Accelerators (II)

Joel Emer

Massachusetts Institute of Technology Electrical Engineering \& Computer Science

Many problems use Sparse Tensors

[Extensor, Hegde, et.al., MICRO 2019]

Exploiting Sparsity

Exploiting Sparsity

Sparse data can be compressed

Exploiting Sparsity

Sparse data can be compressed
 Can save space and energy by avoiding manipulation of zero values

Exploiting Sparsity

Sparse data can be compressed
]
 Can save space and energy by avoiding manipulation of zero values

anything $\times 0=0$

Exploiting Sparsity

Sparse data can be compressed
]
 Can save space and energy by avoiding manipulation of zero values

anything $\times 0=0$

anything $+0=$ anything

Exploiting Sparsity

Sparse data can be compressed
 anything $\times 0=0$
 anything $+0=$ anything
 Can save space and energy by avoiding manipulation of zero values
 Can save time and energy by avoiding fetching unnecessary operands and avoiding ineffectual computations

Motivation in DNNs

- Leverage CNN sparsity to improve energy-efficiency

Exploitable Sparsity

Acceptable sparsity depends on target task and error tolerance

Hoefler et al. arXiv, 2021

Exploitable Sparsity

Acceptable sparsity depends on target task and error tolerance

Hoefler et al. arXiv, 2021

	Error Tolerance		
	$\leq 0 \%$	$\leq 1 \%^{*}$	$\leq 2 \%$
ResNet-50	$\sim 90 \%$	$\sim 90 \%$	$\sim 91 \%$
AlexNet			$\sim 93 \%$
VGG-16	$\sim 80 \%$	$\sim 88 \%$	$\sim 92 \%$
MobileNet V1	$\sim 72 \%$	$\sim 79 \%$	$\sim 82 \%$
Inception V3	$\sim 50 \%$	$\sim 62 \%$	$\sim 73 \%$
EfficientNet-B0			$\sim 52 \%$
MobileNet V2			$\sim 25 \%$

*MLPerf error tolerance

Hardware Sparse Acceleration Features

Hardware Sparse Acceleration Features

Format:
 $\rightarrow \square$ Choose tensor representations to save necessary storage spaces and energy associated zero accesses

Hardware Sparse Acceleration Features

Format:
 $\rightarrow \square<$
 Choose tensor representations to save necessary storage spaces and energy associated zero accesses

Gating:

Explicitly eliminate ineffectual storage accesses and computes by letting the hardware unit staying idle for the cycle to save energy

Hardware Sparse Acceleration Features

Format:
 $\rightarrow \square<$
 Choose tensor representations to save necessary storage spaces and energy associated zero accesses

Gating:

Explicitly eliminate ineffectual storage accesses and computes by letting the hardware unit staying idle for the cycle to save energy

Skipping:
Explicitly eliminate ineffectual storage accesses and computes by skipping the cycle to save energy and time

Hardware Sparse Acceleration Features

Format:

$\rightarrow \square$
Choose tensor representations to save necessary storage spaces and energy associated zero accesses

Gating:

Explicitly eliminate ineffectual storage accesses and computes by letting the hardware unit staying idle for the cycle to save energy

Skipping:

Explicitly eliminate ineffectual storage accesses and computes by skipping the cycle to save energy and time

What is the chosen format?

Do all tensors share the same format?

When is a storage access gated?

At which storage level is the skipping performed?

What is the criteria for skipping?

