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VLIW

»Motivation: OoO processors introduce complex, 
inefficient hardware for uncovering ILP 

» The Compiler
- Guarantees intra-instruction parallelism
- Schedules (reorders) to maximize parallel execution

» The Architecture:
- Allows parallelism between operations within an instructions 

(No dependency checks)
- Provide deterministic latency for all operations (no bypasses)
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VLIW Motivation

From Cornell University ECE 4750 Handout #15, Courtesy Chris Batten and course staff
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VLIW Software

» Key Questions:
- How do we find independent instructions to 

fetch/execute?
- How to enable more compiler optimizations?

» Key Ideas:
- Get rid of control flow

• Predicated execution, loop unrolling
- Optimize frequently executed code-paths

• Trace scheduling
- Others: Software pipelining
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Loop Unrolling
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Loop Unrolling

» Unroll loop to perform M iterations at once
- Get more independent instructions
- Need to be careful about case where M is not a multiple of 

number of loop iterations
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Loop Unrolling
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4 fadds / 11 cycles = 0.36



Loop Unrolling

1. Combine M iterations of loop
2. Pipeline schedule to reduce RAW stalls

- In the example above, notice that we move (re-order) 
loads to the top

3. Rename registers
- f1, f2, f3, f4 
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Software Pipelining
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Loop Unrolling Limitations

» Code growth
» Does not handle inter-iteration dependences well
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Predicated Execution

» Limited ILP within a basic-block; branches limit 
available ILP
» Idea: Eliminate hard-to-predict branches by 

converting control dependence to data 
dependence
- Each instruction (within the branch basic block) has a 

predicate bit set
- Only instructions with true predicates are executed and 

committed. Others are treated as nops.
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Predicated Execution
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Trace Scheduling

» Idea: For non-loop situations:
- Find common path in program trace
- Re-align basic blocks to form straight-line trace

• Trace: Fused basic-block sequence
- Schedule trace
- Create fixup code in case trace != actual path

• Can be nasty
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VLIW Summary

» Loop unrolling
- Reduces branch frequency
- Tighter packing of instructions
- Dependences b/w iterations; handling “extra” iterations

» Predicated execution, speculative execution
- Control-flow
- Control-flow, Load-store speculation

» Trace scheduling
- Recovery code
- Combined with other techniques above; moving code 

upward/downward may provide benefits

11/19/21 14



Vector Computers

» Idea: Operate on vectors instead of scalars
- ISA is more expressive, therefore captures more information

» Advantages:
- No dependences within a vector
- Reduced instruction fetch bandwidth
- Amortized cost of instruction fetch and decode
- (Sometimes) regular memory access pattern
- No need to explicitly code loops

» Pitfalls:
- Only works if code sequence (or parallelism) is regular
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Vector Computers

Terminology:
» Vector length register (VLR)
» Conditional execution using vector mask (VM)
» Vector lanes
» Vector chaining
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Vector Computers
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Accelerators

»Motivation in lecture: Cost of Data movement
- Using the limited number of transistors more efficiently.
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Accelerators

»Another motivation: Inefficiency from control 
overheads in general-purpose processors
- Sequential stream of instructions

- Allows processors to be a generalist: able to handle 
every task

- But what is the actual energy cost of an operation?
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Case Study: H.264 Encoder
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»CMP energy breakdown:



We can get away with much less 
energy/op
»Remove/Amortize overhead of instruction fetch, 

decode
- Fixed control flow
- Custom datapaths
- Dataflow execution

»Custom hardware for low bit-width operations
- Similar to SIMD implementations

»Reuse data as much as possible
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