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Problem M8.1: Fetch Pipelines  
  
  

PC  PC Generation  
F1  ICache Access  F2  
D1  Instruction Decode  D2  
RN  Rename/Reorder  
RF  Register File Read  
EX  Integer Execute  

  
Problem M8.1.A Pipeline Subroutine Returns 

  
Immediately after what pipeline stage does the processor know that it is executing a subroutine 
return instruction?    
D2  
  
Immediately after what pipeline stage does the processor know the subroutine return address?  
RF  
  
How many pipeline bubbles are required when executing a subroutine return? 6  
  
  
  

Problem M8.1.B Adding a BTB 
  
A subroutine can be called from many different locations and thus a single subroutine return can 
return to different locations. A BTB holds only the address of the last caller.  
  
  
  

Problem M8.1.C Adding a Return Stack 
  
Normally, instruction fetch needs to wait until the return instruction finishes the RF stage before 
the return address is known. With the return stack, as soon as the return instruction is decoded in 
D2, instruction fetch can begin fetching from the return address. This saves 2 cycles.  
  
A return address is pushed after a JAL/JALR instruction is decoded in D2. A return address is 
popped after a JR r31 instruction is decoded in D2.  
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Problem M8.1.D Return Stack Operation 

  
A: JAL B  
A+1:  
A+2:  
…  
B: JR r31  
B+1:  
B+2: …  
  

 
  
  
  

Problem M8.1.E Handling Return Address Mispredicts 
  
When a value is popped off the return stack after D2, it is saved for two cycles as part of the 
pipeline state. After the RF stage of the return instruction, the actual r31 is compared against the 
predicted return address. If the addresses match, then we are done. Otherwise we mux in the correct 
program counter at the PC stage and kill the instructions in F1 and F2. Depending on how fast the 
address comparison is assumed to be, you might also kill the instruction in D1. So there is an 
additional 2 or 3 cycles lost on a return mispredict.  
  
  
  

Problem M8.1.F Further Improving Performance 
 
Ben should add a cache of the most recently encountered return instruction addresses. During F1, 
the contents of the cache are looked up to see if any entries match the current program counter.  If 
so, then by the end of F1 (instead of D2) we know that we have a return instruction. We can then 
use the return stack to supply the return address.  
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Problem M8.2: Managing Out-of-order Execution  

    
Problem M8.2.A  

  

R1 P0  
R2 P1  
R3 P2  
R4 P3  

P4  
P5  
P6  
P7  
P8  

P9   

  
  

Reorder Buffer (ROB)  
   use ex op p1 PR1 p2 PR2 Rd LPRd PRd  

 
  
    

  

Rename Table  

  

Physical Regs  

  

Free List  
  

  

  

  P7  
  P8  
  P9  
  P1  
  P2  
    

8016  p  
6823  p  
8000  p  

7  p  
0  p  

8004  p  
8  p  
    
    
    

 P4 P7  
 P5 P8  
 P6   

P0     

…
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Problem M8.2.B  
 

R1 P0  
R2 P1  
R3 P2  
R4 P3  

P4  
P5  
P6  
P7  
P8  

P9   

  
  

Reorder Buffer (ROB)  
                           use  ex     op     p1   PR1   p2   PR2  Rd   LPRd PRd 

next to 
commit  

 

  
  

                    
                    

  
  

                    
x    bne  p  P5  p  P0        

next 
available  

                    
                    

  
  
  

                    
                    
                    

   
 
  

  

Rename Table  

  

Physical Regs  

  

Free List  
 P9  

 P1  

 P2  

  P6  
  P7  
  P8  
    
    
    

8016  p  
    
    

7  p  
0  p  

8004  p  
    
    
    
    

P4     
P5     
P3     
P0     

  
  

  

…
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Problem M8.2.C  
  
Under what conditions, if any, might the loop execute at a faster rate on the in-order processor 
compared to the out-of-order processor?  
  
If the out-of-order processor frequently mispredicts either of the branches, it is likely to execute 
the loop slower than the in-order processor. For this to be true, we must also assume that the branch 
misprediction penalty of the out-of-order processor is sufficiently longer than the branch resolution 
delay of the in-order processor, as is likely to be the case. The mispredictions may be due to 
deficiencies in the out-of-order processor’s branch predictor, or the data-dependent branch may be 
fundamentally unpredictable in nature.  
  
  
Under what conditions, if any, might the loop execute at a faster rate on the out-of-order 
processor compared to the in-order processor?  
  
If the out-of-order processor predicts the branches with high enough accuracy, it can execute more 
than one instruction per cycle, and thereby execute the loop at a faster rate than the in-order 
processor.  
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Problem M8.3: Exceptions and Register Renaming   

  
Problem M8.3.A Recovering from Exceptions 

  
By the definition of a precise exception, an exception that occurs in the middle of an x86 instruction 
should cause the machine state to revert to the state that previously existed right before the 
excepting instruction started executing. Thus a strategy to determine a precise state would be to 
take snapshots of the RAT only on x86 instruction boundaries (either when the last µop of an x86 
instruction commits or right before the first µop of an x86 instruction is renamed).  
  
