6.823
Pin Optimizations

Adapted from: Prior 6.823 offerings, and
Intel’s Tutorial at CGO 2010

9/24/2021 6.823 Fall 2021

From the Video tutorial...
What is Instrumentation?

* [nstrumentation is a technique that inserts
extra code into a program to collect runtime
information

* PIN doesinstrumentation

Runtime No need to
re-compile
or re-link

»

<

Instrumentation: Instruction Count/

Analysis routine

Let’s increment

Instrumentation routine

S
counter++;

sub $O0xff,
counter++;

cmp %sesi,
counter++;

jle <L1>

counter++;
mov S$O0x1,

counter by one
before every instruction!

—

counter++;

add $0x10,

9/24/2021 6.823 Fall 2021

Sedx

$edx

Sedi

$eax

N

-/é

Instrumentation vs. Analysis

* Instrumentation routines define where
instrumentation is inserted

— < Occurs immediately before an instruction is executed
for the first time.

* Analysis routines define what to do when
instrumentation is activated

— < Occurs every time an instruction is executed

9/24/2021 6.823 Fall 2021 4

How to Write Efficient Pintools

9/24/2021 6.823 Fall 2021

N

/
Reducing Instrumentation Overhead ‘/4

Total Overhead = Pin’s Overhead + Pintool’s Overhead

e The job of Pin developers to minimize this
o ~5% for SPECfp and ~20% for/ SPECint

e Pintool writers can help minimize this!

9/24/2021 6.823 Fall 2021 6

Reducing Pintool’s Overhead

Pintool’s Overhead

e N
= N
Instrumentation Routines Overhead @is Routines Overhead
A
- I

@cy of calling an Analysis@x Work required in the Analysis Routine

9/24/2021 6.823 Fall 2021 7

-/4

Instrumentation Granularity

* |nstrumentation with Pin can be done at 3 different
granularities:
— Instruction

— Basic block

* A sequence of instructions terminated at a (conditional or
unconditional) control-flow changing instruction

* Single entrance, single exit

— Trace

* A sequence of basic blocks terminated at an unconditional control-flow
changing instruction

* Single entrance, multiple exits

Instrumentation Granularity 7/

* |Instrumentation with Pin can be done at 3 different
granularities:

— Instruction $0xff, %oedx
— Basic b|0ck : O/OeSi, O/OECIX
* A sequence of instrucf <L1>
unconditional) contro
« Single entrance, single $0x1, %edi
— Trace $OX10, O/OeaX
* Asequence of basicb <L2> W

changing instruction

* Single entrance, multiple exits

9/24/2021 6.823 Fall 2021 9

Instrumentation Granularity 7/
* Instrumentation with Pin can be done at 3 different

granularities: 6 insts
— Instruction $0xff, %oedx
— Basic b|0ck O/OeSi, O/OECIX

* A sequence of instruct <L1>

unconditional) contro

« Single entrance, single $0x1, %edi
— Trace $OX10, O/OeaX

* Asequence of basicb <L2> W

changing instruction

* Single entrance, multiple exits

9/24/2021 6.823 Fall 2021 10

Instrumentation Granularity 7/
* Instrumentation with Pin can be done at 3 different

granularities: 6 insts, 2 basic blocks
— Instruction sub $0xff, Y%edx
— Basic block cmp %esi, Y%edx

* A sequence of instrucf]Ie <L1>

unconditional) contro

* Single entrance, single mov $0X1, %edi
— Trace add $OX10, O/OeaX

* Asequence of basicb JMp <L2> W

changing instruction

* Single entrance, multiple exits

9/24/2021 6.823 Fall 2021 11

Instrumentation Granularity 7/
* Instrumentation with Pin can be done at 3 different

granularities: 6 insts, 2 basic blocks, 1 trace
— Instruction sub $0xff, Y%edx
— Basic block cmp %esi, Y%edx

