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Security and Information Leakage

• Hardware isolation mechanisms like virtual memory 
guarantee that architectural state will not be directly 
exposed to other processes…but

• ISA and ABI are timing-independent interfaces, and
– Specify what should happen, not when

• ISA and ABS only specify architectural updates
– Micro-architectural changes are left unspecified

• …so implementation details and timing behaviors 
(e.g., microarchitectural state, power, etc.) may be 
used as channels to leak information!
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Message

Transmitter

Message

ReceiverChannel

• Transmitter accepts message

• Transmitter modulates channel

• Receiver detects modulation on channel

• Receiver decodes modulation as message.
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• Domains – Distinct architectural domains in which 
architectural state is not shared.

• Channel – some “state” that can be changed, i.e., modulated, 
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Communication Model of Attacks
[Belay, Devadas, Emer]

1. Transmitter “accesses” secret

2. Transmitter modulates channel with a message 
based on secret

3. Receiver detects modulation on channel

4. Receiver decodes modulation as a message 
containing the secret
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ATM Acoustic Channels

• Secret: Pin

• Transmitter: Keypad

• Channel: Air

• Modulation: Acoustic waves

• Receiver: Cheap Microphone

• Decoders: ML Model
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• What can the adversary observe?

Processor

Power, EM, 

sound…

Attacker requires 
measurement 
equipment à

physical access

Processor Response 

time

Attacker may be 
remote (e.g., over 

an internet 
connection)

Physical 

channels

Timing channels

Processor

Attacker may be 
remote, or be co-

located

Microarchitectural 

channels

Microarch events 

(e.g., timing, 

perf. counters…)

Victim Victim
Victim
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What can you do with these channels?

• Violate privilege boundaries
– Inter-process communication

– Infer an application’s secret

• (Semi-Invasive) application profiling

Different from traditional software or physical attacks:

• Stealthy. Sophisticated mechanisms needed to detect 
channel

• Usually, no permanent indication one has been 
exploited
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A Cache-based Channel

Process 1 
(Xmtr)

Process 2 
(Receiver)

write to set
if (send ‘0’)

idle

else
write to a set

t1 = rdtsc()
read from the set

t2 = rdtsc()

Note this requires an “active” receiver

if t2 – t1 > hit_time: 
decode ‘1’

else 
decode ‘0’
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Communication w/ Active Receiver

1. An active receiver may need to “precondition” the channel to 
prepare for detecting modulation

2. An active receiver also needs to deal with synchronization of 
transmission (modulation) activity with reception 
(demodulation) activity.
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A Multi-way Cache-based Channel

Process 1 
(Xmtr)

Process 2 
(Receiver)

fill a set
if (send ‘0’)

idle

else
write to a set

t1 = rdtsc()
read all of the set

t2 = rdtsc()

if t2 – t1 > hit_time: 
decode ‘1’

else 

decode ‘0’



MIT 6.823 Fall 2021

Cache:

#
 s

e
t
s

Disrupting Communication

Process 1 
(Xmtr)

Process 2 
(Receiver)



MIT 6.823 Fall 2021

Cache:

#
 s

e
t
s

Disrupting Communication

Process 1 
(Xmtr)

Process 2 
(Receiver)

Kirianski et. al. Dawg, Micro’18



MIT 6.823 Fall 2021

Cache:

#
 s

e
t
s

Disrupting Communication

Process 1 
(Xmtr)

Process 2 
(Receiver)

fill a set

Kirianski et. al. Dawg, Micro’18



MIT 6.823 Fall 2021

Cache:

#
 s

e
t
s

Disrupting Communication

Process 1 
(Xmtr)

Process 2 
(Receiver)

fill a set

Kirianski et. al. Dawg, Micro’18



MIT 6.823 Fall 2021

Cache:

#
 s

e
t
s

Disrupting Communication

Process 1 
(Xmtr)

Process 2 
(Receiver)

fill a set
if (send ‘0’)

idle

else
write to a set

Kirianski et. al. Dawg, Micro’18



MIT 6.823 Fall 2021

Cache:

#
 s

e
t
s

Disrupting Communication

Process 1 
(Xmtr)

Process 2 
(Receiver)

fill a set
if (send ‘0’)

idle

else
write to a set

Kirianski et. al. Dawg, Micro’18



MIT 6.823 Fall 2021

Cache:

