
 6.823 Fall 2021

1

Quiz 1 Handout

Figure 1 shows the pipeline of an out-of-order machine that uses Data-in-ROB design to perform
out-of-order execution and in-order commit. Flip flops and queues represent stage boundaries.

The processor consists of the following stages:

1. Fetch: The instruction at PC is fetched from the instruction cache.
• In parallel, the PC is also fed into a branch target buffer (BTB). On a hit in the BTB,

the next PC to be fetched is updated to the target PC indicated in the BTB.
Otherwise, the next PC is PC+4. The BTB is a 1-cycle "tight loop".

2. Decode: The fetched instruction is decoded.
• If the decoded instruction was a conditional branch, its direction is predicted by a

branch predictor. The branch predictor is described in the next page.
Note: Direct jumps (J/JAL) are always taken, so no prediction is needed.

• For direct jumps and branches (BEQ/BNE/J/JAL), the target is calculated and a
prediction on branch direction is made. If the branch is predicted taken, the next PC
to be fetched is updated unless the BTB made a correct prediction in the Fetch stage.

3. Pre-Allocation: The reorder buffer (ROB) is checked for an available slot.
4. Register Read & Allocate: If the needed space is available, the instruction is inserted into

the ROB. The physical index of the ROB entry is the instruction's "tag". To obtain any
required operands, the rename table and register file are read simultaneously. If the rename
table has a valid tag for an operand, then the corresponding ROB entry must be checked
for that operand. Otherwise, the value in the register file can be used. If the instruction
writes a register, its tag is written to the destination register entry in the rename table. The
ROB source fields store either the tag of the data-producing ROB entry, or the actual data
when it becomes available.

5. Issue: On each cycle, the oldest ready instruction in the ROB is issued, reading its operands
from its ROB entry.

6. Execute: Functional units or the memory system may take one or more cycles to execute
the instruction.

7. Writeback: The output from the functional units, or memory access, if any, are written back
to the data field in the ROB and the pd bit is set. Additionally, any dependent instructions
in the ROB will receive the value and have the corresponding present bit set (p1 for the
first operand, p2 for the second operand).

8. Commit: On each cycle, if the oldest instruction in the ROB that has finished execution is
committed. If the instruction writes a register, the result is written to the register file, and
if the tag in the rename table for this register matches the tag of the result, the rename table
valid bit is cleared.

 6.823 Fall 2021

2

Figure 1: Simplified out-of-order pipeline schematic. Several important structures are not

shown, such as commit, bypassing, and some sources of next-PC value

Local History Branch Predictor:

The branch predictor for this processor is a local history predictor that consists of a local history
table and eight 2-bit prediction counters. The local history table consists of eight shift registers,
each of which contains an 8-bit history of a particular branch. To make a prediction, we take the
bottom three bits of the PC (excluding the last 2 bits which are always 00 for aligned instructions)
to index into the local history table. The bottom 3-bits of each entry in the local history table are
then used to index into the prediction counters.

Figure 2: local history branch predictor

In each local history table entry, 1 represents Taken and 0 represents Not-Taken. The 2-bit
counters in this design follow the state-diagram shown in Figure 3. In state 1X, we will guess
Taken; in state 0X, we will guess Not-Taken.

Figure 3: State Diagram of 2-bit counters

Upon predicting a branch direction, the local history table entry is immediately updated in the
same cycle by shifting in the prediction from the right. The prediction counter is updated when the
corresponding branch commits. The predictor also has a structure (not shown in figure) that tracks
which local history table entry each branch updated. Upon detecting a misprediction later down
the pipeline, the local history table is recovered by right-shifting the table entries that the mis-
predicted branch and all later branches in program order have updated. After recovery, the correct
direction is shifted in.

Fetch Decode Pre-
Allocation Execute Write-

Back

BTB

0x4

next PC

Branch
Predictor

IssueReg. Read
& Allocate

8-bit local history table

PC

2-bit predic5on counters
00

3-bits 3-bits

Taken / Not Taken

 6.823 Fall 2021

3

Processor State

Figure 4: Processor State. There are 26 additional rename table entries and registers,

which are not shown.