* A sequence of instrucf]Ie <L1>

unconditional) contro

* Single entrance, single mov $0X1, %edi
— Trace add $OX10, O/OeaX

* Asequence of basicb JMp <L2> W

changing instruction

* Single entrance, multiple exits

9/24/2021 6.823 Fall 2021 12

Recap of Pintool: Instruction Count

9/24/2021

counter++;
sub $0xff, %edx

counter++;

cmp %esi, Jedx
counter++;

jle <L1>
counter++;

mov $0x1, %$edi

counter++;
add $0x10, %eax

6.823 Fall 2021

13

>

Recap of Pintool: Instruction Count '/4

counter++;
sub $0xff, %edx

 Straightforward, but the counting can be more efficient

counter++;
mov S$0x1l, %$edi

counter++;
add $0x10, %eax

9/24/2021 6.823 Fall 2021 14

N

-/é

Faster Instruction Count

counter +=3
sub S$O0xff, %edx

cmp %esi, %Jedx \

jle <L1> basic blocks (bbl)

counter +=2
mov S$0x1, %$edi

add $0x10, %eax

9/24/2021 6.823 Fall 2021 15

N
#include <stdio.h> ,
#include "pin.H“ 4
UINT64 icount = 0; /
void docount (INT32 c) { icount += c; } analysis routine
void Trace (TRACE trace, void *v) {
for (BBL bbl = TRACE BblHead (trace) ;
BBL Valid(bbl); bbl = BBL Next(bbl)) {
BBL InsertCall(bbl, IPOINT BEFORE, (AFUNPTR)docount,
IARG UINT32, BBL NumIns(bbl), IARG END) ;

) instrumentation routine

void Fini (INT32 code, void *v) {
fprintf (stderr, "Count %1ld\n", icount);
}
int main(int argc, char * argv[]) {
PIN Init(argc, argv);
TRACE AddInstrumentFunction(Trace, 0);
PIN AddFiniFunction(Fini, 0);
PIN StartProgram() ;

return 0;

Reducing Frequency of Calling '/4
Analysis Routines

* Key:

— Instrument at the largest granularity whenever
possible:

* Trace > Basic Block > Instruction

S

Reducing Pintool’s Overhead /4

Pintool’s Overhead

e N
= N
Instrumentation Routines Overhead @is Routines Overhead
A
= R

Frequency of calling an Analysis Routine @required in the Analysis I@

9/24/2021 6.823 Fall 2021 18

Reducing Pintool’s Overhead /'4

Pintool’s Overhead

/\
a8 N
Instrumentation Routines Overhead @is Routines Over@
A
- N

Frequency of calling an Analysis Routine @required in the Analysis @

N
8 2

Work required for transiting to Analysis Routine +@e inside Analysis Routine

9/24/2021 6.823 Fall 2021 19

N

vy

Example: Counting Control Flow Edges/

9/24/2021

L1:

L2:

L3:

L4 :

jne , <L2> l
jmp | <L3>
call <Lé4>

jne |, <L1>

A

How often is
each branch
taken?

ret

6.823 Fall 2021

N

<

Example: Counting Control Flow Edges/

100 40
(ret)—49 me)

40
N

How often is
each branch
taken?

9/24/2021 6.823 Fall 2021

Edge Counting: a Slower Version

void Instruction (INS ins, void *v) {

if (INS_IsBranchOrCall (ins)) {

INS InsertCall (ins, IPOINT BEFORE, (AFUNPTR) docount2,

BMCH_TARG@
IARG BRANCH TAKEN, JIARG_END) ;
) /
} 1 if taken, O if not taken

9/24/2021 6.823 Fall 2021 22

o

./J

Inefficiency in Program

About every 5th instruction executed in a typical
application is a branch.

