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GPU Usage for ImageNet Challenge
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CPU vs. GPU Performance

B Intel E5-2620v3 [l Pascal Titan X (no cuDNN) Pascal Titan X (cuDNN 5.1)
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Data from https:/github.com/jcjohnson/cnn-benchmarks

Ratio of (partially-optimized) CPU vs. CUDA library (cuDNN)

Source: Stanford CS231n
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Opportunities

From EE Times — September 27, 2016

“Today the job of training machine learning models is limited by
compute, if we had faster processors we’d run bigger models...in
practice we train on a reasonable subset of data that can finish in a
matter of months. We could use improvements of several orders of
maghnitude — 100x or greater.”

— Greg Diamos, Senior Researcher, SVAIL, Baidu

ACM'’s Celebration of 50 Years of the ACM Turing Award (June 2017)
“Compute has been the oxygen of deep learning”

— llya Sutskever, Research Director of Open Al
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Compute Demands Growing Exponentially
AlexNet to AlphaGo Zero: A 300,000x Increase in Compute

-
Deep and steep

Computing power used in training Al systems
Days spent calculating at one petaflop per second*, log scale

2 3.4-month 100
By fundamentals AlphaGo Zero becomes its own —(9)'/ doubling 10
OLlanguage ®Speech @ Vision teacher of the game Go o,
O Games @ Other '/)O 1
AlexNet, image classification with ﬁgo 0.1
deep convolutional neural networks —@ :
o/
’ 0.01
o o O
85 0.001
o -=-="0
. 0.0001
Two-year doubling  _.oe~ ®
(Moore's Law) - 0.00001
- € Firstera > -> Modern era 0.000001
_./ Perceptron, a simple artificial neural network 0.0000001
I I I I I I I
1960 70 80 90 2000 10 20
Source: OpenAl *1 petaflop=10"* calculations

The Economist
Source: https://www.economist.com/technology-quarterly/2020/06/11/the-cost-of-training-machines-is-becoming-a-problem
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Compute Demands for Deep Neural Networks

Common carbon footprint benchmarks
in Ibs of CO2 equivalent

Roundtrip flight b/w NY and SF

(1 passenger) ‘ 1,984

Human life (avg. 1 year) I 11,023
American life (avg. 1 year) . 36,156

US car including fuel (avg. 1
lifetime) 126,000
Transformer (213M

parameters) w/ neural 626,155

architecture search

Chart: MIT Technology Review - [Strubell, ACL 2019]
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Compute Challenges for Self-Driving Cars
SELEDRIVING CARS USE CRAZY

NI W R 4 D

BECOMING A PROBLEM (Feb 2018)

Cameras and radar generate ~6
gigabytes of data every 30 seconds.

Prototypes use around 2,500 Watts.
N Generates wasted heat and some
prototypes need water-cooling!

speed around a track autonomously
NOV@rﬁﬁérmlwf,/'QoznlsalNcmm POST/GETTY IMAGES L ““ 2021 |_20-7



Software Companies are Building HW

Che New Nork Cimes

Chips Off the Old Block: Computers Are
Taking Design Cues From Human Brains

New technologies arc testing the limits of computer semiconductors.
“To deal with that, researchers have gone looking for ideas from nature.

Google's custom TPU machine
learning accelerators are now
available in beta

Cloud TPU

Chips Off the Old Block: Computers Are
Taking Design Cues From Human Brains
(September 16, 2017)

After training a speech-recognition algorithm,
for example, Microsoft offers it up as an online
service, and it actually starts identifying
commands that people speak into their
smartphones. G.P.U.s are not quite as
efficient during this stage of the process.
So, many companies are now building
chips specifically to do what the other
chips have learned.

Google built its own specialty chip, a Tensor
Processing Unit, or T.P.U. Nvidia is building a
similar chip. And Microsoft has
reprogrammed specialized chips from
Altera, which was acquired by Intel, so that it
too can run neural networks more easily.
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HW Beyond Cloud Computin
m T E] E E] lusk Says Tesla Is Building Its Own Chip for Autopilot
(@ TecHncA mr o o o os oo

TOM SIMONITE BUSINESS 12.08.17 01:09 PM
TWO SOCS IS BETTE

MUSK SAYS TESLA IS BUILDING | Suxprise! The Pixel2is hiding a custom
[TS OWN GHIP FOR AUTOPILOT § v s s i

RON AMADEO - 10/17/2017, 9:00 AM

IPU IPU
Core 2 Core 1

IPU IPU
Core 4 Core 3

IPU IPU
Core 6 Core 5

1PU IPU
' "Core8 | Core 71!

a
on Musk disclosed plan er its self-driving functic Enlarge / Google's Pixel Visual Core, an SoC designed for image processing and machine learning.

