
6.823
Pin Optimizations

Adapted from: Prior 6.823 offerings, and
Intel’s Tutorial at CGO 2010

9/24/2021 6.823 Fall 2021 1

What is Instrumentation?

• Instrumentation is a technique that inserts
extra code into a program to collect runtime
information

• PIN does dynamic binary instrumentation

9/24/2021 6.823 Fall 2021 2

Runtime No need to
re-compile
or re-link

From the Video tutorial…

Let’s count the
number of instructions!

Instrumentation: Instruction Count

sub $0xff, %edx

cmp %esi, %edx

jle <L1>

mov $0x1, %edi

add $0x10, %eax

counter++;

counter++;

counter++;

counter++;

counter++;

Let’s increment
counter by one

before every instruction!

Analysis routine

Instrumentation routine

9/24/2021 6.823 Fall 2021 3

Instrumentation vs. Analysis

• Instrumentation routines define where
instrumentation is inserted
– C Occurs immediately before an instruction is executed

for the first time.

• Analysis routines define what to do when
instrumentation is activated
– C Occurs every time an instruction is executed

9/24/2021 6.823 Fall 2021 4

How to Write Efficient Pintools

59/24/2021 6.823 Fall 2021

Reducing Instrumentation Overhead

Total Overhead = Pin’s Overhead + Pintool’s Overhead

• The job of Pin developers to minimize this
• ~5% for SPECfp and ~20% for SPECint

• Pintool writers can help minimize this!

9/24/2021 6.823 Fall 2021 6

Reducing Pintool’s Overhead

Instrumentation Routines Overhead + Analysis Routines Overhead

Pintool’s Overhead

Frequency of calling an Analysis Routine x Work required in the Analysis Routine

9/24/2021 6.823 Fall 2021 7

Instrumentation Granularity
• Instrumentation with Pin can be done at 3 different

granularities:
– Instruction
– Basic block

• A sequence of instructions terminated at a (conditional or
unconditional) control-flow changing instruction

• Single entrance, single exit

– Trace
• A sequence of basic blocks terminated at an unconditional control-flow

changing instruction
• Single entrance, multiple exits

9/24/2021 6.823 Fall 2021 8

Instrumentation Granularity
• Instrumentation with Pin can be done at 3 different

granularities:
– Instruction
– Basic block

• A sequence of instructions terminated at a (conditional or
unconditional) control-flow changing instruction

• Single entrance, single exit

– Trace
• A sequence of basic blocks terminated at an unconditional control-flow

changing instruction
• Single entrance, multiple exits

sub $0xff, %edx
cmp %esi, %edx
jle <L1>

mov $0x1, %edi
add $0x10, %eax
jmp <L2>

9/24/2021 6.823 Fall 2021 9

Instrumentation Granularity
• Instrumentation with Pin can be done at 3 different

granularities:
– Instruction
– Basic block

• A sequence of instructions terminated at a (conditional or
unconditional) control-flow changing instruction

• Single entrance, single exit

– Trace
• A sequence of basic blocks terminated at an unconditional control-flow

changing instruction
• Single entrance, multiple exits

sub $0xff, %edx
cmp %esi, %edx
jle <L1>

mov $0x1, %edi
add $0x10, %eax
jmp <L2>

6 insts

9/24/2021 6.823 Fall 2021 10

Instrumentation Granularity
• Instrumentation with Pin can be done at 3 different

granularities:
– Instruction
– Basic block

• A sequence of instructions terminated at a (conditional or
unconditional) control-flow changing instruction

• Single entrance, single exit

– Trace
• A sequence of basic blocks terminated at an unconditional control-flow

changing instruction
• Single entrance, multiple exits

sub $0xff, %edx
cmp %esi, %edx
jle <L1>

mov $0x1, %edi
add $0x10, %eax
jmp <L2>

6 insts, 2 basic blocks

9/24/2021 6.823 Fall 2021 11

Instrumentation Granularity
• Instrumentation with Pin can be done at 3 different

granularities:
– Instruction
– Basic block

• A sequence of instructions terminated at a (conditional or
unconditional) control-flow changing instruction

