
L13-1MIT 6.823 Fall 2021

Daniel Sanchez
Computer Science and Artificial Intelligence Lab

M.I.T.

Directory-Based
Cache Coherence

October 25, 2021

MIT 6.823 Fall 2021

Maintaining Cache Coherence

October 25, 2021

It is sufficient to have hardware such that
• only one processor at a time has write permission for a

location
• no processor can load a stale copy of the location after a

write

 A correct approach could be:

write request:
The address is invalidated in all other caches before
the write is performed

read request:
If a dirty copy is found in some cache, a write-back
is performed before the memory is read

L13-2

MIT 6.823 Fall 2021

Directory-Based Coherence
[Censier and Feautrier, 1978]

•Directory schemes send
messages to only those caches
that might have the line

•Can scale to large numbers of
processors

•Requires extra directory
storage to track possible
sharers

October 25, 2021

•Snoopy schemes broadcast
requests over memory bus

•Difficult to scale to large
numbers of processors

•Requires additional
bandwidth to cache tags for
snoop requests

$
P

$
P

$
P

$
P

Bus

Mem.

Snoopy Protocols

$
P

$
P

$
P

$
P

Dir.

Interconnect
Network

Mem.

Directory Protocols

L13-3

MIT 6.823 Fall 2021

An MSI Directory Protocol

• Cache states: Modified (M) / Shared (S) / Invalid (I)

• Directory states:
– Uncached (Un): No sharers

– Shared (Sh): One or more sharers with read permission (S)

– Exclusive (Ex): A single sharer with read & write permissions (M)

• Transient states not drawn for clarity; for now, assume
no racing requests

October 25, 2021

Core 0

Main Memory

Cache 0

Core N

Cache N

Tag State DataTag State DataTag State Data

Directory

Tag State Sharers

…

L13-4

MIT 6.823 Fall 2021

MSI Protocol: Caches (1/3)

October 25, 2021

M

S

I

PrWr / ExReq

Transitions initiated by processor accesses:

PrRd / ShReq

PrWr /
ExReq

PrRd / --

PrRd / --

PrWr / --

Actions

Processor Read (PrRd)

Processor Write (PrWr)

Shared Request
(ShReq)

Exclusive Request
(ExReq)

L13-5

MIT 6.823 Fall 2021

MSI Protocol: Caches (2/3)

October 25, 2021

M

S

I

Transitions initiated by directory requests:

InvReq / InvResp (with data)

Actions

Invalidation Request
(InvReq)

Downgrade Request
(DownReq)

Invalidation Response

(InvResp)

Downgrade Response
(DownResp)

DownReq /
DownResp
(with data)

InvReq /
InvResp
(without
data)

L13-6

MIT 6.823 Fall 2021

MSI Protocol: Caches (3/3)

October 25, 2021

M

S

I

Transitions initiated by evictions:

Eviction /
WbReq
(with data)

Actions

Writeback Request
(WbReq)

Eviction /
WbReq
(without data)

L13-7

MIT 6.823 Fall 2021

MSI Protocol: Caches

October 25, 2021

M

S

I

Transitions initiated by processor accesses

Transitions initiated by directory requests

Transitions initiated by evictions

L13-8

MIT 6.823 Fall 2021

MSI Protocol: Directory (1/2)

October 25, 2021

Ex

Sh

Un

ShReq / Sharers = {P}; ShResp

ShReq / Sharers = Sharers + {P}; ShResp

ExReq / Inv(Sharers – {P}); Sharers = {P}; ExResp

ExReq / Sharers = {P}; ExResp

ShReq / Down(Sharer); Sharers = Sharer + {P}; ShResp

Transitions initiated by data requests:

L13-9

MIT 6.823 Fall 2021

MSI Protocol: Directory (2/2)

October 25, 2021

Ex

Sh

Un

WbReq && |Sharers| > 1 /
Sharers = Sharers - {P}; WbResp

WbReq && |Sharers| == 1 /
Sharers = {}; WbResp

WbReq / Sharers = {}; WbResp

Transitions initiated by writeback requests:

