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Box-to-box

networks
Board-to-board
networks

Chip-to-chip
networks

On-chip
networks

Multi-Chip: Supercomputers, Data Centers, Internet Routers, Servers
On-Chip: Servers, Laptops, Phones, HDTVs, Access routers

Focus on on-chip networks connecting caches
in shared-memory processors
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Home node 
for address A

Sharer that
holds a copy of

address A in its $

On-Chip Network

P $ P $ P $ P $

P $
P $ P $

P $

Load reg1, addressA
A

Network transports cache coherence messages 
and cache lines between processor cores

E.g. Cache-coherent chip multiprocessor
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• Topology

• Routing

• Flow control

• Router 
microarchitecture

router
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Interconnection Network Architecture 

• Topology: How to connect the nodes up? 
(processors, memories, router line cards, …)

• Routing: Which path should a message take?

• Flow control: How is the message actually 
forwarded from source to destination?

• Router microarchitecture: How to build the routers?

• Link microarchitecture: How to build the links?
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Topology
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Topological Properties

• Diameter

• Average Distance

• Bisection Bandwidth
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Topological Properties

• Routing Distance - number of links on route

• Diameter - maximum routing distance

• Average Distance

• A network is partitioned by a set of links if their 
removal disconnects the graph

• Bisection Bandwidth is the bandwidth crossing a 
minimal cut that divides the network in half
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Linear Array

Torus

Torus arranged to use short wires

N-1

N/3-1/(3N)

1

N/2  (if even N)

N/4  (if even N)

2
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Multidimensional Meshes and Tori

• d-dimensional array

– n = kd-1 x ... x kO nodes

– described by d-vector of coordinates (id-1, ..., iO)

• d-dimensional k-ary mesh: N = kd

– k = dN
– described by d-vector of radix k coordinate 

• d-dimensional k-ary torus (or k-ary d-cube)
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Packet: Basic unit of routing and sequencing
- Limited size (e.g. 64 bits – 64 KB)

Flit (flow control digit): Basic unit of bandwidth/storage allocation
- All flits in packet follow the same path

Phit (physical transfer digit): data transferred in single clock

Why flits?
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Packet: Basic unit of routing and sequencing
- Limited size (e.g. 64 bits – 64 KB)

Flit (flow control digit): Basic unit of bandwidth/storage allocation
- All flits in packet follow the same path

Phit (physical transfer digit): data transferred in single clock

For variable
packet sizes

Why flits?
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Routing vs Flow Control

• Routing algorithm chooses path that packets should 
follow to get from source to destination

• Flow control schemes allocate resources (buffers, 
links, control state) to packets traversing the 
network

• Our approach: Bottom-up
– Today: Flow control, assuming routes are set

– Next lecture: Routing algorithms

November 1, 2021 L15-13
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Properties of Routing Algorithms

• Deterministic/Oblivious
– Route determined by (source, dest), not intermediate state (i.e. 

traffic)

• Adaptive
– Route influenced by traffic along the way

• Minimal
– Only selects shortest paths

• Deadlock-free
– No traffic pattern can lead to a situation where no packets move 

forward

November 1, 2021

(more in next lecture)
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Flow Control
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Contention

• Two packets trying to use the same link at the same time

– Limited or no buffering

• Problem arises because we are sharing resources

– Sharing bandwidth and buffers

November 1, 2021 L15-16
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Flow Control Protocols

• Bufferless
– Circuit switching

– Dropping

– Misrouting

• Buffered
– Store-and-forward

– Virtual cut-through

– Wormhole

– Virtual-channel
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Flow Control Protocols

• Bufferless
– Circuit switching

– Dropping

– Misrouting

• Buffered
– Store-and-forward

– Virtual cut-through

– Wormhole

– Virtual-channel
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Complexity
&

Efficiency

+

-
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Circuit Switching

• Form a circuit from source to dest

• Probe to set up path through network

• Reserve all links

• Data sent through links

• Bufferless

November 1, 2021 L15-18
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Time-space View: Circuit Switching
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Request

• Why is this good?

