
VLIW, Vector Processors,
and Accelerators

Ryan Lee
Adapted from prior course offerings

6.823 Fall 2021

11/19/21 1

VLIW

»Motivation: OoO processors introduce complex,
inefficient hardware for uncovering ILP

» The Compiler
- Guarantees intra-instruction parallelism
- Schedules (reorders) to maximize parallel execution

» The Architecture:
- Allows parallelism between operations within an instructions

(No dependency checks)
- Provide deterministic latency for all operations (no bypasses)

11/19/21 2

VLIW Motivation

From Cornell University ECE 4750 Handout #15, Courtesy Chris Batten and course staff

11/19/21 3

VLIW Software

» Key Questions:
- How do we find independent instructions to

fetch/execute?
- How to enable more compiler optimizations?

» Key Ideas:
- Get rid of control flow

• Predicated execution, loop unrolling
- Optimize frequently executed code-paths

• Trace scheduling
- Others: Software pipelining

11/19/21 4

Loop Unrolling

11/19/21 5

fadd

Loop Unrolling

» Unroll loop to perform M iterations at once
- Get more independent instructions
- Need to be careful about case where M is not a multiple of

number of loop iterations

11/19/21 6

Loop Unrolling

11/19/21 7

4 fadds / 11 cycles = 0.36

Loop Unrolling

1. Combine M iterations of loop
2. Pipeline schedule to reduce RAW stalls

- In the example above, notice that we move (re-order)
loads to the top

3. Rename registers
- f1, f2, f3, f4

11/19/21 8

Software Pipelining

11/19/21 4 fadds / 4 cycles = 1 9

Loop Unrolling Limitations

» Code growth
» Does not handle inter-iteration dependences well

11/19/21 10

Predicated Execution

» Limited ILP within a basic-block; branches limit
available ILP
» Idea: Eliminate hard-to-predict branches by

converting control dependence to data
dependence
- Each instruction (within the branch basic block) has a

predicate bit set
- Only instructions with true predicates are executed and

committed. Others are treated as nops.

11/19/21 11

Predicated Execution

11/19/21 12

Trace Scheduling

» Idea: For non-loop situations:
- Find common path in program trace
- Re-align basic blocks to form straight-line trace

• Trace: Fused basic-block sequence
- Schedule trace
- Create fixup code in case trace != actual path

• Can be nasty

11/19/21 13

VLIW Summary

» Loop unrolling
- Reduces branch frequency
- Tighter packing of instructions
- Dependences b/w iterations; handling “extra” iterations

» Predicated execution, speculative execution
- Control-flow
- Control-flow, Load-store speculation

» Trace scheduling
- Recovery code
- Combined with other techniques above; moving code

upward/downward may provide benefits

11/19/21 14

Vector Computers

» Idea: Operate on vectors instead of scalars
- ISA is more expressive, therefore captures more information

» Advantages:
- No dependences within a vector
- Reduced instruction fetch bandwidth
- Amortized cost of instruction fetch and decode
- (Sometimes) regular memory access pattern
- No need to explicitly code loops

» Pitfalls:
- Only works if code sequence (or parallelism) is regular

11/19/21 15

Vector Computers

Terminology:
» Vector length register (VLR)
» Conditional execution using vector mask (VM)
» Vector lanes
» Vector chaining

11/19/21 16

Vector Computers

11/19/21 17

Memory

V1

Load
Unit

Mult.

V
2

V
3

Chain

Add

V
4

V
5

Chain

LV v1
MULV v3,v1,v2
ADDV v5, v3, v4

Load
Mul

Add

Accelerators

»Motivation in lecture: Cost of Data movement
- Using the limited number of transistors more efficiently.

11/19/21 18

Accelerators

»Another motivation: Inefficiency from control
overheads in general-purpose processors
- Sequential stream of instructions

- Allows processors to be a generalist: able to handle
every task

- But what is the actual energy cost of an operation?

11/19/21 19

Case Study: H.264 Encoder

11/19/21 20

»CMP energy breakdown:

We can get away with much less
energy/op
»Remove/Amortize overhead of instruction fetch,

decode
- Fixed control flow
- Custom datapaths
- Dataflow execution

»Custom hardware for low bit-width operations
- Similar to SIMD implementations

»Reuse data as much as possible

11/19/21 21

