
Multithreading and 
Cache Coherence

Ryan Lee
6.823 Fall 2021

Adapted from prior course offerings

10/22/21 1



Goal of Multithreading

»Hide the cost of long-latency operations...
- by doing something else!

»Fine-grained
»Coarse-grained
»SMT (Simultaneous Multithreading)

10/22/21 2



10/22/21 3



Why ICount Policy?

»Recall: Original SMT implementation didn’t perform 
very well
» ICount: Fetch from the least number of instructions 

in flight

10/22/21 4



Consider the following toy 
problem...
»Out of order machine

- 20 ROB Entries
- Two Threads: t1 and t2
- Want to maximize commit throughput

»Threads have different average instruction latencies
- 𝑇 = Throughput, 𝑁 = Number of instructions in flight
- T1: 𝑇!" = 0.1 × 𝑁!"
- T2: 𝑇!# = 0.8 × 𝑁!#

10/22/21 5



10/22/21 6

T1: 𝑇!" = 0.1 × 𝑁!"
T2: 𝑇!# = 0.8 × 𝑁!#

»Which thread would have more instructions in 
flight with round-robin policy? T1



10/22/21 7

T1: 𝑇!" = 0.1 × 𝑁!"
T2: 𝑇!# = 0.8 × 𝑁!#

»Which thread would have more instructions in flight 
with ICount policy?
»Which policy has better overall throughput?

Same
ICount



10/22/21 8

T1: 𝑇!" = 0.1 × 𝑁!"
T2: 𝑇!# = 0.8 × 𝑁!#

»Extra question: Is there a policy that always 
maximizes overall throughput?



Goals of caches

»Small memories that provide quick access to 
recently accessed data.

»Transparently managed by hardware (and OS)
- Program output should appear as if the caches did not 

exist and applications directly accessed main memory.
- In contrast with scratchpads (explicitly managed)

10/22/21 9



Goals of shared memory

»Multiple concurrently executing threads can read 
and write data in a single address space.

»Transparently managed by hardware (and OS)
- Program output should appear as if the caches did not 

exist and applications directly accessed single memory.
- In contrast with message passing (explicitly manage 

shared data)

10/22/21 10



Caches in parallel systems

»Caches give quick access to data:
- Small private caches may hold copies of data.

»Transparent management: How to ensure cache 
accesses don’t act on stale data?
- No shared writeable address space: Pure message 

passing, or
- Cache coherence

10/22/21 11



Cache coherence
Processor X:
Ld 0xA à 0

Ld 0xA à 0

Ld 0xA à 0

…
Ld 0xA à 42

Ld 0xA à 42
10/22/21 12

Processor Y:

St 42 à 0xAtime

Q. Do you think this system is coherent?



Cache Coherence
»Two Rules:

1. Write propagation: Writes eventually become visible 
to other processors

2. Write serialization: All processors observe writes to 
one location appear to happen in a consistent order

»Strategies for propagation:
- A write invalidates copies in other private caches
- A write updates copies in other private caches
- Tradeoffs?

10/22/21 13



Serialization strategies

» Snoopy coherence protocol 
On a miss, private caches broadcast their actions 
through a bus-like interconnect, other caches observe 
(“snoop”) and perform updates or invalidations. 

»Directory-based coherence protocol 
On a miss, private caches send unicast message to the 
directory, which serializes requests and sends unicast 
messages to other caches to perform updates or 
invalidations.

Tradeoffs?

10/22/21 14



Do write-through caches need 
coherence?
»Yes.

- Writes must propagate: update or invalidate copies in 
other private caches.

- Write serialization is trivial (where is the serialization 
point?)

»A protocol with two stable states is sufficient:
- Invalid
- Shared

»Do you need transient cache states?
- Yes!

10/22/21 15