• Single entrance, single exit

– Trace
• A sequence of basic blocks terminated at an unconditional control-flow

changing instruction
• Single entrance, multiple exits

sub $0xff, %edx
cmp %esi, %edx
jle <L1>

mov $0x1, %edi
add $0x10, %eax
jmp <L2>

6 insts, 2 basic blocks, 1 trace

9/24/2021 6.823 Fall 2021 12

Recap of Pintool: Instruction Count

sub $0xff, %edx

cmp %esi, %edx

jle <L1>

mov $0x1, %edi

add $0x10, %eax

counter++;

counter++;

counter++;

counter++;

counter++;

9/24/2021 6.823 Fall 2021 13

sub $0xff, %edx

cmp %esi, %edx

jle <L1>

mov $0x1, %edi

add $0x10, %eax

counter++;

counter++;

counter++;

counter++;

counter++;

• Straightforward, but the counting can be more efficient

9/24/2021 6.823 Fall 2021 14

Recap of Pintool: Instruction Count

Faster Instruction Count

sub $0xff, %edx

cmp %esi, %edx

jle <L1>

mov $0x1, %edi

add $0x10, %eax

counter += 3

counter += 2
basic blocks (bbl)

9/24/2021 6.823 Fall 2021 15

#include <stdio.h>

#include "pin.H“

UINT64 icount = 0;

void docount(INT32 c) { icount += c; }

void Trace(TRACE trace, void *v) {

for (BBL bbl = TRACE_BblHead(trace);

BBL_Valid(bbl); bbl = BBL_Next(bbl)) {

BBL_InsertCall(bbl, IPOINT_BEFORE, (AFUNPTR)docount,

IARG_UINT32, BBL_NumIns(bbl), IARG_END);

}

}

void Fini(INT32 code, void *v) {

fprintf(stderr, "Count %lld\n", icount);

}

int main(int argc, char * argv[]) {

PIN_Init(argc, argv);

TRACE_AddInstrumentFunction(Trace, 0);

PIN_AddFiniFunction(Fini, 0);

PIN_StartProgram();

return 0;

}

analysis routine

instrumentation routine

169/24/2021 6.823 Fall 2021

Reducing Frequency of Calling
Analysis Routines

• Key:
– Instrument at the largest granularity whenever

possible:
• Trace > Basic Block > Instruction

9/24/2021 6.823 Fall 2021 17

Reducing Pintool’s Overhead

Instrumentation Routines Overhead + Analysis Routines Overhead

Pintool’s Overhead

Frequency of calling an Analysis Routine x Work required in the Analysis Routine

9/24/2021 6.823 Fall 2021 18

Reducing Pintool’s Overhead

Instrumentation Routines Overhead + Analysis Routines Overhead

Pintool’s Overhead

Frequency of calling an Analysis Routine x Work required in the Analysis Routine

9/24/2021 6.823 Fall 2021 19

Work required for transiting to Analysis Routine + Work done inside Analysis Routine

L1: jne <L2>
...
jmp <L3>

L2: call <L4>
...

L3: jne <L1>
...

L4: ...
ret

9/24/2021 6.823 Fall 2021 20

How often is
each branch

taken?

Example: Counting Control Flow Edges

100
60

40

60

40

40

1

Example: Counting Control Flow Edges

9/24/2021 6.823 Fall 2021 21

call

jne

ret

jne

jmp

How often is
each branch

taken?

…

void docount2(ADDRINT src, ADDRINT dst, INT32 taken)

{

COUNTER *pedg = Lookup(src, dst);

pedg->count += taken;

}

void Instruction(INS ins, void *v) {

if (INS_IsBranchOrCall(ins)){

INS_InsertCall(ins, IPOINT_BEFORE, (AFUNPTR) docount2,

IARG_INST_PTR, IARG_BRANCH_TARGET_ADDR,

IARG_BRANCH_TAKEN, IARG_END);

}

}

…

Edge Counting: a Slower Version

9/24/2021 6.823 Fall 2021 22

1 if taken, 0 if not taken

Inefficiency in Program

• About every 5th instruction executed in a typical
application is a branch.