L13-10

MIT 6.823 Fall 2021

MSI Directory Protocol Example

October 25, 2021

Core 0

Main Memory

Cache 0

Tag State Data

Directory
Tag State Sharers

Core 1

Cache 1

Tag State Data

Core 2

Cache 2

Tag State Data

LD 0xA1

Tag State Data

0xA I->S

Tag State Data

0xA S 3

2 ShReq 0xA

Tag State Sharers

0xA Sh {0}

Mem[0xA] = 3

4 ShResp 0xA, data=3

3

L13-11

MIT 6.823 Fall 2021

MSI Directory Protocol Example

October 25, 2021

Core 0

Main Memory

Cache 0

Tag State Data

0xA S 3

Directory
Tag State Sharers

0xA Sh {0}

Core 1

Cache 1

Tag State Data

Core 2

Cache 2

Tag State Data

LD 0xA1

Tag State Data

0xA I->S

Tag State Data

0xA S 3

2 ShReq 0xA

Tag State Sharers

0xA Sh {0,2}

Mem[0xA] = 3

4 ShResp 0xA, data=3

3

L13-12

MIT 6.823 Fall 2021

MSI Directory Protocol Example

October 25, 2021

Core 0

Main Memory

Cache 0

Tag State Data

0xA S 3

Directory
Tag State Sharers

0xA Sh {0,2}

Core 1

Cache 1

Tag State Data

Core 2

Cache 2

Tag State Data

0xA S 3

ST 0xA1

Tag State Data

0xA I->M

Tag State Data

0xA I 3

2 ExReq 0xA

Tag State Sharers

0xA Ex {1}

Mem[0xA] = 35

3 InvReq 0xA3 InvReq 0xA

4 InvResp 0xA 4 InvResp 0xA

6
ExResp 0xA
data = 3

Tag State Data

0xA I 3

Tag State Data

0xA M 5

L13-13

MIT 6.823 Fall 2021

MSI Directory Protocol Example

October 25, 2021

Core 0

Main Memory

Cache 0

Tag State Data

0xA I 3

Directory
Tag State Sharers

0xA Ex {1}

Core 1

Cache 1

Tag State Data

0xA M->I 5

Core 2

Cache 2

Tag State Data

ST 0xB1

Tag State Data

0xA I 3

Tag State Data

0xB I->M

4 WbResp 0xA

Tag State Sharers

0xA Un {}

2 WbReq 0xA, data=5

Mem[0xA] = 53

5 ExReq 0xB

Mem[0xB] = 106

Tag State Sharers

0xB Ex {1}

Tag State Data

0xB M 10

7 ExResp 0xB, data=10

Why are 0xA’s wb and 0xB’s req serialized? Structural dependence

Possible solutions? Buffer outside of cache to hold write data
L13-14

MIT 6.823 Fall 2021

Miss Status Holding Register

• On eviction/writeback
– No free MSHR entry: stall

– Allocate new MSHR entry

– When channel available send WBReq and data

– Deallocate entry on WBResp

October 25, 2021

AddrXV Data

MSHR entry

MSHR – Holds load misses and writes outside of cache

L13-15

MIT 6.823 Fall 2021

Miss Status Holding Register

• On cache load miss
– No free MSHR entry: stall

– Allocate new MSHR entry

– Send ShReq (or ExReq)

– On *Resp forward data to CPU and cache

– Deallocate MSHR

October 25, 2021

AddrXV Data

MSHR entry per ld/st slots

MSHR – Holds load misses and writes outside of cache

Inum
Block
Offset

L/S

L13-16

MIT 6.823 Fall 2021

Miss Status Holding Register

• On cache load miss
– Look for matching address in MSHRs

• If not found

– If no free MSHR entry: stall

– Allocate new MSHR entry and fill in

• If found, just fill in per ld/st slot

– Send ShReq (or ExReq)

– On *Resp forward data to CPU and cache

– Deallocate MSHR

October 25, 2021

AddrXV Data

MSHR entry per ld/st slots

MSHR – Holds load misses and writes outside of cache

Inum
Block
Offset

L/SV

Inum
Block
Offset

L/SV

Inum
Block
Offset

L/SV

Per ld/st slots allow servicing multiple requests with one entry

L13-17

MIT 6.823 Fall 2021

Directory Organization

• Requirement: Directory needs to keep track of all
the cores that are sharing a cache block

• Challenge: For each block, the space needed to
hold the list of sharers grows with number of
possible sharers…

October 25, 2021 L13-18

MIT 6.823 Fall 2021

Flat, Memory-based Directories

• Dedicate a few bits of main memory to store the
state and sharers of every line

• Encode sharers using a bit-vector

October 25, 2021

Simple
 Slow
 Very inefficient with many processors (~P bits/line)

Sh

State Sharer Set

0 1 0 0 1 1 0 0

Main Memory

64 bytes 10 bits

L13-19

MIT 6.823 Fall 2021

Sparse Full-Map Directories

• Not every line in the system needs to be tracked –
only those in private caches!