Hardware Sparse Acceleration Features

Format:
 $\rightarrow \square<$ Choose tensor representations to save necessary storage spaces and energy associated zero accesses

Gating:

Explicitly eliminate ineffectual storage accesses and computes by letting the hardware unit staying idle for the cycle to save energy

Skipping:
Explicitly eliminate ineffectual storage accesses and computes by skipping the cycle to save energy and time

1-D Output-Stationary Convolution

† Assuming: 'valid’ style convolution

1-D Output-Stationary Convolution

† Assuming: 'valid’ style convolution

1-D Output-Stationary Convolution

† Assuming: 'valid’ style convolution

1-D Output-Stationary Convolution

† Assuming: 'valid’ style convolution

1-D Output-Stationary Convolution

† Assuming: ‘valid’ style convolution

1-D Output-Stationary Convolution

† Assuming: ‘valid’ style convolution

1-D Output-Stationary Convolution

† Assuming: 'valid’ style convolution

1-D Output-Stationary Convolution

† Assuming: 'valid’ style convolution

1-D Output-Stationary Convolution

† Assuming: 'valid’ style convolution

1-D Output-Stationary Convolution


```
int i[W]; # Input activations
int w[S]; # Filter weights
int o[Q]; # Output activations
for q in [0..Q):
    for s in [0...S):
    o[q] += i[q+s]*f[s];
}}
```


1-D Output-Stationary Convolution


```
int i[W]; # Input activations
int w[S]; # Filter weights
int o[Q]; # Output activations
for q in [0..Q):
    for s in [0...S):
                        o[q] += i[q+s]*f[s];
}}
```

What opportunity(ies) exist if some of the filter weights are zero?

1-D Output-Stationary Convolution


```
int i[W]; # Input activations
int w[S]; # Filter weights
int o[Q]; # Output activations
for q in [0..Q):
    for s in [0...S):
                        o[q] += i[q+s]*f[s];
```

\}\}

What opportunity(ies) exist if some of the filter weights are zero?

Can avoid reading operands, doing multiply and updating output
† Assuming: 'valid' style convolution

1-D Output-Stationary Convolution

† Assuming: 'valid’ style convolution

1-D Output-Stationary Convolution

† Assuming: ‘valid’ style convolution

1-D Output-Stationary Convolution


```
int i[W]; # Input activations
int f[S]; # Filter weights
int o[Q]; # Output activations
for q in [0..Q):
    for s in [0..S):
    o[q] = i[q+s]*W[r];
}}
```


1-D Output-Stationary Convolution


```
int i[W]; # Input activations
int f[S]; # Filter weights
int o[Q]; # Output activations
for q in [0..Q):
    for s in [0..S):
    if (!f[s]) o[q] += i[q+s]*f[r];
}}
```


1-D Output-Stationary Convolution


```
int i[W]; # Input activations
int f[S]; # Filter weights
int o[Q]; # Output activations
for q in [0..Q):
    for s in [0..s):
    if (!f[s]) o[q] += i[q+s]*f[r];
}}
```

What did we save using the conditional execution?

1-D Output-Stationary Convolution


```
int i[W]; # Input activations
int f[S]; # Filter weights
int o[Q]; # Output activations
for q in [0..Q):
    for s in [0..s):
    if (!f[s]) o[q] += i[q+s]*f[r];
}}
```

What did we save using the conditional execution?

Energy

1-D Output-Stationary Convolution


```
int i[W]; # Input activations
int f[S]; # Filter weights
int o[Q]; # Output activations
for q in [0..Q):
    for s in [0..S):
                        if (!f[s]) o[q] += i[q+s]*f[r];
}}
```

What did we save using the conditional execution?
Energy
What didn't we save using the conditional execution?

1-D Output-Stationary Convolution


```
int i[W]; # Input activations
int f[S]; # Filter weights
int o[Q]; # Output activations
for q in [0..Q):
    for s in [0..S):
                        if (!f[s]) o[q] += i[q+s]*f[r];
}}
```

What did we save using the conditional execution?
What didn't we save using the conditional execution?

