) Div(4) WB for Writes (WP)

t0 I1 f6 f6

t1 I2 f2 f6 f6, f2

t2 f6 f2 f6, f2 I2

t3 I3 f0 f6 f6, f0

t4 f0 f6 f6, f0 I1

t5 I4 f0 f8 f0, f8

t6 f8 f0 f0, f8 I3

t7 I5 f10 f8 f8, f10

t8 f8 f10 f8, f10 I5

t9 f8 f8 I4

t10 I6 f6 f6

t11 f6 f6 I6

L06-4

Issue

time

WB

time

MIT 6.823 Fall 2021

In-Order Issue Limitations
An example

September 29, 2021

latency
1 LD F2, 34(R2) 1

2 LD F4, 45(R3) long

3 MULTD F6, F4, F2 3

4 SUBD F8, F2, F2 1

5 DIVD F4, F2, F8 4

6 ADDD F10, F6, F4 1

In-order: 1 (2,1) 2 3 4 4 3 5 . . . 5 6 6

1 2

34

5

6

In-order restriction prevents instruction 4
from being dispatched

L07-5

MIT 6.823 Fall 2021

Out-of-Order Issue

• Issue stage buffer holds multiple instructions waiting to issue.

• Decode adds next instruction to buffer if there is space and
the instruction does not cause a WAR or WAW hazard.

• Can issue any instruction in buffer whose RAW hazards are
satisfied (for now at most one dispatch per cycle).
Note: A writeback (WB) may enable more instructions.

September 29, 2021

IF ID WB

ALU Mem

Fadd

Fmul

Issue

How can we address the delay caused by a RAW dependence
associated with the next in-order instruction?

Find something
else to do!

L07-6

MIT 6.823 Fall 2021

In-Order Issue Limitations
An example

September 29, 2021

latency
1 LD F2, 34(R2) 1

2 LD F4, 45(R3) long

3 MULTD F6, F4, F2 3

4 SUBD F8, F2, F2 1

5 DIVD F4, F2, F8 4

6 ADDD F10, F6, F4 1

In-order: 1 (2,1) 2 3 4 4 3 5 . . . 5 6 6

1 2

34

5

6

Out-of-order: 1 (2,1) 4 4 2 3 5 . 3 . 5 6 6

Out-of-order execution did not produce a significant improvement!

WAR/WAW hazards prevent instruction 5
from being dispatched

L07-7

MIT 6.823 Fall 2021

How can we better understand the impact of
number of registers on throughput?

How many Instructions can be in
the pipeline

September 29, 2021

Throughput is limited by number of instructions
in flight, but which feature of an ISA limits the
number of instructions in the pipeline?

Out-of-order dispatch by itself does not provide a
significant performance improvement!

Number of Registers

L07-8

MIT 6.823 Fall 2021

Little’s Law

September 29, 2021

Throughput (T) = Number in Flight (N) / Latency (L)

WBIssue Execution

Example:
4 floating point registers
8 cycles per floating point operation

Þ ½ issues per cycle!

L07-9

MIT 6.823 Fall 2021

Overcoming the Lack of
Register Names

September 29, 2021

Floating Point pipelines often cannot be kept filled
with small number of registers.

IBM 360 had only 4 Floating Point Registers

Can a microarchitecture use more registers than
specified by the ISA without loss of ISA
compatibility ?

Yes, Robert Tomasulo of IBM suggested an ingenious
solution in 1967 based on on-the-fly register renaming

L07-10

MIT 6.823 Fall 2021

Instruction-level Parallelism via Renaming

September 29, 2021

latency
1 LD F2, 34(R2) 1

2 LD F4, 45(R3) long

3 MULTD F6, F4, F2 3

4 SUBD F8, F2, F2 1

5 DIVD F4, F2, F8 4

6 ADDD F10, F6, F4 1

In-order: 1 (2,1) 2 3 4 4 3 5 . . . 5 6 6
Out-of-order: 1 (2,1) 4 4 5 . . . (2,5) 3 . . 3 6 6

1 2

34

5

6

X

Renaming eliminates WAR and WAW hazards
(renaming Þ additional storage)

F4’,

F4’

X

L07-11

MIT 6.823 Fall 2021

Handling register dependencies

• Decode does register renaming, providing a new spot for each
register write
– Renaming eliminates WAR and WAW hazards by allowing use of

more storage space

• Renamed instructions added to an issue stage structure,
called the reorder buffer (ROB). Any instruction in the ROB
whose RAW hazards have been satisfied can be dispatched
– Out-of-order or dataflow execution handles RAW hazards

September 29, 2021

IF ID WB

ALU Mem

Fadd

Fmul

Issue

L07-12

MIT 6.823 Fall 2021

Reorder Buffer
Smith and Pleszkun, 1985

September 29, 2021

Instruction slot is candidate for execution when:
• It holds a valid instruction (“use” bit is set)

• It has not already started execution (“exec” bit is clear)

• Both operands are available (“present” bits p1 and p2 are set)

F1

F2

F3
F4

F5
F6

F7

F8

Register File

Is it obvious where an architectural register value is? No

t1
t2
.
.