A snapshot of the processor state is shown in Figure 4. For simplicity, we do not show
interactions between the processor and the memory subsystem. The processor state consists of
the following components:

• Pre-Allocated Instruction: Pipeline register holding the next instruction to be allocated to
the ROB.

• Decoded Instruction: Pipeline register holding a decoded instruction.
• Fetched Instruction: Pipeline register holding a raw binary instruction.
• Next PC to be fetched: This is the PC register in Figure 1.
• Branch Target Buffer (BTB): Holds map of source PC to target PC. If a fetched

instruction PC hits in the BTB, the next PC to fetch is the corresponding target PC.
• Local History Table: Holds local histories for different branches
• Prediction Counter: Provides prediction for a given branch history
• Branch Global History: 8-bit global branch history.
• Register File: Holds the committed data values of architectural registers. A snapshot is

taken every time a branch is allocated into the ROB.
• Rename Table: A map from architectural register name to ROB tag (if valid).

Reorder Buffer (ROB)
Inum PC Use Ex Op p1 src1 p2 src2 pd dest data

I5 … …
I6 0x34 1 1 div 1 6823 1 10 R3
I7 0x38 1 add 300 1 T4 R1
I8 0x3c 1 1 addi 1 1214 1 20 1 R4 1234
I9 0x40 1 mul T5 1 1234 R5

I10 0x44 1 subi 1 1234 1 1233 1 R4
I11 0x48 1 add T5 T7 R3
I12 0x4c 1 beqz T9
I13 0xa0 1 div 1 5544 T8 R6
I14 0xa4 1 1 subi 1 8001 1 1 1 R5 8000
I15 0xa8 1 1 bnez 1 8000

Local History Table
Index Local History

000 10011110
001 00000000
010 10101010
011 11111011
100 11101101
101 00011000
110 01110010
111 00000010

Fetched Inst.

I18: 0xb4
Decoded Inst.

I17: 0xb0
Branch Target Buffer
Entry PC Target

1 0x4c 0xa0
2 0xd4 0xf0
3
4

Next PC to Fetch

I19:

Rename Table
Reg Valid Tag

R1 1 T5
R2
R3 1 T9
R4 1 T8
R5
R6 1 T11

Register File
Reg Value

R1 6823
R2 1214
R3 3333
R4 10
R5 8001
R6 9

Pre-Allocated Inst.

I16: 0xac

Next to
commit

Next available
slot

...
T4
T5
T6
T7
T8
T9

T10
T11
T12
T13
T14
T15

Tag

Prediction Counter
Index Counters

000 10
001 11
010 11
011 00
100 11
101 00
110 00
111 10

 6.823 Fall 2021

4

• Reorder Buffer (ROB): Contains the bookkeeping information for managing the out-of-
order execution and register renaming, and operand data values when they become
available.

We provide a list of actions below. Study them carefully and relate them to the concepts covered
in the lectures. You will be required to associate events in the processor to one of these actions,
and, if required, one of the choices for the blank.

Label List:

A. Satisfy a dependence on ______ by stalling
B. Satisfy a dependence on ______ by bypassing a speculative value
C. Satisfy a dependence on ______ by bypassing a committed value
D. Satisfy a dependence on ______ by speculation using a static prediction
E. Satisfy a dependence on ______ by speculation using a dynamic prediction
F. Write a speculative value using lazy data management
G. Write a speculative value using greedy data management
H. Speculatively update a prediction on ______ using lazy value management
I. Speculatively update a prediction on ______ using greedy value management
J. Non-speculatively update a prediction on ______
K. Check the correctness of a speculation on ______ and find a correct speculation
L. Check the correctness of a speculation on ______ and find an incorrect speculation
M. Abort speculative action and cleanup lazily managed values
N. Abort speculative action and cleanup greedily managed values
O. Commit correctly speculated instruction, where there was no value management
P. Commit correctly speculated instruction, and mark lazily updated values as non-speculative
Q. Commit correctly speculated instruction, and free log associated with greedily updated values
R. Illegal or broken action

Blank choices:

i. Register value
ii. PC value
iii. Branch direction
iv. Memory address
v. Memory value
vi. Latency of operation
vii. Functional unit