#
 s

e
t
s

Disrupting Communication

Process 1 
(Xmtr)

Process 2 
(Receiver)

fill a set
if (send ‘0’)

idle

else
write to a set

Kirianski et. al. Dawg, Micro’18



MIT 6.823 Fall 2021

Cache:

#
 s

e
t
s

Disrupting Communication

Process 1 
(Xmtr)

Process 2 
(Receiver)

fill a set
if (send ‘0’)

idle

else
write to a set

t1 = rdtsc()
read all of the set

t2 = rdtsc()

if t2 – t1 > hit_time: 
decode ‘1’

else 
decode ‘0’Kirianski et. al. Dawg, Micro’18
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Disjoint Channels

1. Making disjoint channels makes communication impossible.

2. Channel can be allocated by “domain” and will need to be 
“cleaned” as processes enter and leave running state, so 
next process cannot see any “modulation” on the channel.
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Communication with subchannels

1. Transmissions may now occur on one of many subchannels

2. With a single hash, analysis by the receiver can, however, 
figure out which subchannel will be modulated.

December 1, 2021 L22-16

Domain of victim

Secret

Transmitter

Domain of attacker

Secret

Receiver

Subchannel

Acc
es

s Decode

Subchannel

Subchannel



MIT 6.823 Fall 2021

Cache:

Obfuscating the channel (2)

17

Process 1 
(Xmtr)

Process 2 
(Receiver)hash

hash

#
 s

e
t
s

Different hashes

• Adding a process dependent hash makes the 
needed cache collision probabilistic.

• Now the receiver needs an extra step to find a way 
to probe a variety of “channels” to detect  
modulation. 



MIT 6.823 Fall 2021

Cache:

Obfuscating the channel (2)

17

Process 1 
(Xmtr)

Process 2 
(Receiver)hash

hash

#
 s

e
t
s

Different hashes

• Adding a process dependent hash makes the 
needed cache collision probabilistic.

• Now the receiver needs an extra step to find a way 
to probe a variety of “channels” to detect  
modulation. 



MIT 6.823 Fall 2021

Cache:

Obfuscating the channel (2)

17

Process 1 
(Xmtr)

Process 2 
(Receiver)hash

hash

#
 s

e
t
s

Different hashes

• Adding a process dependent hash makes the 
needed cache collision probabilistic.

• Now the receiver needs an extra step to find a way 
to probe a variety of “channels” to detect  
modulation. 



MIT 6.823 Fall 2021

Cache:

Obfuscating the channel (2)

17

Process 1 
(Xmtr)

Process 2 
(Receiver)hash

hash

#
 s

e
t
s

Different hashes

• Adding a process dependent hash makes the 
needed cache collision probabilistic.

• Now the receiver needs an extra step to find a way 
to probe a variety of “channels” to detect  
modulation. 



MIT 6.823 Fall 2021

Receiver Calibration

December 1, 2021 L22-18

Domain of victim

Secret

Transmitter

Domain of attacker

Secret

Receiver
Acc

es
s Decode

Subchannel

Subchannel

Subchannel



MIT 6.823 Fall 2021

Receiver Calibration

December 1, 2021 L22-18

Domain of victim

Secret

Transmitter

Domain of attacker

Secret

Receiver
Acc

es
s Decode

Subchannel

Subchannel

Subchannel

Calibration



MIT 6.823 Fall 2021

Receiver Calibration

1. The calibration unit determines which subchannels 
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by a transmission
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Receiver Calibration

1. The calibration unit determines which subchannels 
(addresses) the receiver needs to use to detect modulation 
by a transmission

2. The receiver may just observe known transmissions by the 
transmitter to determine the subchannels to monitor

3. Or, the receiver may provoke the transmitter to make a 
particular transmission..
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Hashing* variations

• Nature of hash
– Well-known

– Secret

– Cryptographic (per machine key)

• Hashes per core
– Single for all processes

– Per process hash 

• Variation with time
– Unchanging

– Fixed interval in accesses (all sets at once or subset of sets)

– Random interval (all sets at once or subset of sets)

• Hashes per address
– Single or multiple

L24-19December 1, 2021

*Hash -> address to set index mapping
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Generalizes to Other Resources