.

tn

ptr2
next to

deallocate

ptr1
next

available

Ins# use exec op p1 src1 p2 src2

Reorder buffer

L07-13

MIT 6.823 Fall 2021

Renaming & Out-of-order Issue

September 29, 2021

• When are names in sources
replaced by data?

• When can a name be reused?

Renaming table & reg file Reorder buffer

Ins# use exec op p1 src1 p2 src2
t1

t2

t3

t4

t5

.

.

p data
F1

F2

F3
F4

F5
F6

F7

F8

Whenever an FU produces data

Whenever an instruction completes

Holds data (vi)
or tag(ti)

L07-14

MIT 6.823 Fall 2021

Renaming & Out-of-order Issue
An example

September 29, 2021

1 LD F2, 34(R2)
2 LD F4, 45(R3)

3 MULTD F6, F4, F2

4 SUBD F8, F2, F2
5 DIVD F4, F2, F8

6 ADDD F10, F6, F4

Renaming table & reg file Reorder buffer

Ins# use exec op p1 src1 p2 src2
t1

t2

t3

t4

t5

.

.

data (vi) / tag(ti)

p data
F1

F2

F3
F4

F5
F6

F7

F8

0 t1

1 1 0 LD

0 t2

2 1 0 LD

5 1 0 DIV 1 v1 0 t4

4 1 0 SUB 1 v1 1 v1

0 t4

3 1 0 MUL 0 t2 1 v1

0 t3

0 t5

1 v1

1 1 1 LD 0

4 1 1 SUB 1 v1 1 v14 0

1 v4

5 1 0 DIV 1 v1 1 v4

2 1 1 LD 2 0

3 1 0 MUL 1 v2 1 v1

• Insert instruction in ROB
• Issue instruction from ROB
• Complete instruction
• Empty ROB entry

5 1 1 DIV 1 v1 1 v4

L07-15

MIT 6.823 Fall 2021

Simplifying Allocation/Deallocation

September 29, 2021

Instruction buffer is managed circularly
• Set “exec” bit when instruction begins execution
• When an instruction completes its “use” bit is marked free
• Increment ptr2 only if the “use” bit is marked free

Reorder buffer

t1

t2

.

.

.

tn

ptr2

next to
deallocate

ptr1

next
available

Ins# use exec op p1 src1 p2 src2

L07-16

MIT 6.823 Fall 2021

Data-Driven Execution

September 29, 2021

Renaming
table &
reg file

Reorder
buffer

Load
Unit

FU FU
Store
Unit

< t, result >

Ins# use exec op p1 src1 p2 src2 t1

t2

.

.
tn

• Instruction template (i.e., tag t) is allocated by the
Decode stage, which also stores the tag in the reg file

• When an instruction completes, its tag is deallocated

Replacing the
tag by its value
is an expensive
operation

L07-17

MIT 6.823 Fall 2021

IBM 360/91 Floating Point Unit
R. M. Tomasulo, 1967

September 29, 2021

Mult

p data p data1
2

p data1

2

3
4

5

6

data load
buffers

(from

memory)

1
2
3
4

Adder

p data p data1
2
3

Floating
Point

Reg

store buffers
(to memory)

...

instructions

Common bus ensures that data is made
available immediately to all the instructions
waiting for it

distribute
instruction
templates
by
functional
units

< t, result >

p data

L07-18

MIT 6.823 Fall 2021

Effectiveness?

September 29, 2021

Renaming and Out-of-order execution was first
implemented in 1969 in IBM 360/91 but was
effective only on a very small class of problems
and thus did not show up in the subsequent models
until mid-nineties. Why?

1. Did not address the memory latency problem which
turned out be a much bigger issue than FU latency

2. Made exceptions imprecise

One more problem needed to be solved

Branch/jump penalties

More on this in the next lecture

L07-19

MIT 6.823 Fall 2021

Reminder: Precise Exceptions

September 29, 2021

Exceptions can be viewed as an implicit conditional subroutine
call that is inserted between two instructions.

Therefore, it must appear as if the exception is taken between
two instructions (say Ii and Ii+1)

• the effect of all instructions up to and including Ii is complete
• no effect of any instruction after Ii has taken place

The handler either aborts the program or restarts it at Ii+1 .

Exceptions are relatively unlikely events that need special
processing, but where adding explicit control flow instructions is
not desired, e.g., divide by 0, page fault

L07-20

MIT 6.823 Fall 2021

Effect on Exceptions
Out-of-order Completion

September 29, 2021

I1 DIVD f6, f6, f4
I2 LD f2, 45(r3)
I3 MULTD f0, f2, f4
I4 DIVD f8, f6, f2
I5 SUBD f10, f0, f6
I6 ADDD f6, f8, f2

out-of-order comp 1 2 2 3 1 4 3 5 5 4 6 6

Consider exceptions
on “DIVD”s

Precise exceptions are difficult to implement at high speed
- want to start execution of later instructions before

exception checks finished on earlier instructions

restore f2 restore f10

L07-21

MIT 6.823 Fall 2021

Exceptions

• Exceptions create a dependence on the value of the next PC

• Options for handling this dependence:

• How can we handle rollback on mis-speculation?