• Edge lookup will be called whenever these
instruction are executed
– significant application slowdown

• Direct vs. Indirect Branches
– Branch Address in instruction vs. Branch Address in

Register
– Static vs. Dynamic

9/24/2021 6.823 Fall 2021 23

Edge Counting: a Faster Version
void docount(COUNTER* pedge, INT32 taken) {

pedg->count += taken;

}

void docount2(ADDRINT src, ADDRINT dst, INT32 taken) {

COUNTER *pedg = Lookup(src, dst);

pedg->count += taken;

}

void Instruction(INS ins, void *v) {

if (INS_IsDirectBranchOrCall(ins)) {

COUNTER *pedg = Lookup(INS_Address(ins),
INS_DirectBranchOrCallTargetAddress(ins));

INS_InsertCall(ins, IPOINT_BEFORE, (AFUNPTR) docount,

IARG_ADDRINT, pedg, IARG_BRANCH_TAKEN, IARG_END);

} else if (INS_IsBranchOrCall(ins))

INS_InsertCall(ins, IPOINT_BEFORE, (AFUNPTR) docount2,

IARG_INST_PTR, IARG_BRANCH_TARGET_ADDR,

IARG_BRANCH_TAKEN, IARG_END);

}

…
249/24/2021 6.823 Fall 2021

Eliminating Control Flow
void docount(COUNTER* pedge, INT32 taken)

{

if (!taken)

return;

pedg->count++;

}

void docount(COUNTER* pedge, INT32 taken)

{

pedg->count += taken;

}

9/24/2021 6.823 Fall 2021 25

vs.

Can be inlined by Pin

Reducing Work Done in Analysis
Routines

• Key:
– Shifting computation from Analysis Routines to

Instrumentation Routines whenever possible

9/24/2021 6.823 Fall 2021 26

Some other optimizations…

• Reduce the number of arguments to analysis
routine.
– For example, instead of passing TRUE/FALSE, create 2

analysis functions.

• If an instrumentation can be inserted anywhere
in a basic block:
– Let Pin know via IPOINT_ANYWHERE (used in

BBL_InsertCall())
– Pin will find the best point to insert the

instrumentation to minimize register spilling

9/24/2021 6.823 Fall 2021 27

Takeaways..
• Reduce frequency of calling analysis routines by

instrumenting at the largest granularity whenever
possible

• Reduce the amount of work done in analysis routines
by shifting computation from Analysis Routines to
Instrumentation Routines whenever possible

9/24/2021 6.823 Fall 2021 28

Lab 1 due in a week

• Design 3 different types of caches
– Virtually Indexed, Virtually Tagged
– Physically Indexed, Physically Tagged
– Virtually Indexed, Physically Tagged

• Caches and Virtual Memory covered in
Lectures 2-4

• Remember to start early!

9/24/2021 6.823 Fall 2021 29

Caches & Virtual Memory

• Processor works with virtual addresses
– If we grab the index and tag from the physical

address, need address translation -> TLB access
– Avoid this: virtually-addressed cache

9/24/2021 6.823 Fall 2021 30

PC
Inst
TLB

Inst.
Cache

Data
TLB

Data
Cache+RegFile

Caches & Virtual Memory

• Now, cache hits are fast
• Problem 1: Consider VA1(from process 1) and

VA2(from process 2)
– What if we context switch, and VA1 == VA2?

9/24/2021 6.823 Fall 2021 31

Alternative: place the cache before the TLB

CPU

VA

Virtual
Cache

PA
TLB

Primary
Memory

Caches & Virtual Memory

• Problem 2: Consider VA1, VA2 (not necessarily
from different processes)
– What if VA1 != VA2, but they map to the same

physical address?

9/24/2021 6.823 Fall 2021 32

VA1

VA2

Page Table

PA

Caches & Virtual Memory
• Intuition: Physical tags solve Problem 1
• Solves Problem 2 as long as the index bits are

the same between VA1 and VA2

9/24/2021 6.823 Fall 2021 33

VPN a Page Offset b

TLB

PPN Page Offset b

Tag

VA

PA

Virtual Index
L1 PA cache
Direct-map

= hit?

PPNa Data

PPNa Data

VA1

VA2

Tips

• Ask questions on Piazza.

• ssh <athenausername>@vlsifarm-0X.mit.edu or
• ssh <athenausername>@eecs-ath-4X.mit.edu

– eecs-ath-4X machines are much more powerful

• Suggested reading on caches and virtual memory on the
course website.

9/24/2021 6.823 Fall 2021 34

