VLIW, Vector Processors,
and Accelerators

Ryan Lee

Adapted from prior course offerings
6.823 Fall 2021

VLIW

» Motivation: OoO processors introduce complex,
inefficient hardware for uncovering ILP

» The Compiler
- Guarantees intra-instruction parallelism
- Schedules (reorders) to maximize parallel execution

» The Architecture:

- Allows parallelism between operations within an instructions
(No dependency checks)

- Provide deterministic latency for all operations (no bypasses)

VLIW Motivation

Sequential Superscalar Compiler OOO Superscalar Processor
Source Code 48 . ~\ Sequenﬁal r ~
for(i=0;i<n;i++) Vi C)‘ ISA _— Ve
dest[1i] @, R ﬁ
= src[i]*coeff;
‘ - —»|] [?
E=)
Find
independent Schedule Check instruction Schedule
| operations operations) L dependencies execution
Sequential VLIW Compiler VLIW Processor
Source Code r \ VLIW)
£\
for(i=0;i<n;i++) /\/_\ & ISA
dest[1i]) [
= src[i]*coeff; —1p b
I [;l
k, —
Find
independent Schedule Direct
| operations operations) N execution y

From Cornell University ECE 4750 Handout #15, Courtesy Chris Batten and course staff

11/19/21 3

VLIW Software

» Key Questions:

- How do we find independent instructions to
fetch/execute?

- How to enable more compiler optimizations?

» Key ldeas:
- Get rid of control flow
* Predicated execution, loop unrolling

- Optimize frequently executed code-paths
* Trace scheduling

- Others: Software pipelining

Loop Unrolling

for (i=0; i<N; i++)
Bli] = A[i] + C;

Compile
loop: Id f1, O(r1)
addr1, 8
fadd f2, fO, f1
sd 2, 0(r2)
add r2, 8

bne r1, r3, loop

11/19/21

Int1 Int2 M1 M2 FP+

loop: | add r1 d

fadd

Schedule /1

add r2| bne sd

How many FP ops/cycle?
1 fadd / 8 cycles =0.125

Loop Unrolling

» Unroll loop to perform M iterations at once

- Get more independent instructions

- Need to be careful about case where M is not a multiple of
number of loop iterations

for (i=0; i<N; i+=4)
~{

for (i=0; i<N; i++)
B[i] = A[i] + C;

i] =A[i]+C;

i+1] = A[i+1] + C;
i+2] = A[i+2] + C;
i+3] = A[i+3] + C;

o O O @

11/19/21

Loop Unrolling

loop: Id 1, O(r1)
Id 12, 8(r1)
Id 3, 16(r1)
Id f4, 24(r1)
add r1, 32
fadd £5, f0, f1
fadd f6, 0, f2
fadd £7, 0, {3
fadd £8, 0, f4
sd 15, 0(r2)
sd 16, 8(r2)
sd 17, 16(r2)
sd 18, 24(r2)
add r2, 32
bne r1, r3, loop

11/19/21

loop:

Schedule

It Int2 M1 M2 FP+ FPx
Id 1.
Idf2 I\
Id {3 I
add r1 Id {4 tadd f5
/ tadd 16
/ ltadd 7
/ fadd 8
sd f5
sd 6
sd 7
addr2 bne | sd {8

4 fadds / 11 cycles = 0.36

Loop Unrolling

1. Combine M iterations of loop

2. Pipeline schedule to reduce RAW stalls

- In the example above, notice that we move (re-order)
loads to the top

3. Rename registers
- f1, 12, 13,14

Software Pipelining

Int1 Int2 M1 M2 FP+ FPx

loop: Id 1, 0(r1) a ld 1
Id £2, 8(r1) Id f2
Id 3, 16(r1) Id f3
Id 4, 24(r1) add r1 Id f4
rolo
add r1, 32 prolog < d f1 fadd 15
fadd f5, 10, f1 Id f2 fadd 16
fadd £6, 10, 2 d £3 fadd £7
fadd 8, 10, 4 | (" loop:
sd 5, 0(r2) iterate
sd 16, 8(r2) m
sd 17, 16(r2)
S—
~
::‘:;2’:;‘:2) sd 15 | fadd f
a . d 16 | tadd 16
bne r1, r3, loop epilog = 2
< add r2 sd f7 |fadd 7
bne sd f8 | fadd {8
11/19/21 4 fadds / 4 cycles =1 sd 15 I

Loop Unrolling Limitations

» Code growth
» Does not handle inter-iteration dependences well

Predicated Execution

» Limited ILP within a basic-block; branches limit
available ILP

» ldea: Eliminate hard-to-predict branches by
converting control dependence to data
dependence

- Each instruction (within the branch basic block) has a
predicate bit set

- Only instructions with true predicates are executed and
committed. Others are treated as nops.

Predicated Execution

b0: Inst 1 if

Inst 2
br a==b, b2

b1: Inst3 else D
Inst 4 ..
br b3 Predication
b2: Inst 5
Inst 6 then j

b3: Inst 7
Inst 8

Four basic blocks

11/19/21

Inst 1

Inst 2

p1,p2 <- cmp(a==Db)
(p1)Inst3 Il (p2)Inst5
(p1)Inst4 1l (p2) Inst6
Inst 7

Inst 8

One basic block

12

Trace Scheduling

» ldea: For non-loop situations:
- Find common path in program trace

- Re-align basic blocks to form straight-line trace
* Trace: Fused basic-block sequence

- Schedule trace

- Create fixup code in case trace != actual path
e Can be nasty

VLIW Summary

» Loop unrolling
- Reduces branch frequency
- Tighter packing of instructions
- Dependences b/w iterations; handling “extra” iterations

» Predicated execution, speculative execution
- Control-flow
- Control-flow, Load-store speculation

» Trace scheduling
- Recovery code

- Combined with other techniques above; moving code
upward/downward may provide benefits

Vector Computers

» |dea: Operate on vectors instead of scalars
- ISA is more expressive, therefore captures more information

» Advantages:
- No dependences within a vector
- Reduced instruction fetch bandwidth
- Amortized cost of instruction fetch and decode
- (Sometimes) regular memory access pattern
- No need to explicitly code loops

» Pitfalls:
- Only works if code sequence (or parallelism) is regular

Vector Computers

Terminology:

» Vector length register (VLR)

» Conditional execution using vector mask (VM)
» Vector lanes

» Vector chaining

Vector Computers

LV vl

N

MULV v3,vl,v2
ADDV v5, v3, v4

V1

Load
Unit

Memory

11/19/21

Chain

N <

w <L

'&halin

A<

<

17

Accelerators

» Motivation in lecture: Cost of Data movement
- Using the limited number of transistors more efficiently.

64-bit DP B S
20pd T 1 26pJ | 256pJ 16nJ - Rd/Wr

R Efficient
vV PY[[-chip
link

256-bit access
8 kB SRAM

11/19/21 18

Accelerators

» Another motivation: Inefficiency from control
overheads in general-purpose processors

- Sequential stream of instructions

- Allows processors to be a generalist: able to handle
every task

- But what is the actual energy cost of an operation?

Case Study: H.264 Encoder

» CMP energy breakdown:

11/19/21

W Instruction Fetch
W Register File
HmALU

WmDS

W Pipeline Registers

m Control

20

We can get away with much less
energy/op

» Remove/Amortize overhead of instruction fetch,
decode
- Fixed control flow
- Custom datapaths
- Dataflow execution

» Custom hardware for low bit-width operations
- Similar to SIMD implementations

» Reuse data as much as possible

