Multithreading and
Cache Coherence

Ryan Lee
6.823 Fall 2021
Adapted from prior course offerings

Goal of Multithreading

»Hide the cost of long-latency operations...
- by doing something else!

» Fine-grained
» Coarse-grained
» SMT (Simultaneous Multithreading)

Thread 1 OS context switch code Thread 2

Converonn EEiElEEEE L=t E

Intermpt, exception, ox OS5 ca.ll retam from exception T
B) Thread 1 Thread 2 Thread 3 Thread 1
Coarse-grained
Multithreaded
(CMI')
Cache nuss Cache nuss Cache nuss
C)
Fine-grained
Multithreaded
(FMT)

D)
Simultaneous
Multithreaded
(SMT)
Execution T
Units Time

10/22/21

Why [Count Policy?

» Recall: Original SMT implementation didn’t perform
very well

» |Count: Fetch from the least number of instructions
in flight

10/22/21 4

Consider the following toy
problem...

»Qut of order machine
- 20 ROB Entries
- Two Threads: t1 and t2
- Want to maximize commit throughput

» Threads have different average instruction latencies

- T =Throughput, N = Number of instructions in flight
- T1: Ttl = 0.1 X Ntl

- T2: th = 0.8 X 1/Nt2

T1: Ttl = 0.1 X Ntl
T2: th = 0.8 X 1/Nt2

Throughput of thread T1

| | |
3.5k - : E E -
_ e s Fo====--=1 jm-------- Fo=====-- 1

O | | |
S 2.50-------- ERETELELE ALTTELEEE besmeesae !
TSSO (R s by s 4
i 7 O S W— 2 i

S :
1OF--------4 e - e 1
0.5f-----cc e anane (R TR e 1

o
0.0L2" : :
0 5 10 15 20

N, (Number of inst. in flight)

Throughput, (IPC)

Throughput of thread T2
I I I
e ey s oo N i
3.0F--------j--=----=1 ERELEESY o T--' --------
| | o o |
2.5k ~ccccaa. JI _______ nl;_f _________________
 Jf SESESEEE P s s R e s
A
1.5} 2 4 ! !
1,0;__."_____;________4: ___________________
hd |
0.5} /-- ! !
- 5 10 15 20

N, (Number of inst. in flight)

»Which thread would have more instructions in
flight with round-robin policy?

10/22/21

T1

Throughput,, (IPC)

T1: Ttl = 0.1 X Ntl
T2: th = 0.8 X 1/Nt2

Throughput of thread T1 Throughput of thread T2
I | I I I I
3.5+~ : 3.5F------ S s s ok
| SR R LT PEEEEE - 1 1 M| SR — soe T oo
: O I e
2.5k - : 1 % 2 8lccccccaa lenanenes R e
201 oo sl e S e <=1 [N, PSR T Ry NN e |
| - < ¢
L5F----mmm oo 2 LR EERET Z 1.5t a4
e \ ~
o ' _~
| | SR S e R i TR Sl T i S R R N A S Tt e e]
o ®
0.5 --------gT e 1 0.5} - .
> o . i |] I
0-% 5 10 15 20 %% 5 10 15 20
N, (Number of inst. in flight) N, (Number of inst. in flight)

» Which thread would have more instructions in flight
with /Count policy? Same

» Which policy has better overall throughput? [Count

10/22/21 7

T1: Ttl = 0.1 X Ntl
T2: th = 0.8 X 1/Nt2

Throughput of thread T1

| | |
3.5k - : E E -
_ e s Fo====--=1 jm-------- Fo=====-- 1

O | | |
S 2.50-------- ERETELELE ALTTELEEE besmeesae !
TSSO (R s by s 4
i 7 O S W— 2 i

S :
1OF--------4 e - e 1
0.5f-----cc e anane (R TR e 1

o
0.0L2" : :
0 5 10 15 20

N, (Number of inst. in flight)

Throughput, (IPC)

Throughput of thread T2
I I I
e ey s oo N i
3.0F--------j--=----=1 ERELEESY o T--' --------
| | o o |
2.5k ~ccccaa. JI _______ nl;_f _________________
 Jf SESESEEE P s s R e s
A
1.5} 2 4 ! !
1,0;__."_____;________4: ___________________
hd |
0.5} /-- ! !
- 5 10 15 20

N, (Number of inst. in flight)

» Extra question: Is there a policy that always
maximizes overall throughput?

10/22/21

Goals of caches

»Small memories that provide quick access to
recently accessed data.

» Transparently managed by hardware (and OS)

- Program output should appear as if the caches did not
exist and applications directly accessed main memory.

- In contrast with scratchpads (explicitly managed)

Goals of shared memory

» Multiple concurrently executing threads can read
and write data in a single address space.

» Transparently managed by hardware (and OS)

- Program output should appear as if the caches did not
exist and applications directly accessed single memory.

- In contrast with message passing (explicitly manage
shared data)

Caches in parallel systems

» Caches give quick access to data:
- Small private caches may hold copies of data.

» Transparent management: How to ensure cache
accesses don’t act on stale data?

- No shared writeable address space: Pure message
passing, or

- Cache coherence

Cache coherence

time

10/22/21

Processor X:
Ld OxA =2 0

LdOxA 2> 0

LdOxA 2> 0

Ld OxA = 42

Ld OxA = 42

Processor Y:

St 42 - OxA

Q. Do you think this system is coherent?

12

Cache Coherence

» Two Rules:

1. Write propagation: Writes eventually become visible
to other processors

2. Write serialization: All processors observe writes to
one location appear to happen in a consistent order

» Strategies for propagation:
- A write invalidates copies in other private caches

- A write updates copies in other private caches
- Tradeoffs?

Serialization strategies

» Snoopy coherence protocol
On a miss, private caches broadcast their actions
through a bus-like interconnect, other caches observe
(“snoop”) and perform updates or invalidations.

» Directory-based coherence protocol
On a miss, private caches send unicast message to the
directory, which serializes requests and sends unicast
messages to other caches to perform updates or
invalidations.

Tradeoffs?

Do write-through caches need
coherence?

» Yes.

- Writes must propagate: update or invalidate copies in
other private caches.

- Write serialization is trivial (where is the serialization
point?)
» A protocol with two stable states is sufficient:
- Invalid
- Shared
» Do you heed transient cache states?
- Yes!

