
Cache Coherence
(Continued)

Ryan Lee
6.823 Fall 2021

Adapted from prior course offerings

11/10/21 1

Cache Coherence
»Two necessary conditions:

1. Write propagation: Writes eventually become visible
to other processors

2. Write serialization: All processors observe writes to
one location appear to happen in a consistent order

»MSI protocol provides a sufficient condition via
single-writer multi-reader policy
- Only one cache may have write permission at any given

point in time
- Multiple caches can have read-only permission at a

given point in time

11/10/21 2

Write-back caches: MSI

»Three stable states per cache-line
- Invalid (I): Cache does not have a copy
- Shared (S): Cache has read-only copy; clean
- Modified (M): Cache has only copy; writable;

(potentially) dirty

»Processor-initiated actions:
- Read: needs to upgrade permission to S
- Write: needs to upgrade permission to M
- Evict: relinquish permissions (caused by access to a

different cache line)

11/10/21 3

MSI directory states

»Uncached (Un): No cache has a valid copy
»Shared (Sh): One or more caches in S state. Must

track sharers.
»Exclusive (Ex): One of the caches in M state. Must

track owner.

»Does the directory need transient states?
- Yes on downgrades/invalidations, to guarantee

serialization

11/10/21 4

Optimizations

»Problem: Frequent read-upgrade sequences
- private read-modify-write
- Requires two bus transactions even for private blocks

»Solution: Add Exclusive (E) state
- E: Only one copy, writable, and clean
- Core silently updates to M upon a write to indicate dirty

line.

11/10/21 5

Optimizations

»Problem: Writeback to memory upon M->S
downgrade
- Sometimes wastes bandwidth e.g. producer-consumer

scenarios
- S implicitly assumes line is clean, allowing silent

evictions.

»Solution: Add Owner (O) state
- O: Multiple copies, read-only, and dirty. Also responsible

for writing back the data
- Core entres O upon a downgrade.

11/10/21 6

Lab Task: MSI Coherence Protocol

» Implement with Murphi description language
- Rules: Define transitions between states
- Invariants and asserts: Capture protocol correctness

»Murphi verifier
- Explores reachable states until it finds:

• A violation of an invariant or assertion, or
• A state with no possible transitions (deadlock), or
• It has explored all reachable states and found no errors.

- Exploits symmetry to reduce redundant states

11/10/21 7

11/10/21 8

Races

» Occur when there are multiple messages/requests in flight
concerning a single cache line.

» Try to minimize the opportunity for races by waiting for
previous messages before sending new ones.

»Multiple processors may concurrently initiate conflicting
requests.
- L13-23 shows one case

» If network may deliver messages out of order, the protocol
must handle this. For example:
- The directory has two messages in flight to one private cache.
- One processor/cache has two messages in flight to the directory.

» 3-hop protocol may require you to add more handling for
additional races.

11/10/21 9

Tips

»Feel free to add to or rename states and messages.
»Get a 4-hop protocol working first, before

attempting 3-hop.
»Get your protocol working with ProcCount set to 2

before handling the 3-processor case.
»Write more of assertions and/or invariants.

- Add assertions/invariants about your transient states.

11/10/21 10