E_\ s for Te to design its own chip driving
Nov§dgar Moeidia, Intel, Qualcomm...] Fall 2021 120-9



Growing Demand for HW Desi

Bloomberg Markets Tech Pursuits Politics Opinion Businessweek

High-level Synthesis Design Engineer, Consumer Hardware

Google
a Mountain View, CA, US
In this role, you will use your software engineering expertise to help solve complex problems, design and optimize
= algorithms (for example in the domains of machine learning, ... careers.google.com
FacebookIs FormingaTeamto Q1@ o
] 5 days ago
Design lts Own Chips
eSIgn ts wn Ips ASIC Design Verification Engineer, Consumer Hardware
G Google
By Mark Gurman, lanKing, and SarahFrier Mountain View, CA, US
g % Experience verifying digital logic at the Register Transfer Level (RTL) using SystemVerilog for FPGAs, ASICs, and/or
April 18, 2018, 3:49 PM EDT SoCs. Experience with image processing, computer vision, and... careers.google.com
T 373 company alumni work here
. s . 5d
— Social network could use semiconductors for consumer devices AREEE
— Move follows Apple’s chip efforts, early work by Google Global ASIC/SoC Sourcing Manager, Consumer Hardware
’ Google
a Mountain View, CA, US

7 years of experience of ASIC and/or SoC sourcing Management or supply chain management experience in
commercial sourcing roles with particular experience in silicon and ... careers.google.com

% 44 connections work here
fGCEbOOk Sign Up 5 days ago

Work at Facebook Teams Locations University Students Benefits Facebook Life C

HW Development Manager, FPGA and ASIC IP design - CSI / Azure - Cloud
.. Server Infrastructure

Infrastructure Bl vicoson

Bellevue, WA, US
Microsoft is seeking a highly motivated, FPGA and ASIC IP design engineering manager to build innovative FPGA-

ASIC & FPGA D = E 0 based computing systems within a large design team. The group will ... careers.microsoft.com
eS]-gn ng‘]-rleer m 13 connections work here

(Menlo Park, CA) 1 month ago
Facebook’s mission is to give people the power to build community and bring the world closer Physical Design Engineer
together. Through our family of apps and services, we're building a different kind of company .. Microsoft

Redmond, WA, US

that connects billions of people around the world, gives them ways to share what matters 1-2 years of experience in ASIC physical design flows and methodologies. Job responsibilities will entail taking RTL

most to them, and helps bring people closer together. Whether we're creating new products logic through a full ASIC design flow. Worked with toolsets ... careers.microsoft.com
or helping a small business expand its reach, people at Facebook are builders at heart. Our m 13 connections work here
global teams are constantly iterating, solving problems, and working together to empower 2 weeks ago

people around the world to build community and connect in meaningful ways. Together, we

Naveﬂmﬁplkzwlaﬁﬁﬂger communities — we're just getting started. 23 Fall 2021 L20-10



Startups Building Custom Hardware

Che N cwlork’eﬁmc

Blg Bets On A.l. Open a New Frontier for
Chlps Start-Ups, Too. (January 14, 2018)

“Today, at least 45 start-ups are working

" | on chips that can power tasks like speech

“| and self-driving cars, and at least five of them
| have raised more than $100 million from

Y investors. Venture capitalists invested
more than $1.5 billion in chip start-ups
last year, nearly doubling the investments
made two years ago, according to the
research firm CB Insights.”
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Convolution (CONV) Layer

Input fmaps (N)

Output fmaps (N)

Filter Weights c’
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CONV Computation

input fmap output fmap
filters v
T3/ i
> || 2 o
|1

—2— i i Incomplete partial sum
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CONV Computation

Cycle through input fmap and weights (hold psum of output fmap)

input fmap output fmap
filters N
i [ st
] 8
2 2 A
111
«— 2 — < 2
3/ Filter overlay
Tt i
2
iE
—2— i | Incomplete partial sum
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CONV Computation

Cycle through input fmap and weights (hold psum of output fmap)

input fmap output fmap
filters N
3 , —
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—2— i | Incomplete partial sum
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CONV Computation

Cycle through input fmap and weights (hold psum of output fmap)

input fmap output fmap
filters —
T3/ ||
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«— 2 — | < 2
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l 8 T
— 2 — : i Incomplete partial sum
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CONV Computation