Hardware 
resource

Xmtr Receiver

t1 = rdtsc()
Use resource

t2 = rdtsc()

if (send ‘1’)
Use resource

else

idle

if (t2 – t1 > THRESH) 
read ‘1’

else 

read ‘0’
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Types of State-based Channels

L22-21December 1, 2021

Resource Shared by

Private cache (L1, L2) Intra-core

Shared cache (LLC) On-socket cross core

Cache directory Cross socket

DRAM row buffer Cross socker

TLB (private/shared) Intra-core/Inter-core

Branch Predictor Intra-core

…. …



MIT 6.823 Fall 2021

Simple Transmitter

L24-22December 1, 2021

secret = oneof(0..1)

if secret == 1: 
x = channel
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Simple Transmitter

L24-22December 1, 2021

secret = oneof(0..1)

if secret == 1: 
x = channel

Like an amplitude modulated (AM) radio transmission
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“AM” Transmitter in RSA
[Percival 2005]

• Assume square-and-multiply based exponentiation

December 1, 2021

Input : base b, modulo m,
exponent e = (en−1 ...e0 )2 

Output: be mod m
r = 1
for i = n−1 down to 0 do 

r = sqrt(r)
r = mod(r,m) 
if ei == 1 then

r = mul(r,b)
r = mod(r,m) 

end 
end
return r 
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“AM” Transmitter in RSA
[Percival 2005]

• Assume square-and-multiply based exponentiation
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Input : base b, modulo m,
exponent e = (en−1 ...e0 )2 

Output: be mod m
r = 1
for i = n−1 down to 0 do 

r = sqrt(r)
r = mod(r,m) 
if ei == 1 then

r = mul(r,b)
r = mod(r,m) 

end 
end
return r 

Secret-dependent 
memory access à
transmitter

L22-23
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Cache:

#
 s

e
t
s

Noise in the channel

Process 1 
(Xmtr)

Process 2 
(Receiver)

write to set
if (send ‘0’)

idle

else
write to a set

t1 = rdtsc()
read from the set

t2 = rdtsc()

Receiver interprets “noise” as a signal!

Process 3 
(Xmtr)

if t2 – t1 > hit_time: 
decode ‘1’

else 
decode ‘0’
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Channel Noise

1. Another (or the same) transmitter may introduce changes of 
state (noise) into the channel which will confound the 
receiver

2. Reception now becomes probabilistic, and a stochastic 
analysis is needed for the receiver to decode the modulation 
it sees in the channel. 

3. Increases in reliability of reception can be improved by 
improved message encoding, e.g., by repeating the 
message.
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Types of Transmitters

December 1, 2021 L22-26

Domain of victim

Secret

Transmitter

Domain of attacker
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ReceiverChannel
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s Decode

• Types of transmitter:
1. Pre-existing so victim itself leaks secret, (e.g., RSA keys)
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Another Transmitter

L24-27December 1, 2021

secret = oneof(0..3)

subchannel[secret] = 1

Like a frequency modulated (FM) radio transmission
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Reminder: Speculative Execution

• In x86, a page table can have kernel pages which are only 
accessible in kernel mode:

– This avoids switching page tables on context switches, but

– Hardware speculatively assumes that there will not be an 
illegal access, so instructions following an illegal instruction 
are executed speculatively.

December 1, 2021

Address Space User pages Kernel pages

0x0 0xFF...F

L22-28

• So what does the following code do when run in user mode 
do?

• Causes a protection fault, but data at “kernel_address” is 
speculatively read and loaded into val!

val = *kernel_address;
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[Lipp et al. 2018]

1. Preconditioning: Receiver allocates subchannels in 
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“FM” Transmitter - Meltdown
[Lipp et al. 2018]

1. Preconditioning: Receiver allocates subchannels in 
subchannels[256] and flushes all its cache lines

2. Transmit: Transmitter (controlled by attacker) executes

3. Receive: After handling protection fault, receiver times 
accesses to all of subchannels[256], finds the 
subchannel that was “modulated”, i.e., hits, and 
therefore has “decoded” a secret byte. 