Energy

Time

Eyeriss - Clock Gating

Sparse Tensor Representation

Hardware Sparse Acceleration Features

Format:

$\rightarrow \square \leftarrow \begin{gathered}\text { Choose tensor representations to } \\ \text { save necessary storage spaces and }\end{gathered}$ energy associated zero accesses

Gating:

Explicitly eliminate ineffectual storage accesses and computes by letting the hardware unit staying idle for the cycle to save energy

Skipping:

Explicitly eliminate ineffectual storage accesses and computes by skipping the cycle to save energy and time

Tensor Data Terminology

- The elements of each "rank" (dimension) are identified by their "coordinates", e.g., rank H has coordinates 0, 1, 2
- Each element of the tensor is identified by the tuple of coordinates from each of its ranks, i.e., a "point". So $(1,2)$-> "f"

Tree-based Tensor Abstraction

Fibertree Tensor Abstraction

Each coordinate references a fiber

Fibertree Tensor Abstraction

Finding point $(2,1)$

Fibertree Tensor Abstraction

Fibertree Tensor Abstraction

Finding point $(2,1)$

Tensor Traversal (2-D)

```
# 2-D Tensor Traversal
t = Tensor(H,W)
sum = 0
for (h, t_h) in t:
    for (w, t_val) in t_h:
        sum += t_val
```


Tensor Traversal (2-D)

```
# 2-D Tensor Traversal
t = Tensor(H,W)
sum = 0
for (h, t_h) in t:
    for (w, t_val) in t_h:
        sum += t_val
```


Tensor Traversal (2-D)

```
# 2-D Tensor Traversal
t = Tensor(H,W)
sum = 0
for (h, t_h) in t:
    for (w, t_val) in t_h:
        sum += t_val
```

Each iteration returns a (coordinate, payload) tuple

t_pos	h	t_h_pos	\mathbf{w}	t_val
0	0	$?$	$?$	$?$
0	0	0	0	a
0	0	1	2	c
1	2	$?$	$?$	$?$
\ldots	\ldots	\ldots	\ldots	\ldots

Tensor Traversal (2-D)

$$
\begin{aligned}
& \text { \# 2-D Tensor Traversal } \\
& t=\operatorname{Tensor}(H, W) \\
& \text { sum }=0 \\
& \text { for }\left(h, t _h\right) \text { in } t: \\
& \text { for }\left(w, t _v a l\right) \text { in } t _h: \\
& \quad \text { sum }+=t _v a l
\end{aligned}
$$

Tensor Traversal (2-D)

$$
\begin{aligned}
& \text { \# 2-D Tensor Traversal } \\
& t=\text { Tensor }(H, W) \\
& \text { sum }=0 \\
& \text { for }\left(h, t _h\right) \text { in } t: \\
& \text { for }\left(w, t _v a l\right) \text { in } t _h: \\
& \quad \text { sum }+=t _v a l
\end{aligned}
$$

Tensor Traversal (2-D)

$$
\begin{aligned}
& \text { \# 2-D Tensor Traversal } \\
& t=\text { Tensor }(H, W) \\
& \text { sum }=0 \\
& \text { for }\left(h, t _h\right) \text { in } t: \\
& \text { for }\left(w, t _v a l\right) \text { in } t _h: \\
& \quad \text { sum }+=t _v a l
\end{aligned}
$$

Tensor Traversal (2-D)

$$
\begin{aligned}
& \text { \# 2-D Tensor Traversal } \\
& t=\text { Tensor }(H, W) \\
& \text { sum }=0 \\
& \text { for }\left(h, t _h\right) \text { in } t: \\
& \text { for }\left(w, t _v a l\right) \text { in } t _h: \\
& \quad \text { sum }+=t _v a l
\end{aligned}
$$

t_pos	h	t_h_pos	\mathbf{w}	t_val
0	0	$?$	$?$	$?$
0	0	0	0	a
0	0	1	2	c
1	2	$?$	$?$	$?$
\ldots	\ldots	\ldots	\ldots	\ldots

Tensor Traversal (2-D)