• Idea: Organize directory as a cache

October 25, 2021

0xF00 Sh

Line Address State Sharer Set

0 1 0 0 1 1 0 0

 Low latency, energy-efficient
 Bit-vectors grow with # cores  Area scales poorly
 Limited associativity  Directory-induced invalidations

Directory Entry Format
Way 1 Way 2 Way 3 Way 4

L13-20

MIT 6.823 Fall 2021

Directory-Induced Invalidations

• To retain inclusion, must invalidate all sharers of an entry
before reusing it for another address

• Example: 2-way set-associative sparse directory

October 25, 2021

Core 0

Main Memory

Cache 0

Tag State Data

0xA S 3

Directory
Tag State Sharers

0xA Sh {0}

Core 1

Cache 1

Tag State Data

0xF M 1

Core 2

Cache 2

Tag State Data

LD 0xB1

Tag State Data

2 ShReq 0xB

Tag State Sharers

0xB Sh {2}

3

Tag State Sharers

0xF Ex {1}

InvReq 0xA
4 InvResp 0xA

6 ShResp 0xB,
data=5

Mem[0xB] = 55

Tag State Data

0xA I 3

How many entries should the directory have?

Tag State Data

0xB I->S

Tag State Data

0xB S 5

L13-21

MIT 6.823 Fall 2021

Inexact Representations of Sharer Sets

• Coarse-grain bit-vectors (e.g., 1 bit per 4 cores)

• Limited pointers: Maintain a few sharer pointers, on overflow
mark ‘all’ and broadcast (or invalidate another sharer)

• Allow false positives (e.g., Bloom filters)

October 25, 2021

 Reduced area & energy
 Overheads still not scalable (these techniques simply play with

constant factors)
 Inexact sharers  Broadcasts, invalidations or spurious

invalidations and downgrades

Sharer Set

Sharer Set 80 14 33

all sharer 1 sharer 2 sharer 3

0

8-11

0

4-7

0

0-3

0

12-15

0

16-19

0

20-23

L13-22

MIT 6.823 Fall 2021

Protocol Races

• Directory serializes multiple requests for the same address
– Same-address requests are queued or NACKed and retried

• But races still exist due to conflicting requests

• Example: Upgrade race

October 25, 2021

Core 0

Main Memory

Cache 0

Tag State Data

0xA S 3

Directory
Tag State Sharers

0xA Sh {0,2}

Core 1

Cache 1

Tag State Data

0xA S 3

ST 0xA1’

2 ExReq 0xA
3 InvReq 0xA

Tag State Data

0xA S->M 3

ST 0xA1

2’ ExReq 0xA

ReqQ

1, ExReq 0xA

Tag State Data

0xA S->M 3

Caches 0 and 1 issue
simultaneous ExReqs

Directory starts serving
cache 0’s ExReq,
queues cache 1’s

Cache 1 expected
ExResp, but got InvReq!

Cache 1 should
transition from S->M to
I->M and send InvResp

L13-23

MIT 6.823 Fall 2021

Extra Hops and 3-Hop Protocols
Reducing Protocol Latency

• Problem: Data in another cache needs to pass
through the directory, adding latency

• Optimization: Forward data to requester directly

October 25, 2021

Core 0

Main Memory

Cache 0

Tag State Data

0xA M 3

Directory
Tag State Sharers

0xA Ex {0}

Core 1

Cache 1

Tag State Data

Core 2

Cache 2

Tag State Data

ST 0xA1

Tag State Data

0xA I->M

Tag State Data

0xA I 3

2 ExReq 0xA

Tag State Sharers

0xA Ex->Ex {2}

3 ExFwd 0xA, req=2

Tag State Data

0xA M 3

3 ExResp 0xA,
data=3

ExAck 0xA4

Tag State Sharers

0xA Ex {2}

L13-24

MIT 6.823 Fall 2021

Coherence in Multi-Level Hierarchies

• Can use the same or different protocols to keep coherence
across multiple levels