Cycle through input fmap and weights (hold psum of output fmap)

input fmap output fmap
filters . v
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8
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CONV Computation

Start processing next output feature activations

3 input fmap output fmap
filters 1
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CONV Computation

Cycle through input fmap and weights (hold psum of output fmap)

input fmap output fmap
filters 1
b S|
! 6T
2 T
111
<« 2 — | < 2
3 Filter overlay
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CONV Computation

Cycle through input fmap and weights (hold psum of output fmap)

input fmap output fmap
filters 1
Tls/’ I :' -
! 8
2 T
111
<« 2 — | < 2
37 Filter overlay
i
2
/18 I
— 2 — : i Incomplete partial sum
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CONV Computation

Cycle through input fmap and weights (hold psum of output fmap)

input fmap output fmap
filters
‘3/' ,
8

| [ L
111

<« 2 — | < 2

3 Filter overlay
l ___________________
I8

—2— i | Incomplete partial sum
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CONV Layer Implementation

Naive 7-layer for-loop implementation:

for n in [0©..N):

f i ..M):
R S OANN for each output fmap value
for p in [0..P):

convolve
a window
and apply
activation

November 17, 2021

O[n][mIlpllal = B[m];
for r in [0..R):
for s in [0..S):
for c in [0..C):
O[n][mIlpllal += I[n]l[c][Up+r][Ug+s] x F[m][c][r][s];
}

}

o[n][m][p]lal = Activation(O[n][m][p]1[q]);

MIT 6.823 Fall 2021 L20-22



CNN Decoder Ring

N — Number of input fmaps/output fmaps (batch size)

 C — Number of channels in input fmaps (activations) &
filters (weights)

 H — Height of input fmap (activations)

« W — Width of input fmap (activations)

R — Height of filter (weights)

« S — Width of filter (weights)

M — Number of channels in output fmaps (activations)
« P — Height of output fmap (activations)

* Q — Width of output fmap (activations)

« U — Stride of convolution

November 17, 2021 MIT 6.823 Fall 2021 L20-23



CONV Variants

-Depthwise layer - M == C and Y, -, Fomrs=0
-Pointwise layer- R == S == 1

- Matrix multiply - R == S == 1 and flatten H/W
- Compress (pointwise)- M < Cand R == S ==1

- Expand (pointwise)- M > Cand R == S == 1

Compress...Expand sequences are called a “bottleneck”

November 17, 2021 MIT 6.823 Fall 2021 L20-24



Architecture Metrics

« Speed — The rate at which the hardware finishes tasks. Limited by the number of
computation units and their utilization.

« Energy — The total energy, e.g., in Joules, consumed to perform a task. Often
constrained by battery capacity or desire to reduce carbon footprint.

« Power — The rate at which energy is consumed. Often limited by delivery or
packaging constraints

« Accuracy — The precision of the results produced. Can be dictated by bit width of
compute units.

» Flexibility — The range of problems that can be solved, which is constrained by the
limitations of the architecture.

November 17, 2021 MIT 6.823 Fall 2021 L20-25



Deep Learning Platforms

- CPU
— Intel, ARM, AMD...

- GPU
— NVIDIA, AMD...

* Fine Grained Reconfigurable (FPGA)

— Microsoft BrainWave

« Coarse Grained Programmable/Reconfigurable

— Wave Computing, Plasticine, Graphcore...
« Application Specific
— Neuflow, *DianNao, Eyeriss, TPU, Cnvlutin, SCNN, ...

November 17, 2021 MIT 6.823 Fall 2021 L20-26



What is Moore’s Law

« CPU performance will double every two years*

« Chip performance will double every two years*
 The speed of transistors will double every two years*
« Transistors will shrink to half size every two years*

« Gate width will shrink in half every two years*

* Transistors per die will double every two years*

« The economic sweet spot for the number of devices
on a chip will double every two years*

*Or 18 months...

November 17, 2021 MIT 6.823 Fall 2021 L20-27



Technology Trends

7 b ; : . ; . ; : ‘

10 s : » s s s | " Transistors
6 i : : : : (thousands)
5|

10"

E : Single-thread
41 Performance

10 — (SpeciINT)
3 Frequency
2 : Typical Power

10 E (Watts)

1 : * Number of

10 3 ~ Cores
of 5

1975 1980 1985 1990 1995 2000 2005 2010 2015

Original data collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond and C. Batten
Dotted line extrapolations by C. Moore

Source: C Moore, Data Processing in ExaScale-ClassComputer Systems, Salishan, April 2011
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During the Moore + Dennard’s Law Era

November 17, 2021

Instruction-level parallelism (ILP) was
largely mined out by early 2000s

Voltage (Dennard) scaling ended in 2005
Hit the power limit wall in 2005

Performance is coming from parallelism
using more transistors since ~2007

But....

