
Quiz 1 Review

Ryan Lee
(Adapted from prior course offerings)

10/12/21 6.823 Fall 2021 1

Quiz 1 Logistics

• Time: 1pm-2:30pm EDT on Friday, October 15th

• Location: 32-141

• Covered Materials: L01-09

• Additional handout will be provided
– Data-in-ROB style OoO Processor

• Closed book, no calculators.

10/12/21 6.823 Fall 2021 2

Please ask any questions you have!
(I hope to keep this interactive)

10/12/21 6.823 Fall 2021 3

Agenda

• Caches
• Virtual Memory
• Pipelining
• Complex Pipelines
– Scoreboarding
– Register Renaming
– Branch Prediction
– OoO Issue & Reorder Buffer
– Specultive value management

10/12/21 46.823 Fall 2021

Self-Modifying Code

• Necessity in early days of computing due to
lack of sufficient general-purpose registers
– Accumulator-based
– No concept of index registers, PC
– Use self-modifying code for indirect accesses,

subroutine calls, etc.

• Try out Problem set 1 & EDSACjr-based
problems.

10/12/21 6.823 Fall 2021 5

Caches

• Motivation: A small but fast storage that
exploits locality
– Decreases latency of access by exploiting spatial

and temporal locality

• Allows you to achieve high throughput
without large buffers: Little’s Law
– 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 𝑇 = !"#$%& '()%*"%+,+ -. /0-12, (!)

56%&71% 87,%.9: (8)

10/12/21 6.823 Fall 2021 6

Little’s Law

Throughput (T) = Number in Flight (N) / Latency (L)

WBIssue Execution

Example:
4 floating point registers
8 cycles per floating point operation

Þ ½ issues per cycle!

2021-10-12 6.823 Fall 2019 7

Caches

• Performance metrics
– AMAT = hit time + miss rate * miss penalty

• Design options
– # of sets, # of ways
– Block size
– Replacement policy
– Inclusivity and exclusivity
– More to cover in the future lectures

10/12/21 6.823 Fall 2021 8

Caches

10/12/21 6.823 Fall 2021 9

Tag Index Block/Line Offset

log2(cache line/block size) bits

log2(num sets) bits

Remainder bits

Used to distinguish lines
mapped to the same set

Used to locate a word/byte
within the lineUsed to locate a set

Virtual Memory

• A way to provide isolation and protection
between programs
– Segmentation with base & bound registers
– Paged memory systems

10/12/21 6.823 Fall 2021 10

Address Translation

Parameters
– P = 2p = page size (bytes).
– N = 2n = Virtual-address limit
– M = 2m = Physical-address limit

10/12/21 6.823 Fall 2021 11

Page offset bits do not change with translation

Virtual Page Number Page Offset Virtual Address
0p-1pn-1

Page Offset
0p-1p

Physical Page Number

Address Translation

m-1
Physical Address

Hierarchical Page Tables

10/12/21 6.823 Fall 2021 12

Virtual Address Index 1 Index 2 Index 3 Offset
31 23 17 11 0

Page Table
Base Register

PTP

PTP

PTE

L1 Table

L2 Table
L3 Table

Physical Address PPN Offset

• Virtual address space is sparsely populated

Translation Lookaside Buffer

• It is just another cache!
– Holds VPN->PPN mappings to accelerate address

translation
– Can play all the tricks we did with data caches
• Associativity
• Replacement policy
• Multiple levels

• TLB Miss -> Page Table walk
10/12/21 6.823 Fall 2021 13

Pipelining
• Overlaps execution of multiple instructions: Pipeline

parallelism

• Visualization
– Instruction flow diagram
– Resource usage diagram

• Hazard: an instruction cannot execute because
– Resource is not ready: structural hazard
– Data value is not ready:data hazard
– PC is not ready: control hazard

10/12/21 6.823 Fall 2021 14

Strategies to resolve hazards

• Stall
• Bypass
• Speculate
• Do something else

10/12/21 6.823 Fall 2021 15

Instruction Flow Diagram

10/12/21 6.823 Fall 2021 16

Assume no Bypassing:

I1: r1 <- r0 + 10
I2: r3 <- M[r1 + 10]
I3: r4 <- r3 + 1
...

time t0 t1 t2 t3 t4 t5 t6 t7
(I1) r1 ¬ r0 + 10 IF1 ID1 EX1 MA1 WB1
(I2) r3 ¬ M[r1 + 10] IF2 ID2 ID2 ID2 ID2 EX2 MA2
(I3) r4 ¬ r3 + 1 IF3 IF3 IF3 IF3 ID3 ID3
(I4) IF4 IF4
(I5) stalled stages

Complex pipelining

• Scoreboard
– A data structure that detects hazards dynamically
– Needed because
• Many execution units
• Variable execution latency
• Dynamic instruction scheduling

– Orthogonal to in-order vs. out-of-order issue

10/12/21 176.823 Fall 2021

Out-of-order issue
• Strategy: find something else to do

• Difference from in-order issue
– More hazards to consider (e.g., WAR and control)

• Techniques typically combined with OOO issue
– Register renaming

• Critical since it reduces/eliminates WAR and WAW hazards
– In-order commit

• Critical since it simplifies speculative execution
• Speculation requires per-instruction buffering/logging

– Partial flush is critical
– Circular buffer management is preferred

10/12/21 186.823 Fall 2021

OOO design tradeoffs

• Implementations
– Data-in-ROB
– Unified-register-file

• Tradeoffs
– Are there pointers or values in ROB? Are register reads

delayed or immediate?
– Can speculative values share resources with non-

speculative values?
– Centralized ROB vs. reservation stations
– ROB vs. issue queue + commit queue

10/12/21 196.823 Fall 2021

Branch prediction

• To reduce the control flow penalty

10/12/21 206.823 Fall 2021

A PC Generation/Mux
P Instruction Fetch Stage 1
F Instruction Fetch Stage 2
B Branch Address Calc/Begin Decode
I Complete Decode
J Steer Instructions to Functional units
R Register File Read
E Integer Execute

Remainder of execute pipeline
(+ another 6 stages)

Branch
Target
Address
Known

Branch
Direction &
Jump
Register
Target
Known

Predicting Branch Direction

• Static vs. dynamic predictor

• Example: two-level branch predictor
– Access a local/global history in the first level
– Access a counter in the second level (with or

without bits from PC)

10/12/21 216.823 Fall 2021

Predicting Branch Target

• Tight loop to produce next PC every cycle
• Example: 2^k entry direct-mapped BTB

10/12/21 226.823 Fall 2021

I-Cache PC

k

Valid

valid

Entry PC

=

match

predicted

target

target PC

Speculative Value Management
• When do we do speculation?
- Branch prediction
- Assume no exceptions/interrupts
- …

• How do we manage speculative values?
- Greedy (or eager) update

- Update value in place
- Maintain log of old values to use for recovery

- Lazy update
- Buffer the new value and leave old value in place
- Replace the old value on commit

2021-10-12 6.823 Fall 2019 23

Questions?

• Caches
• Virtual Memory
• Pipelining
• Complex Pipelines
– Scoreboarding
– Register Renaming
– Branch Prediction
– OoO Issue & Reorder Buffer
– Specultive value management

10/12/21 246.823 Fall 2021