Concordant Traversal

Example Fiber Representations

Each fiber has a set of (coordinate, "payload") tuples

Data in a fiber is accessed by its position or offset in memory

Example Fiber Representations

Each fiber has a set of (coordinate, "payload") tuples
Array

Coordinate/Payload List

Data in a fiber is accessed by its position or offset in memory

Fiber Representation Choices

Fiber Representation Choices

- Implicit Coordinates
- Uncompressed (no metadata required)
- Compressed - e.g., run length encoded

Fiber Representation Choices

- Implicit Coordinates
- Uncompressed (no metadata required)
- Compressed - e.g., run length encoded
- Explicit Coordinates
- E.g., coordinate/payload list

Fiber Representation Choices

- Implicit Coordinates
- Uncompressed (no metadata required)
- Compressed - e.g., run length encoded
- Explicit Coordinates
- E.g., coordinate/payload list
- Compressed vs Uncompressed
- Compressed/uncompressed is an attribute of the representation*.
- Uncompressed means size is proportional to maximum coordinate value
- Compressed formats will have metadata overhead relative to uncompressed formats. For dense data, this may cost more than just using an uncompressed format.
- Space efficiency of a representation depends on sparsity

Fiber Representation Choices

- Implicit Coordinates
- Uncompressed (no metadata required)
- Compressed - e.g., run length encoded
- Explicit Coordinates
- E.g., coordinate/payload list
- Compressed vs Uncompressed
- Compressed/uncompressed is an attribute of the representation*.
- Uncompressed means size is proportional to maximum coordinate value
- Compressed formats will have metadata overhead relative to uncompressed formats. For dense data, this may cost more than just using an uncompressed format.
- Space efficiency of a representation depends on sparsity

> *Note: sparsity/density is an attribute of the data.

Uncompressed/Compressed Representation

Tensor Traversal (CSR Style)

```
# 2-D Tensor Traversal (CSR)
t_segs = Array(H)
t_coords = Array(W)
t_vals = Array(W)
sum = 0
for t_h_pos in [0,H):
    h = t_h_pos
    t_w_start = t_segs[t_h_pos]
    t_w_len = t_segs[t_h_pos+1]-t_w_start
    for t_w_pos in [t_w_start, t_w_len):
        h = t_coords[t_w_pos]
        t_val = t_vals[t_w_pos]
        sum += t_val
```


Tensor Traversal (CSR Style)

```
# 2-D Tensor Traversal (CSR)
t_segs = Array(H)
t_coords = Array(W)
t_vals = Array(W)
sum = 0
for t_h_pos in [0,H):
    h = t_h_pos
    t_w_start = t_segs[t_h_pos]
    t_w_len = t_segs[t_h_pos+1]-t_w_start
    for t_w_pos in [t_w_start, t_w_len):
        h = t_coords[t_w_pos]
        t_val = t_vals[t_w_pos]
        sum += t_val
```


Tensor Traversal (CSR Style)

```
```


2-D Tensor Traversal (CSR)

```
```


2-D Tensor Traversal (CSR)

t_segs = Array(H)
t_segs = Array(H)
t_coords = Array(W)
t_coords = Array(W)
t_vals = Array(W)
t_vals = Array(W)
sum = 0
sum = 0
for t_h_pos in [0,H):
for t_h_pos in [0,H):
h = t_h_pos
h = t_h_pos
t_w_start = t_segs[t_h_pos]
t_w_start = t_segs[t_h_pos]
t_w_len = t_segs[t_h_pos+1]-t_w_start
t_w_len = t_segs[t_h_pos+1]-t_w_start
for t_w_pos in [t_w_start, t_w_len):
for t_w_pos in [t_w_start, t_w_len):
h = t_coords[t_w_pos]
h = t_coords[t_w_pos]
t_val = t_vals[t_w_pos]
t_val = t_vals[t_w_pos]
sum += t_val

```
```

 sum += t_val
    ```
```

For uncompressed rank coordinate equals position

CONV: Exploiting Sparse Weights

Hardware Sparse Acceleration Features

Format:
 $\rightarrow \square<$ Choose tensor representations to save necessary storage spaces and energy associated zero accesses

Gating:

Explicitly eliminate ineffectual storage accesses and computes by letting the hardware unit staying idle for the cycle to save energy

Skipping:

Explicitly eliminate ineffectual storage accesses and computes by skipping the cycle to save energy and time