MIT 6.823 Fall 2021
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Technology Trends

I Stuttering | Chipintroduction
® Transistors per chip, ‘000 ® Clock speed (max), MHz ® Thermal design power*, w dates, selected

Transistors bought per $, m

‘Pentium&r Xeon | | Core 2 Duo

20
. Log scale
15 Pentium III 107
Pentium II
10 entium -
RTSERE &
5 Pentium ®
& @ @ g
—r—TT1T-T1T1—710 10
200204 06 08 10 12 15
8086 | 386
10°
4004
10
] T T T T ] 1 § L4 T ] I T T T I T T 1 | 1 | T I T | 1 T I 1 ] L] LJ T T ] 1 || 1 1 | 1 1 | 4 [ ].0‘l

1970 75 80 85 90 95 2000 05 10 15

Sources: Intel; press reports; Bob Colwell; Linley Group; IB Consulting; The Economist *Maximum safe power consumption
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The High Cost of Data Movement

Fetching operands more expensive than computing on them

64-bitDP (A e SRS DRAM
20pJ T 6 pJ | 256 pJ 16 nJ| _JEype

256-bit / LR Efficient
buses S| off-chip
link

256-bit access
8 kB SRAM

Image source: Bill Daly

Now the key is how we use our transistors most effectively.
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Data Movement is the Challenge

Memory Read : MAC" . Memory Write
filter weight . ALU|

fmap activation — -®_ , .
partial sum — » updated partial sum

* multiply-and-accumulate
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Data Movement is the Challenge

Memory Read MAC" Memory Write

L

L ALU|
DRAM - | DRAM

* multiply-and-accumulate

Worst Case: all memory R/W are DRAM accesses

« Example:  AlexNet [NeurlPS 2012] has 724M MACs
- 2896M DRAM accesses required

November 17, 2021 MIT 6.823 Fall 2021 L20-33



Data Movement is the Challenge

Memory Read MAC Memory Write

ALU

‘ Extra levels of local memory hierarchy

November 17, 2021 MIT 6.823 Fall 2021 L20-34



Data Movement is the Challenge

Memory Read MAC Memory Write

0 :®_ 'ALU

‘ Extra levels of local memory hierarchy

Opportunities: @) data reuse

November 17, 2021 MIT 6.823 Fall 2021 L20-35



Types of Data Reuse in DNN

Convolutional Reuse

CONYV layers only
(sliding window)

Filter In?ut Fmap

Bt ji

Reuse: Activations
" Filter weights
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Types of Data Reuse in DNN

Convolutional Reuse Fmap Reuse

CONYV layers only CONV and FC layers
(sliding window)

Filters

Filter In?ut Fmap ;lin[aut Fmap
>
— ’ ]
2 |7
Activations

R : Reuse: Activati
euse Filter weights u ctivations

\ Y
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T

es of Data Reuse in DNN

Convolutional Reuse

CONYV layers only
(sliding window)

Filter

*
*
ﬁ/

Input Fmap

*
*
*

2y

Activations
Filter weights

Reuse:

November 17, 2021

Fmap Reuse
CONV and FC layers

Filters

;linput Fmap
1 B o —

o o 2
> * /
rd
2 |

Reuse: Activations

MIT 6.823 Fall 2021

Filter Reuse

CONV and FC layers
(batch size > 1)

Input Fmaps

Filter

Reuse: Filter weights
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Data Movement is the Challenge

Memory Read MAC Memory Write

0 :®_ 'ALU

‘ Extra levels of local memory hierarchy

Opportunities: @) data reuse

0 Can reduce DRAM reads of filter/fmap by up to 500%™
** AlexNet CONV layers
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Data Movement is the Challenge

Memory Read

MAC

:®_ ALU

Memory Write

‘ Extra levels of local memory hierarchy ‘

Opportunities: @) data reuse @ local accumulation

0 Can reduce DRAM reads of filter/fmap by up to 500x
e Partial sum accumulation does NOT have to access DRAM

November 17, 2021

MIT 6.823 Fall 2021
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Data Movement is the Challenge

