
Last updated:
10/6/2021

Problem M8.1: Fetch Pipelines

PC PC Generation
F1 ICache Access F2
D1 Instruction Decode D2
RN Rename/Reorder
RF Register File Read
EX Integer Execute

Problem M8.1.A Pipeline Subroutine Returns

Immediately after what pipeline stage does the processor know that it is executing a subroutine
return instruction?
D2

Immediately after what pipeline stage does the processor know the subroutine return address?
RF

How many pipeline bubbles are required when executing a subroutine return? 6

Problem M8.1.B Adding a BTB

A subroutine can be called from many different locations and thus a single subroutine return can
return to different locations. A BTB holds only the address of the last caller.

Problem M8.1.C Adding a Return Stack

Normally, instruction fetch needs to wait until the return instruction finishes the RF stage before
the return address is known. With the return stack, as soon as the return instruction is decoded in
D2, instruction fetch can begin fetching from the return address. This saves 2 cycles.

A return address is pushed after a JAL/JALR instruction is decoded in D2. A return address is
popped after a JR r31 instruction is decoded in D2.

Last updated:
10/6/2021

Problem M8.1.D Return Stack Operation

A: JAL B
A+1:
A+2:
…
B: JR r31
B+1:
B+2: …

Problem M8.1.E Handling Return Address Mispredicts

When a value is popped off the return stack after D2, it is saved for two cycles as part of the
pipeline state. After the RF stage of the return instruction, the actual r31 is compared against the
predicted return address. If the addresses match, then we are done. Otherwise we mux in the correct
program counter at the PC stage and kill the instructions in F1 and F2. Depending on how fast the
address comparison is assumed to be, you might also kill the instruction in D1. So there is an
additional 2 or 3 cycles lost on a return mispredict.

Problem M8.1.F Further Improving Performance

Ben should add a cache of the most recently encountered return instruction addresses. During F1,
the contents of the cache are looked up to see if any entries match the current program counter. If
so, then by the end of F1 (instead of D2) we know that we have a return instruction. We can then
use the return stack to supply the return address.

Last updated:
10/6/2021

Problem M8.2: Managing Out-of-order Execution

Problem M8.2.A

R1 P0
R2 P1
R3 P2
R4 P3

P4
P5
P6
P7
P8

P9

Reorder Buffer (ROB)
 use ex op p1 PR1 p2 PR2 Rd LPRd PRd

Rename Table

Physical Regs

Free List

 P7
 P8
 P9
 P1
 P2

8016 p
6823 p
8000 p

7 p
0 p

8004 p
8 p

 P4 P7
 P5 P8
 P6

P0

…

Last updated:
10/6/2021

Problem M8.2.B

R1 P0
R2 P1
R3 P2
R4 P3

P4
P5
P6
P7
P8

P9

Reorder Buffer (ROB)
 use ex op p1 PR1 p2 PR2 Rd LPRd PRd

next to
commit

x bne p P5 p P0

next
available

Rename Table

Physical Regs

Free List
 P9

 P1

 P2

 P6
 P7
 P8

8016 p

7 p
0 p

8004 p

P4
P5
P3
P0

…

Last updated:
10/6/2021

Problem M8.2.C

Under what conditions, if any, might the loop execute at a faster rate on the in-order processor
compared to the out-of-order processor?

If the out-of-order processor frequently mispredicts either of the branches, it is likely to execute
the loop slower than the in-order processor. For this to be true, we must also assume that the branch
misprediction penalty of the out-of-order processor is sufficiently longer than the branch resolution
delay of the in-order processor, as is likely to be the case. The mispredictions may be due to
deficiencies in the out-of-order processor’s branch predictor, or the data-dependent branch may be
fundamentally unpredictable in nature.

Under what conditions, if any, might the loop execute at a faster rate on the out-of-order
processor compared to the in-order processor?

If the out-of-order processor predicts the branches with high enough accuracy, it can execute more
than one instruction per cycle, and thereby execute the loop at a faster rate than the in-order
processor.