• Why is it not?

Acknowledgement
Deallocation

Simple to implement

Wasteful, 3x latency
for short packets
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Speculative Flow Control: Dropping

• If two things arrive and I don’t have resources, 
drop one of them

• Flow control protocol on the Internet
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drop
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Time-space Diagram: Dropping
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Retransmission

Unable to allocate channel 3 Disadvantages?

Poor tradeoff of traffic 
and buffering
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Misrouting

• If only one message can enter the network at each 
node, and one message can exit the network at 
each node, the network can never be congested. 
Right?
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• If only one message can enter the network at each 
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Right?
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Less Simple Flow Control: 
Misrouting

• If only one message can enter the network at each 
node, and one message can exit the network at 
each node, the network can never be congested. 
Right?

• Philosophy behind misrouting:
intentionally route away from
congestion

• No need for buffering

• Problems?

November 1, 2021

Wrong! Multiple hops cause congestion

Livelock: need to guarantee
that progress is made
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Buffered Routing

• Link-level flow control:
– Given that you can’t drop packets, how to manage the buffers? 

When can you send stuff forward, when not?

• Metrics of interest:
– Throughput/Latency

– Buffer utilization (turnaround time)

November 1, 2021

Router
A

Router
BB
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e
r

B
u
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Techniques for link backpressure

• Naïve stall-based (on/off):
– Can source send or not?

• Sophisticated stall-based (credit-based):
– How many flits can be sent to the next node?

• Speculative (ack/nack):
– Guess can always send, but keep copy

– Resolve if send was successful (ack/nack)

• On ack – drop copy

• On nack - resend

November 1, 2021 L15-24
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Store-and-Forward (packet-based, 
no flits)

• Strategy:
– Make intermediate stops and wait until the entire 

packet has arrived before you move on

• Advantage:
– Other packets can use intermediate links

November 1, 2021 L15-25
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Time-space View: Store-and-
Forward

November 1, 2021

• Buffering allows packet to wait for channel 

• Drawback?
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Time-space View: Store-and-
Forward

November 1, 2021

• Buffering allows packet to wait for channel 

• Drawback? Serialization latency experienced at
each hop/channel

Could be allocated at a much later time without packet dropping
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Virtual Cut-through (packet-based)

• Why wait till entire message has arrived at each 
intermediate stop?

• The head flit of the packet can dash off first

• When the head gets blocked, whole packet gets 
blocked at one intermediate node

• Used in Alpha 21364
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Time-space View:
Virtual Cut-through
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• Advantages?

• Disadvantages?
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Time-space View:
Virtual Cut-through

November 1, 2021

• Advantages?

• Disadvantages?

No breaks
allowed

Lower latency

Buffers allocated in packets
 large buffers & low utilization

Channels allocated in packets
 unfairness & low utilization
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Flit-Buffer Flow Control: Wormhole

• When a packet blocks, just block wherever the 
pieces (flits) of the message are at that time.

• Operates like cut-through but with channel and 
buffers allocated to flits rather than packets
– Channel state (virtual channel) allocated to packet so body flits 

can follow head flit

November 1, 2021 L15-29
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Time-space View: Wormhole
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• Advantages?

• Disadvantages?

Smaller amount of buffer space
required

May block a channel mid-packet, 
another packet cannot use bandwidth
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Virtual-Channel (VC) Flow Control

• When a message blocks, instead of holding
on to links so others can’t use them,
hold on to virtual links

• Multiple queues in buffer storage
– Like lanes on the highway

• Virtual channel can be thought of as channel state 
and flit buffers
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Time-space View: Virtual-Channel
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• Advantages?

• Disadvantages?

# flits in 
VC buffer 
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Significantly reduces blocking

# flits in 
VC buffer 
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Time-space View: Virtual-Channel
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• Advantages?

• Disadvantages? More complex router, 
fair VC allocation required

Significantly reduces blocking

# flits in 
VC buffer 
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Thank you!

Next Lecture:

Router (Switch) Microarchitecture

Routing Algorithms

November 1, 2021