• Note: earlier exceptions must override later ones

September 29, 2021

Delay state update until commit on speculated instructions

• Stall
• Bypass
• Find something else to do
• Change the architecture
• Speculate!

No
No
No
Sometimes: Alpha, Multiflow
Most common approach!

L07-22

MIT 6.823 Fall 2021

Reminder: Exception Handling
(In-Order Five-Stage Pipeline)

September 29, 2021

Hold exception flags in pipeline until commit point (M stage)
•If exception at commit:

• update Cause/EPC registers
• kill all stages
• fetch at handler PC

Inject external interrupts at commit point

Asynchronous

Interrupts

PC
Inst.
Mem D Decode E M

Data
Mem W+

Kill D

Stage

Kill F

Stage

Kill E

Stage

Kill
Writeback

Select

Handler

PC

Commit
Point

Illegal

Opcode

Overflow Data Addr

Except

PC Address

Exceptions

Exc

D

PC

D

Exc

E

PC

E

Exc

M

PC

M

Cause

EPC

L07-23

MIT 6.823 Fall 2021

Fetch: Instruction bits retrieved
from cache.

Phases of Instruction Execution

September 29, 2021

I-cache

Fetch
Buffer

Issue
Buffer

Func.
Units

Arch.
State

Execute: Instructions and operands sent to
execution units.
When execution completes, all results and
exception flags are available.

Decode: Instructions placed in appropriate
issue (aka “dispatch”) stage buffer

Results
Buffer Commit: Instruction irrevocably updates

architectural state (aka “graduation” or
“completion”).

PC

In order

In-order

Out of
order

L07-24

MIT 6.823 Fall 2021

In-Order Commit for Precise Exceptions

September 29, 2021

• Instructions fetched and decoded into instruction
reorder buffer in-order

• Execution is out-of-order (Þ out-of-order completion)
• Commit (write-back to architectural state, i.e., regfile &

memory) is in-order

Temporary storage needed to hold results before commit
(shadow registers and store buffers)

Fetch Decode

Execute

CommitReorder Buffer

In-order In-orderOut-of-order

Kill
Kill Kill

Exception?Inject handler PC

L07-25

MIT 6.823 Fall 2021

Extensions for Precise Exceptions

September 29, 2021

Reorder buffer

ptr2

next to
commit

ptr1

next
available

• add <pd, dest, data, cause> fields in the instruction template
• commit instructions to reg file and memory in program
order Þ buffers can be maintained circularly

• on exception, clear reorder buffer by resetting ptr1=ptr2
(stores must wait for commit before updating memory)

Inst# use exec op p1 src1 p2 src2 pd dest data cause

L07-26

MIT 6.823 Fall 2021

Rollback and Renaming

September 29, 2021

Register file does not contain renaming tags any more.
How does the decode stage find the tag of a source register?

Search the “dest” field in the reorder buffer

Register File
(now holds only
committed state)

Reorder
buffer

Load
Unit

FU FU FU
Store
Unit

< t, result >

t1

t2

.

.
tn

Ins# use exec op p1 src1 p2 src2 pd dest data

Commit

L07-27

MIT 6.823 Fall 2021

Renaming Table

September 29, 2021

Register
File

Reorder
buffer

Load
Unit

FU FU FU
Store
Unit

< t, result >

t1

t2

.

.
tn

Ins# use exec op p1 src1 p2 src2 pd dest data

Commit

Rename
Table

Renaming table is a cache to speed up register name lookup.
It needs to be cleared after each exception taken.
When else are valid bits cleared? Control transfers

r1 t v

r2

tag
valid bit

L07-28

MIT 6.823 Fall 2021

Physical Register Files

• Reorder buffers are space inefficient – a data value
may be stored in multiple places in the reorder
buffer

• Idea: Keep all data values in a physical register file
– Tag represents the name of the data value and name of the

physical register that holds it

– Reorder buffer contains only tags

September 29, 2021

Thus, 64-bit data values may be replaced
by 8-bit tags for a 256-element physical
register file

More on this in later lectures …

L07-29

MIT 6.823 Fall 2021

Branch Penalty

September 29, 2021

I-cache

Fetch
Buffer

Issue
Buffer

Func.
Units

Arch.
State

Execute

Decode

Results
Buffer Commit

PC

Fetch

Branch executed

Next fetch
started

How many instructions
need to be killed on a
misprediction?

Modern processors may
have > 10 pipeline stages
between nextPC calculation
and branch resolution !

Next lecture:

Branch prediction &
Speculative execution

L07-30