Last updated:
10/6/2021

Problem M8.3: Exceptions and Register Renaming

Problem M8.3.A Recovering from Exceptions

By the definition of a precise exception, an exception that occurs in the middle of an x86 instruction
should cause the machine state to revert to the state that previously existed right before the
excepting instruction started executing. Thus a strategy to determine a precise state would be to
take snapshots of the RAT only on x86 instruction boundaries (either when the last µop of an x86
instruction commits or right before the first µop of an x86 instruction is renamed).

Problem M8.3.B Minimizing Snapshots

Ben is correct. Since an exception causes the machine to revert to the state found on an x86
instruction boundary, all the temporary state used by the µops does not need to be kept. Thus, the
RAT only has to hold the rename mappings for the architectural registers, and not for T0-T7.

Problem M8.3.C Renaming Registers

There must be at least 17 physical registers for the Bentium 4 to work properly. 16 registers are
needed to hold the state of the machine at any given point in time (architectural and temporary
register values), and an extra one is needed to rename an additional register using the given
renaming algorithm to allow forward progress.

Last updated:
10/6/2021

Problem M8.4: Out-of-order Execution (Spring 2014 Quiz 2, Part C)

In this problem, we are going to update the state of the processor when different events happen. You are given an out-of-order
processor in some initial state, as described by the registers (renaming table, physical registers, and free list), one-bit branch
predictor, and re-order buffer. Your job is to show the changes that occur when some event occurs, starting from the same
initial state except where noted. For partial credit, briefly describe what changes occur.

Last updated:
10/6/2021

Problem M8.4.A

Show the state of the processor if the first load completes (but does not commit).

Last updated:
10/6/2021

Problem M8.4.B

Show the state of the processor after the next instruction is issued.

Last updated:
10/6/2021

Problem M8.4.C

From the state at the end of Question 2, as the next action can the processor issue (not execute) another instruction?

No. There are no physical registers on the free list.

In one or two sentences, what does this say about our design? How can we improve it?

We didn’t solve Little’s Law correctly when we sized our physical register file. We need to make it bigger so it can support the
number of instructions we have in flight in the ROB.

Last updated:
10/6/2021

Problem M8.4.D

Show the state of the processor if the first LD triggers a page fault and after abort finishes.

Last updated:
10/6/2021

Problem M8.5 (Spring 2015 Quiz 2, Part B)

You are given an out-of-order processor that

• Issues at most one instruction per cycle

• Commits at most one instruction per cycle

• Uses an unified physical register file

Problem M8.5.A

Consider the following code sequence:

Assume the branch instruction (blez) is not taken. Fill out the table below to identify all

Read-After-Write (RAW), Write-After-Read (WAR), and Write-After-Write (WAW)

dependencies in the above sequence.

 I0 I1 I2 I3 I4 I5 I6 I7

I0 -

I1
WAW

RAW
-

I2

 -

I3 RAW -

I4 WAR RAW WAR -

I5 RAW RAW -

I6 RAW WAW WAR WAR -

I7 WAW

WAR

WAR

RAW

WAR

RAW
-

 Addr
I0 (0x24) lw r2, (r4), #0
I1 (0x28) addi r2, r2, #16
I2 (0x2C) lw r3, (r4), #4
I3 (0x30) blez r3, L1
I4 (0x34) addi r4, r2, #8
I5 (0x38) mul r1, r2, r3
I6 (0x3C) addi r3, r2, #8
I7 (0x40) L1: add r2, r1, r3

Older Instruction

Younger

Instruction

Last updated:
10/6/2021

In Problems M8.5.B to M8.5.D, you should update the state of the processor when different

events happen. The starting state in each question is the same, and the event specified in

each question is the ONLY event that takes place for that question. The starting state is

shown in the different structures: renaming table, physical registers, free list, two-bit

branch predictor, global history buffer, and reorder buffer (ROB).

Note the following conventions:

• The valid bit for any entry is represented by “1”.

• The valid bit can be cleared by crossing it out.

• In the ROB, the “ex” field should be marked with “1” when an instruction

starts execution, and the “use” field should be cleared when it commits. Be

sure to update the “next to commit” and “next available” pointers, if

necessary.