• Key invariant: Ensure sufficient permissions in all
intermediate levels

• Example: 8-socket Xeon E7 (8 cores/socket)

October 25, 2021

Core 0

Main Memory

L1I

L3

L1D

L2

Core 7

L1I L1D

L2

…

Chip 0

Core 0

L1I

L3

L1D

L2

Core 7

L1I L1D

L2

…

Chip 7

…

Interconnect

MESI protocol
L3 in-cache directory

MESIF protocol
Snooping (QPI)

Main Memory

L13-25

MIT 6.823 Fall 2021

In-Cache Directories

• Common multicore memory hierarchy:
– 1+ levels of private caches

– A shared last-level cache

– Need to enforce coherence
among private caches

• Idea: Embed the directory
information in shared cache
tags
– Shared cache must be inclusive

October 25, 2021

Core 0

Main Memory

Private
cache

Shared cache

Private
cache

Core 1

Private
cache

Core N

Avoids tag overheads & separate lookups
 Can be inefficient if shared cache size >>

sum(private cache sizes)

…

L13-26

MIT 6.823 Fall 2021

re
q

Avoiding Protocol Deadlock

• Protocols can cause deadlocks even if network is
deadlock-free! (more on this later)

• Solution: Separate virtual networks
– Different sets of virtual channels and endpoint buffers

– Same physical routers and links

• Most protocols require at least 2 virtual networks
(for requests and replies), often >2 needed

October 25, 2021

Node 0 Node 1

re
q

re
q

re
q

re
q

re
q

re
q

re
q

resp

resp

Example: Both nodes
saturate all intermediate
buffers with requests to each
other, blocking responses
from entering the network

L13-27

MIT 6.823 Fall 2021

Coherence and Synchronization

October 25, 2021

Cache coherence protocols will cause mutex to ping-pong
between P1’s and P2’s caches.

Ping-ponging can be reduced by first reading the mutex location
(non-atomically) and executing a swap only if it is found to be
zero (test&test&set).

cache

Processor 1
R  1

L: swap (mutex), R;
if <R> then goto L;

<critical section>
M[mutex]  0;

Processor 2
R  1

L: swap (mutex), R;
if <R> then goto L;

<critical section>
M[mutex]  0;

CPU-Memory Bus

cache cache

Processor 3
R  1

L: swap (mutex), R;
if <R> then goto L;

<critical section>
M[mutex]  0;

mutex=1

L13-28

MIT 6.823 Fall 2021

Implementing Atomic Instructions

October 25, 2021

• In general, an atomic read-modify-write instruction
requires two memory operations without intervening
memory operations by other processors

• Implementation options:
• With snoopy coherence, lock the bus  expensive
• With directory-based coherence, lock the line in the cache

(prevent invalidations or evictions until atomic op finishes)
 complex

• Modern processors often use
load-reserve
store-conditional

L13-29

MIT 6.823 Fall 2021

Load-reserve & Store-conditional

October 25, 2021

If the cache receives an invalidation to the address
in the reserve register, the reserve bit is set to 0

• Several processors may reserve ‘a’ simultaneously
• These instructions are like ordinary loads and stores
with respect to the bus traffic

Special register(s) to hold reservation flag and
address, and the outcome of store-conditional

Load-reserve R, (a):
<flag, adr>  <1, a>;
R  M[a];

Store-conditional (a), R:
if <flag, adr> == <1, a>
then cancel other procs’

reservation on a;
M[a] <R>;
status succeed;

else status fail;

L13-30

MIT 6.823 Fall 2021

Load-Reserve/Store-Conditional

Swap implemented with Ld-Reserve/St-Conditional

Swap(R1, mutex):

L: Ld-Reserve R2, (mutex)

St-Conditional (mutex), R1

if (status == fail) goto L

R1 <- R2

October 25, 2021 L13-31

MIT 6.823 Fall 2021

Performance:
Load-reserve & Store-conditional

October 25, 2021

The total number of coherence transactions is
not necessarily reduced, but splitting an atomic
instruction into load-reserve & store-conditional:

• increases utilization (and reduces
processor stall time), especially in split-
transaction buses and directories

• reduces cache ping-pong effect because
processors trying to acquire a semaphore do
not have to perform stores each time

L13-32

L13-33MIT 6.823 Fall 2021

Thank you!

Next Lecture:
Consistency and

Relaxed Memory Models

October 25, 2021

