
6.823

Handout #5

 1

 6.823 Computer System Architecture
 Victim Cache

http://csg.csail.mit.edu/6.823/

Although direct-mapped caches have an advantage of smaller access time than set-associative

caches, they have more conflict misses due to their lack of associativity. In order to reduce these

conflict misses, N. Jouppi proposed the victim caching where a small fully-associative back up

cache, called victim cache, is added to a direct-mapped L1 cache to hold recently evicted cache

lines.

The following diagram shows how a victim cache can be added to a direct-mapped L1 data cache.

Upon a data access, the following chain of events takes place:

L1 Data
Cache

Main
Memory

(or
L2 cache)RF

CPU

Victim

FA Cache
4 blocks

Evicted data
from L1

Evicted data
From VC

Hit data from VC
(miss in L1)

Figure H5-A: A Victim Cache Organization

1. The L1 data cache is checked. If it holds the data requested, the data is returned.

2. If the data is not in the L1 cache, the victim cache is checked. If it holds the data requested,

the data is moved into the L1 cache and sent back to the processor. The data evicted from the

L1 cache is put in the victim cache, and put at the end of the FIFO replacement queue.

3. If neither of the caches holds the data, it is retrieved from memory, and put in the L1 cache.

If the L1 cache needs to evict old data to make space for the new data, the old data is put in

the victim cache and placed at the end of the FIFO replacement queue. Any data that needs to

be evicted from the victim cache to make space is written back to memory or discarded, if

unmodified.

Note that the two caches are exclusive. That means that the same data cannot be stored in both

L1 and victim caches at the same time.

6.823

Handout #5

 2

Reference

1. Norm Jouppi, Improving direct-mapped cache performance by the addition of a small

fully-associative cache and prefetch buffers, in the Proceedings of the 17th International

Symposium on Computer Architecture (ISCA), pages 364--373, Seattle, Washington, May

1990.