• Fill out the “after” fields in all the tables. Write new values in these boxes if

the values change due to the event specified in the question. You do not have

to repeat the values if they do not change due to the event.

In Questions 2 through 4, we will use the same code sequence as in Question 1:

The starting state of the processor is as follows:

• Instructions I0-I4 are already in the ROB.

• I0 (lw) has already finished execution.

• I1 (addi) and I2 (lw) have started executing but have not finished yet.

• I3 (blez) has been predicted to be Not-Taken by the branch predictor.

• I5 (mul) has completed the decode stage.

• I6 (addi) has completed the Fetch Stage.

• The next PC is set to 0x40, which is the PC of I7 (add).

 Addr
I0 (0x24) lw r2, (r4), #0
I1 (0x28) addi r2, r2, #16
I2 (0x2C) lw r3, (r4), #4
I3 (0x30) blez r3, L1
I4 (0x34) addi r4, r2, #8
I5 (0x38) mul r1, r2, r3
I6 (0x3C) addi r3, r2, #8
I7 (0x40) L1: add r2, r1, r3

Last updated:
10/6/2021

Problem M8.5.B

The following figure shows the starting state of the processor. Suppose the decoded

instruction I5 (mul) is now inserted into the ROB. Update the diagram to reflect the

processor state after this event has occurred.

Reorder Buffer (ROB)
use ex op p1 PR1 p2 PR2 Rd LPRd PRd

1 1 lw 1 P3 r2 P1 P4
1 1 addi 1 P4 r2 P4 P5
1 1 lw 1 P3 r3 P2 P6
1 blez P6
1 addi P5 r4 P3 P7
1 mul P5 P6 r1 P0 P8

Free List
P8
P9

P10

Fetched Inst. Queue
PC Inst.

0x3C I6 (addi)

Prediction Counter
Index Before After
000 11
001 00
010 11
011 01
100 10
101 11
110 01
111 00

Decoded Inst. Queue
Inst.

I5 (mul)

Next PC to be fetched
Before After
0x40

Branch Global History
Before After

0010110

Rename Table (Latest)
Name Before After

R1 P0 P8
R2 P5
R3 P6
R4 P7

Rename Table
(Snapshot 1)

Valid
1

Name Before After
R1 P0
R2 P5
R3 P6
R4 P3

Physical Registers
Name Value Valid

P0 45 1
P1 2 1
P2 -3 1
P3 100 1
P4 20 1
P5
P6
P7
P8
P9

P10

Next to
commit

Next
available

Last updated:
10/6/2021

Problem M8.5.C

Start from the same processor state, shown below. Suppose now I1 (addi) has completed

execution. Commit as many instructions as possible. Update the diagram to reflect the

processor state after I1 execution completes and as many instructions as possible have

committed. Again, assume no other events take place.

Reorder Buffer (ROB)
use ex op p1 PR1 p2 PR2 Rd LPRd PRd

1 1 lw 1 P3 r2 P1 P4
1 1 addi 1 P4 r2 P4 P5
1 1 lw 1 P3 r3 P2 P6
1 blez P6
1 addi 1 P5 r4 P3 P7

Free List
P8
P9

P10
P1
P4

Fetched Inst. Queue
PC Inst.

0x3C I6 (addi)

Prediction Counter
Index Before After
000 11
001 00
010 11
011 01
100 10
101 11
110 01
111 00

Decoded Inst. Queue
Inst.

I5 (mul)

Next PC to be fetched
Before After
0x40

Branch Global History
Before After

0010110

Rename Table (Latest)
Name Before After

R1 P0
R2 P5
R3 P6
R4 P7

Rename Table
(Snapshot 1)

Valid
1

Name Before After
R1 P0
R2 P5
R3 P6
R4 P3

Physical Registers
Name Value Valid

P0 45 1
P1 2 1
P2 -3 1
P3 100 1
P4 20 1
P5 36 1
P6
P7
P8
P9

P10

Next to
commit

Next
available

Last updated:
10/6/2021

Problem M8.5.D

Start from the same processor state, shown below. Suppose instruction I2 (lw) triggers an

ALU overflow exception. Restore the architectural and microarchitectural state to recover

from misspeculation. The exception handler for the processor is at address 0x8C (control

is transferred to the exception handler after recovery). You do not need to worry about the

number of cycles taken by recovery. Show the processor state after recovery.