Edge lookup will be called whenever these
instruction are executed

— significant application slowdown

Direct vs. Indirect Branches

— Branch Address in instruction vs. Branch Address in
Register

— Static vs. Dynamic

Edge Counting: a Faster Version .J

void docount (COUNTER* pedge, INT32 taken) ({
pedg->count += taken;

}

void docount2 (ADDRINT src, ADDRINT dst, INT32 taken) {
COUNTER *pedg = Lookup(src, dst);
pedg->count += taken;

}

void Instruction (INS ins, void *v) {
if (INS_IsDirectBranchOrCall (ins)) {

COUNTER *pedg = Lookup (INS Address(ins),
INS DirectBranchOrCallTargetAddress(ins)) ;

INS InsertCall(ins, IPOINT BEFORE, (AFUNPTR{
IARG ADDRINT, pedg, IARG BRANCH TAKEN, IARG END) ;
} else if (INS IsBranchOrCall (ins))
INS InsertCall (ins, IPOINT BEFORE, (AFUNPTR) docount2,
IARG INST PTR, IARG BRANCH TARGET ADDR,
IARG BRANCH TAKEN, IARG END) ;

Eliminating Control Flow

9/24/2021 6.823 Fall 2021

N

Reducing Work Done in Analysis '/4
Routines
* Key:

— Shifting computation from Analysis Routines to
Instrumentation Routines whenever possible

-J
/

Some other optimizations...

* Reduce the number of arguments to analysis
routine.

— For example, instead of passing TRUE/FALSE, create 2
analysis functions.

* |f an instrumentation can be inserted anywhere
in a basic block:

— Let Pin know via IPOINT_ANYWHERE (used in
BBL InsertCall())

— Pin will find the best point to insert the
instrumentation to minimize register spilling

Takeaways..

* Reduce frequency of calling analysis routines by
instrumenting at the largest granularity whenever
possible

 Reduce the amount of work done in analysis routines
by shifting computation from Analysis Routines to
Instrumentation Routines whenever possible

9/24/2021 6.823 Fall 2021 28

Lab 1 due in a week

* Design 3 different types of caches
— Virtually Indexed, Virtually Tagged
— Physically Indexed, Physically Tagged
— Virtually Indexed, Physically Tagged

* Caches and Virtual Memory covered in
Lectures 2-4

* Remember to start early!

N

Caches & Virtual Memory '/4

Inst Inst. ReqFile Data Data
TLB [Cache 9 o+ TLB [Cache

* Processor works with virtual addresses

— |If we grab the index and tag from the physical
address, need address translation -> TLB access

— Avoid this: virtually-addressed cache

9/24/2021 6.823 Fall 2021 30

S

Caches & Virtual Memory ‘/é

Alternative: place the cache before the TLB
VA

Virtual
CPU >

* Now, cache hits are fast

Primary
y TLB PA » Memory

* Problem 1: Consider VA,(from process 1) and
VA, (from process 2)

— What if we context switch, and VA; == VA,?

9/24/2021 6.823 Fall 2021 31

o

Caches & Virtual Memory '/4

Page Table
VAl_’

PA

VAZ_’

* Problem 2: Consider VA, VA, (not necessarily
from different processes)

— What if VA, I= VA,, but they map to the same
physical address?

9/24/2021 6.823 Fall 2021 32

o

Caches & Virtual Memory ‘/4

* |ntuition: Physical tags solve Problem 1

* Solves Problem 2 as long as the index bits are
the same between VA, and VA,

Virtual Index

/ ' \ L1 PA cache

VA VPN a | Page Offset |b Direct-map
TLB VA1 |PPN; Data
l VA5 | PPN, Data

PA PPN Page Offset |b
N 7 .
I > — h|t?

Tag

Tips
Ask questions on Piazza.

ssh <athenausername>@vlisifarm-0X.mit.edu or
ssh <athenausername>@eecs-ath-4X.mit.edu

— eecs-ath-4X machines are much more powerful

Suggested reading on caches and virtual memory on the
course website.