Memory Read MAC Memory Write

0 :®_ALU

‘ Extra levels of local memory hierarchy ‘

Opportunities: @) data reuse @ local accumulation

0 Can reduce DRAM reads of filter/fmap by up to 500x
e Partial sum accumulation does NOT have to access DRAM

« Example: DRAM access in AlexNet can be reduced
from 2896M to 61M (best case)

November 17, 2021 MIT 6.823 Fall 2021
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Leverage Parallelism for Higher Performance

Memory Read MAC Memory Write

@ ALU
:38_ ALU

38_ ALU
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Leverage Parallelism for Spatial Data Reuse

Memory Read MAC Memory Write

ALU

ALU

ALU
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1-D Convolution

Weights

R

*

Outputs

E = W-ceil(R/2)!

int
"t
int

for

Inputs

111 = [0

W
[W]; # Input activations
[S]; # Filter weights
[Q]; # Output activations
in [0, Q):

ROR-S in [ 0545 )
[a] += i[w]*f[s];

November 17, 2021

MIT 6.823 Fall 2021

T Assuming: ‘valid’ style convolution
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Output Stationary - Movie

Tensor: F[S]

Rank: S
0 1 2
8 5 2

Tensor: I[W]

Rank: W

Tensor: 0O[Q]

Rank: Q
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Output Stationary — Spacetime View

Tensor: F[S, T]

Rank: S

Tensor: I[W, T]

Rank: W

Tensor: O[Q, T]

Rank: Q
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1-D Output Stationary

l o’[q]
E
Update
q ™ i 0[q]
Cgen »| Coord Payload /——» F:{ | MAC
1
Partial Sums A i
4 [
1 1
[ oo ! i[w]
"

IXeN
o)

"+ O
&
O

Coord Payload

Input Activations

fs]

-> Coord e
Payload

Filter Weights
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Output Stationary (OS)

Global Buffer

Activation |

mmm-m

Psum

* Minimize partial sum R/W energy consumption
— maximize local accumulation

 Broadcast/Multicast filter weights and reuse
activations spatially across the PE array
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OS Example: ShiDianNao

Top-Level Architecture

___________________________________________________________________

. ShiDianNao:
| NBin:
0 |
,.5 o > Bank:#o
o (0} g
£ E Bank #2Py-1
| NBout:
' |» Bank #0
Bank #2Py-1
|, Bank #0
Bank #Py-1

-

Buffer Controller

* Inputs streamed through array

* Weights broadcast

PE Architecture

weights activations
IB: rnel Neuron PE(right) PE(bottom)
Declnder Inst. . PE B, MYV
NEU: | . operand ; | TH—b—8b L1 *
Py LG I = Al
Input
(Column)
Px >
e :
1’&‘335) Doley
Px*Py
Kernel
S L
 Partial sums accumulated in PE and streamed out
[Du et al., ISCA 2015]
MIT 6.823 Fall 2021 L20-49
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OS Example: KU Leuven

16x16b / 1x16b
Feature SRAM [ —[—T——
16 Features LF - | T FT O |~
% activations
16 WelghtS
16x16b — '
. 1 M| M M
weights = t==x —_
. S I MI[M| ... | M
= A[m][m] ... [m
- —

[Moons et al., VLSI 2016, ISSCC 2017]
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Many Dataflows

« Output Stationary (OS)

[Peemen, ICCD 2013] [ShiDianNao, /ISCA 2015]
[Gupta, /ICML 2015] [Moons, VLS/ 2016] [Thinker, VLS/ 2017]

 Weight Stationary (WS)

Chakradhar, ISCA 2010] [nn-X (NeuFlow), CVPRW 2014]

Park, ISSCC 2015] [ISAAC, ISCA 2016] [PRIME, /ISCA 2016]
TPU, ISCA 2017]

* Input Stationary (IS)
[Parashar (SCNN), ISCA 2017]

 Row Stationary (IS)
[Eyeriss, ISCA 2016] [Tetris ASPLOS 2017] [Eyeriss2, JETCAT 2019]

November 17, 2021
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Spatial Architecture for DNN

Local Memory Hierarchy

* Global Buffer
e Direct inter-PE network
* PE-local memory (RF)

Global Buffer (100 — 500 kB)

Processing
Element (PE)

Reg File 0.5-1.0kB

'----

Control
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And Other Design Options

Per storage level cross product of:

« Dataflow

« Split/Shared storage
« Tiling in time

« Tiling in space

 Bypassing

Plus
 Scale up

* Precision/Quantization

And flexibility!
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Thank you!

Next Lecture:
Accelerators (ll)
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