Reorder Buffer (ROB)
use ex op p1 PR1 p2 PR2 Rd LPRd PRd

1 1 lw 1 P3 r2 P1 P4
1 1 addi 1 P4 r2 P4 P5
1 1 lw 1 P3 r3 P2 P6
1 blez P6
1 addi P5 r4 P3 P7

Free List
P8
P9

P10
P7
P6

Fetched Inst. Queue
PC Inst.

0x3C I6 (addi)

Prediction Counter
Index Before After
000 11
001 00
010 11
011 01
100 10
101 11
110 01
111 00

Decoded Inst. Queue
Inst.

I5 (mul)

Next PC to be fetched
Before After
0x40 0x8c

Branch Global History
Before After

0010110 ?001011

Rename Table (Latest)
Name Before After

R1 P0
R2 P5
R3 P6 P2
R4 P7 P3

Rename Table
(Snapshot 1)

Valid
1

Name Before After
R1 P0
R2 P5
R3 P6
R4 P3

Physical Registers
Name Value Valid

P0 45 1
P1 2 1
P2 -3 1
P3 100 1
P4 20 1
P5
P6
P7
P8
P9

P10

Next to
commit

Next
available

Last updated:
10/6/2021

Problem M8.6: Out-of-order Processor Design (Spring 2014 Quiz 2, Part
D)

You are designing an out-of-order processor similar to the IBM 360/91 Tomasulo design

shown above. This design distributes the re-order buffer around the processor, placing

entries near their associated functional units. In such a design, the distributed ROB entries

are called “reservation stations”. Entries are allocated when the instruction is decoded and

freed when the instruction is dispatched to the functional unit.

Your design achieves an average throughput of 1.5 instructions per cycle. Two-thirds of

instructions are adds, and one-third are multiplies. The latency of each instruction type

from allocation to completion is 5 cycles for adds and 14 cycles for multiplies.

Type of operation Fraction of instructions Average latency
Add 2/3 5

Multiply 1/3 14

The adder and multiplier are each fully pipelined with full bypassing. Once an instruction
is dispatched to the FU, the adder takes 2 cycles and the multiplier takes 5 cycles.

Throughput Add latency Multiply latency
1.5 2 5

Last updated:
10/6/2021

Problem M8.6.A

How many entries are in use, on average, in the reservation station at each functional unit

(adder, multiplier) in the steady state? Assume there are infinite entries available if needed.

What is the average latency of an instruction in this machine? For partial credit, feel free
to give any formulae you believe may be important to answer this question.

This is a Little’s Law question: T = N / L.

From the fraction of instructions and the machine’s total throughput, we can get the

throughput of each type of instruction.

Tadd = 2/3 * 3/2 = 1

Tmul = 1/3 * 3/2 = 1/2

To solve for the number of entries in use, we need to know the average latency an

instruction spends in the reservation station. From the problem description, reservation

stations are in use from allocation until the instruction is dispatched to the functional unit.

So the latency in the reservation station itself is the end-to-end latency minus the latency

of the functional unit.

Lr,add = Ladd – Lfu,add = 5 – 2 = 3 cycles

Lr,mul = Lmul – Lfu,mul = 14 – 5 = 9 cycles

Thus the number of entries in use is on average:

Nadd = Tadd * Lr,add = 3

Nmul = Tmul * Lr,mul = 9 / 2 = 4.5

The average latency can be computed from the frequency of instructions directly:

L = 2/3 Ladd + 1/3 Lmul = 2/3 * 5 + 1/3 * 14 = 8

Or from Little’s Law, but this is more complicated. We now want to know the number of

adds and multiplies in flight. This is the number of entries plus the number of instructions

in the FU themselves. The adder has an issue rate of 1, so the adder is always full. The

multiplier has an issue rate of ½, so it is half full. Therefore:

L = N / T = (3 + 2 + 4.5 + 5/2) / 1.5 = 8

It’s nice to see that they agree, but really the first formulation is much e