```
i = Array(W) # Input activations
f = Tensor(S) # Filter weights
o = Array(Q) # Output activations
for (s, f_val) in f:
    for q in [0, Q):
        w = q + s
        o[q] += i[w] * f_val
```


Weight Stationary - Sparse Weights

```
i = Array(W) # Input activations
f = Tensor(S) # Filter weights
o = Array(Q) # Output activations
for (s, f_val) in f:
    for q in [0, Q):
    w = q + S
    o[q] += i[w] * f_val
```


Weight Stationary - Sparse Weights

```
i = Array(W) # Input activations
f = Tensor(S) # Filter weights
o = Array(Q)
# Output activations
```

for (s, f_val) in f:
for q in $[0, Q)$:
$w=q+s$
o[q] += i[w] * f_val

Weight Stationary - Sparse Weights

Cambricon-X - Activation Access

[^0]
To Extend to Other Dimensions of DNN

- Need to add loop nests for:
- 2-D input activations and filters
- Multiple input channels
- Multiple output channels

To Extend to Other Dimensions of DNN

- Need to add loop nests for:
- 2-D input activations and filters
- Multiple input channels
- Multiple output channels
- Add parallelism...

Fiber Splitting Equally in Position Space

Before Split Equal by 2

Fiber Splitting Equally in Position Space

Before Split Equal by 2

Fiber Splitting Equally in Position Space

Before Split Equal by 2

Grab first 2

Fiber Splitting Equally in Position Space

Before Split Equal by 2

Grab first 2

Fiber Splitting Equally in Position Space

Before Split Equal by 2

Grab next 2

Fiber Splitting Equally in Position Space

Before Split Equal by 2

Grab next 2

Fiber Splitting Equally in Position Space

Before Split Equal by 2

Grab next 2

Fiber Splitting Equally in Position Space

Before Split Equal by 2

Grab next 2

Fiber Splitting Equally in Position Space

Before Split Equal by 2

After Split Equal by 2

Parallel Weight Stationary - Sparse Weights

$$
\begin{aligned}
& \begin{array}{l}
i=\operatorname{Array}(W) \\
f=\operatorname{Tensor}(S) \\
o=\operatorname{Array}(Q) \quad \text { \# Filter weights } \\
\text { \# Output activations }
\end{array} \\
& \text { for (s1, f_split) in f.splitEqual(2): } \\
& \text { for q1 in [0, Q/4): } \\
& \text { parallel-for }\left(s 0, f _v a l\right) \text { in f_split: } \\
& \text { parallel-for q0 in }[0,4): \\
& q=q 1 * 4+q 0 \\
& w=q+s \\
& o[q]+=i[w] * f _v a l
\end{aligned}
$$

Parallel Weight Stationary - Sparse Weights

$$
\begin{aligned}
& \begin{array}{ll}
i=\operatorname{Array}(W) & \# \text { Input activations } \\
f=\operatorname{Tensor}(S) & \text { \# Filter weights } \\
o=\operatorname{Array}(Q) & \# \text { Output activations } \\
\text { for }\left(s 1, f _s p l i t\right) & \text { in } f . s p l i t E q u a l(2): \\
\text { for q1 in }[0, Q / 4): \\
\text { parallel-for }\left(s 0, f _v a l\right) \text { in } f _s p l i t: ~ \\
\text { parallel-for q0 in }[0,4): \\
q=q 1 * 4+q 0 \\
w=q+s \\
o[q]+=i[w] * f _v a l
\end{array}
\end{aligned}
$$

Get groups of two weights

Parallel Weight Stationary - Sparse Weights

