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Goal of Multithreading

»Hide the cost of long-latency operations...
- by doing something else!

» Fine-grained
» Coarse-grained
» SMT (Simultaneous Multithreading)
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Why [Count Policy?

» Recall: Original SMT implementation didn’t perform
very well

» |Count: Fetch from the least number of instructions
in flight
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Consider the following toy
problem...

»Qut of order machine
- 20 ROB Entries
- Two Threads: t1 and t2
- Want to maximize commit throughput

» Threads have different average instruction latencies

- T =Throughput, N = Number of instructions in flight
- T1: Ttl = 0.1 X Ntl

- T2: th = 0.8 X 1/Nt2



T1: Ttl = 0.1 X Ntl
T2: th = 0.8 X 1/Nt2

Throughput of thread T1
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»Which thread would have more instructions in
flight with round-robin policy?
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Throughput,, (IPC)

T1: Ttl = 0.1 X Ntl
T2: th = 0.8 X 1/Nt2
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» Which thread would have more instructions in flight
with /Count policy? Same

» Which policy has better overall throughput? [Count
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T1: Ttl = 0.1 X Ntl
T2: th = 0.8 X 1/Nt2

Throughput of thread T1
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» Extra question: Is there a policy that always
maximizes overall throughput?
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Goals of caches

»Small memories that provide quick access to
recently accessed data.

» Transparently managed by hardware (and OS)

- Program output should appear as if the caches did not
exist and applications directly accessed main memory.

- In contrast with scratchpads (explicitly managed)



Goals of shared memory

» Multiple concurrently executing threads can read
and write data in a single address space.

» Transparently managed by hardware (and OS)

- Program output should appear as if the caches did not
exist and applications directly accessed single memory.

- In contrast with message passing (explicitly manage
shared data)



Caches in parallel systems

» Caches give quick access to data:
- Small private caches may hold copies of data.

» Transparent management: How to ensure cache
accesses don’t act on stale data?

- No shared writeable address space: Pure message
passing, or

- Cache coherence



Cache coherence

time
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Processor X:
Ld OxA =2 0

LdOxA 2> 0

LdOxA 2> 0

Ld OxA = 42

Ld OxA = 42

Processor Y:

St 42 - OxA

Q. Do you think this system is coherent?
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Cache Coherence

» Two Rules:

1. Write propagation: Writes eventually become visible
to other processors

2. Write serialization: All processors observe writes to
one location appear to happen in a consistent order

» Strategies for propagation:
- A write invalidates copies in other private caches

- A write updates copies in other private caches
- Tradeoffs?



Serialization strategies

» Snoopy coherence protocol
On a miss, private caches broadcast their actions
through a bus-like interconnect, other caches observe
(“snoop”) and perform updates or invalidations.

» Directory-based coherence protocol
On a miss, private caches send unicast message to the
directory, which serializes requests and sends unicast
messages to other caches to perform updates or
invalidations.

Tradeoffs?



Do write-through caches need
coherence?

» Yes.

- Writes must propagate: update or invalidate copies in
other private caches.

- Write serialization is trivial (where is the serialization
point?)
» A protocol with two stable states is sufficient:
- Invalid
- Shared
» Do you heed transient cache states?
- Yes!