• Result: Attacker can read arbitrary kernel data!
– For higher performance, use transactional memory (protection 

fault aborts transaction on exception instead of invoking kernel)

– Mitigation: Do not map kernel data in user page tables

December 1, 2021

uint8_t secret = *kernel_address;

subchannels[secret] = 1;

L22-29



MIT 6.823 Fall 2021

Types of Transmitters

December 1, 2021 L22-30

Domain of victim

Secret

Transmitter

Domain of attacker

Secret

ReceiverChannel
Acc
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s Decode

• Types of transmitter:
1. Pre-existing so victim itself leaks secret, (e.g., RSA keys)

2. Programmed and invoked by attacker (e.g., Meltdown)
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Spectre variant 2
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• Consider a situation where there is some kernel code 
that looks like the following:

• Interpret that code as an FM transmitter:
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xmit: uint8_t index = *kernel_address;

random_array[index] = 1;
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xmit: uint8_t secret = *kernel_address;
subchannels[secret] = 1;



MIT 6.823 Fall 2021

Spectre variant 2
[Kocher et al. 2018]

• Consider a situation where there is some kernel code 
that looks like the following:

• Interpret that code as an FM transmitter:

• But that is kernel code that we cannot execute directly, 
so if only we could make the kernel jump to “xmit” we 
could invoke the transmitter…

December 1, 2021

xmit: uint8_t index = *kernel_address;

random_array[index] = 1;

L22-31

xmit: uint8_t secret = *kernel_address;
subchannels[secret] = 1;
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Spectre variant 2
[Kocher et al. 2018]
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BTB to jump to from `abc` to `xmit`

• Now invoke the kernel in a way that executes `abc` and 
the transmitter will speculatively jump to `xmit` and 
execute the transmitter and send the secret….

• Note since most BTBs store partial tags and targets it 
can be hard to get the BTB to jump to an arbitrary 
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Spectre variant 2
[Kocher et al. 2018]

• Now assume there is another bit of code in that kernel 
routine that we can force to be executed looks like:

• Using aliased addresses for `abc` and `xmit` train the 
BTB to jump to from `abc` to `xmit`

• Now invoke the kernel in a way that executes `abc` and 
the transmitter will speculatively jump to `xmit` and 
execute the transmitter and send the secret….

• Note since most BTBs store partial tags and targets it 
can be hard to get the BTB to jump to an arbitrary 
address, so Spectre uses the indirect jump predictor.
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abc: br xyz
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Types of Transmitters

• Types of transmitter:
1. Pre-existing so victim itself leaks secret, (e.g., RSA keys)

2. Programmed and invoked by attacker (e.g., Meltdown)

3. Synthesized from existing victim code and invoked by 
attacker (e.g., Spectre V2)

December 1, 2021 L22-33
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Spectre variant 1 
[Kocher et al. 2018]

• Consider the following kernel code, e.g., in a system call

December 1, 2021

if (x < array1_size)
y = array2[array1[x] * 4096];
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• Consider the following kernel code, e.g., in a system call

1. Precondition: Attacker invokes this kernel code with 
small values of x to train the branch predictor to be 
taken

2. Transmit: Attacker invokes this code with an out-of-
bounds x, so that &array1[x] maps to some desired 
kernel address. Core mispredicts branch, speculatively
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Spectre variant 1 
[Kocher et al. 2018]

• Consider the following kernel code, e.g., in a system call

1. Precondition: Attacker invokes this kernel code with 
small values of x to train the branch predictor to be 
taken

2. Transmit: Attacker invokes this code with an out-of-
bounds x, so that &array1[x] maps to some desired 
kernel address. Core mispredicts branch, speculatively
fetches array2[array1[x] * 4096]’s line into the cache.

3. Receive: Attacker probes cache to infer which line of 
array2 was fetched, learns data at kernel address
– array2 may or may not be accessible to attacker (can use prime+probe)

December 1, 2021

if (x < array1_size)
y = array2[array1[x] * 4096];

L22-34
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• Spectre relies on speculative execution, not late 
exception checks à Much harder to fix than Meltdown
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Spectre variants and mitigations

• Spectre relies on speculative execution, not late 
exception checks à Much harder to fix than Meltdown

• Several other Spectre variants reported
– Leveraging the speculative store buffer, return address stack, 

leaking privileged registers, etc.

• Can attack any type of VM, including OSs, VMMs, 
JavaScript engines in browsers, and the OS network 
stack (NetSpectre)

• Short-term mitigations:
– Microcode updates (disable sharing of speculative state when possible)

– OS and compiler patches to selectively avoid speculation

• Long-term mitigations:
– Disabling speculation?

– Closing side channels?
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Coming Spring 2022…
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Thank you!