```
i = Array(W) # Input activations
f = Tensor(S)
o = Array(Q)
for (s1, f_split) in f.splitEqual(2):
    for q1 in [0, Q/4):
        parallel-for (s0, f_val) in f_split:
        parallel-for q0 in [0, 4):
            q = q1*4 + q0
        w = q + s
        o[q] += i[w] * f_val
```


Parallel Weight Stationary - Sparse Weights

$$
\begin{aligned}
& \begin{array}{l}
i=\operatorname{Array}(W) \\
f=\operatorname{Tensor}(S)
\end{array} \quad \text { \# Input activations } \\
& o=\operatorname{Array}(Q) \quad \text { \# Output activations } \\
& \text { for (s1, f_split) in f.splitEqual(2): } \\
& \text { for q1 in [0, Q/4): } \\
& \text { parallel-for }\left(s 0, f _v a l\right) \text { in f_split: } \\
& \text { parallel-for q0 in }[0,4): \\
& q=q 1 * 4+q 0 \\
& w=q+s \\
& o[q]+=i[w] * f_{2} v a l
\end{aligned}
$$

Get groups of two weights

Work on two

Parallel Weight Stationary - Sparse Weights

```
i = Array(W) # Input activations
f = Tensor(S)
o = Array(Q)
# Filter weights
# Output activations
for (s1, f_split) in f.splitEqual(2):
    for q1 in [0, Q/4):
        parallel-for (s0, f_val) in f_split:
        parallel-for q0 in [0, 4):
        q = q1*4 + q0
        w = q + s
        o[q] += i[w] * f_val
Calculate coordinates
```


Parallel Weight Stationary - Sparse Weights

Parallel Weight Stationary - Sparse Weights

CONV: Exploiting Sparse Inputs \& Sparse Weights

Output Stationary - Sparse Weights \& Inputs

```
i = Tensor(W) # Input activations
f = Tensor(S) # Filter weights
o = Array(Q) # Output activations
for q in [0,Q):
    for (s, (f_val, i_val)) in f.project(+q) & i:
    o[q] += i_val * f_val
```


Fiber Coordinate Projection

Weights

fiber-projection

Fiber Coordinate Projection

Fiber Coordinate Projection

fiber-projection

Fiber Coordinate Projection

fiber-projection

Fiber Intersection

Output Stationary - Sparse Weights \& Inputs

Flattening Ranks

For efficiency one can form new representations where the data structure for two or more ranks are combined.

W

Flattening Ranks

For efficiency one can form new representations where the data structure for two or more ranks are combined.

W

Flattening Ranks

For efficiency one can form new representations where the data structure for two or more ranks are combined.

W

Flattening Ranks

For efficiency one can form new representations where the data structure for two or more ranks are combined.

W

Flattening Ranks

For efficiency one can form new representations where the data structure for two or more ranks are combined.

Flattening Ranks

For efficiency one can form new representations where the data structure for two or more ranks are combined.

Flattening Ranks

For efficiency one can form new representations where the data structure for two or more ranks are combined.

Row Stationary - Sparse Inputs \& Activations

```
i = Tensor(CW)
# Input activations (CW flattened)
f = Tensor(C,SM) # Filter weights (SM flattened)
o = Array(M, Q) # Output activations
for ((c, w), i_val) in i:
    f_c = f.getPayload(c)
    f_c_split = f_c.splitEven(2)
    parallel-for (_, f_sm) in f_c_split:
    for ((s, m), f_val) in f_sm if w-Q <= s < w:
    q = w - s
    o[m, q] += i_val * f_val
```


Row Stationary - Sparse Inputs \& Activations

Eyeriss V2 - Chen et.al., JETCAS 2018

Thank you!

Next Lecture: Transactional Memory

[^0]: Cambricon-X - Zhang et.al., Micro 2016