  
  

Problem M8.3.B Minimizing Snapshots 
 
  
Ben is correct. Since an exception causes the machine to revert to the state found on an x86 
instruction boundary, all the temporary state used by the µops does not need to be kept. Thus, the 
RAT only has to hold the rename mappings for the architectural registers, and not for T0-T7.  
  
  
  

Problem M8.3.C Renaming Registers 
 

There must be at least 17 physical registers for the Bentium 4 to work properly. 16 registers are 
needed to hold the state of the machine at any given point in time (architectural and temporary 
register values), and an extra one is needed to rename an additional register using the given 
renaming algorithm to allow forward progress.  
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Problem M8.4: Out-of-order Execution (Spring 2014 Quiz 2, Part C) 
 
In this problem, we are going to update the state of the processor when different events happen. You are given an out-of-order 
processor in some initial state, as described by the registers (renaming table, physical registers, and free list), one-bit branch 
predictor, and re-order buffer. Your job is to show the changes that occur when some event occurs, starting from the same 
initial state except where noted. For partial credit, briefly describe what changes occur. 
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Problem M8.4.A  

 
Show the state of the processor if the first load completes (but does not commit). 
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Problem M8.4.B  
 
Show the state of the processor after the next instruction is issued. 
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Problem M8.4.C  
 
 
From the state at the end of Question 2, as the next action can the processor issue (not execute) another instruction?  
 
No. There are no physical registers on the free list. 
 
 
 
 
 
 
In one or two sentences, what does this say about our design? How can we improve it? 
 
We didn’t solve Little’s Law correctly when we sized our physical register file. We need to make it bigger so it can support the 
number of instructions we have in flight in the ROB. 
  



Last updated: 
10/6/2021 

Problem M8.4.D  
 
 
Show the state of the processor if the first LD triggers a page fault and after abort finishes. 
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Problem M8.5 (Spring 2015 Quiz 2, Part B) 
 
You are given an out-of-order processor that 

 

• Issues at most one instruction per cycle 

• Commits at most one instruction per cycle 

• Uses an unified physical register file 

 
Problem M8.5.A  

 

Consider the following code sequence: 

 

 

 

Assume the branch instruction (blez) is not taken. Fill out the table below to identify all 

Read-After-Write (RAW), Write-After-Read (WAR), and Write-After-Write (WAW) 

dependencies in the above sequence.  

 

 I0 I1 I2 I3 I4 I5 I6 I7 

I0 - 
 

 
      

I1 
WAW 

RAW 
-      

 

 

I2 
 

 
 -     

 

 

I3   RAW -    
 

 

I4 WAR RAW WAR  -   
 

 

I5  RAW RAW   -  
 

 

I6  RAW WAW WAR  WAR - 
 

 

I7  WAW  
 

 
WAR 

WAR 

RAW 

WAR 

RAW 
- 

     Addr 
I0  (0x24)      lw     r2, (r4), #0 
I1  (0x28)      addi   r2, r2,   #16 
I2  (0x2C)      lw     r3, (r4), #4 
I3  (0x30)      blez   r3, L1 
I4  (0x34)      addi   r4, r2, #8 
I5  (0x38)      mul    r1, r2, r3 
I6  (0x3C)      addi   r3, r2, #8 
I7  (0x40)  L1: add    r2, r1, r3 

Older Instruction 

Younger 

Instruction 
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In Problems M8.5.B to M8.5.D, you should update the state of the processor when different 

events happen. The starting state in each question is the same, and the event specified in 

each question is the ONLY event that takes place for that question.  The starting state is 

shown in the different structures: renaming table, physical registers, free list, two-bit 

branch predictor, global history buffer, and reorder buffer (ROB). 

 

Note the following conventions: 

 

• The valid bit for any entry is represented by “1”.  

• The valid bit can be cleared by crossing it out. 

• In the ROB, the “ex” field should be marked with “1” when an instruction 

starts execution, and the “use” field should be cleared when it commits. Be 

sure to update the “next to commit” and “next available” pointers, if 

necessary. 

• Fill out the “after” fields in all the tables. Write new values in these boxes if 

the values change due to the event specified in the question. You do not have 

to repeat the values if they do not change due to the event. 

 

In Questions 2 through 4, we will use the same code sequence as in Question 1:  

 

The starting state of the processor is as follows:  

 

• Instructions I0-I4 are already in the ROB.  

• I0 (lw) has already finished execution. 

• I1 (addi) and I2 (lw) have started executing but have not finished yet.  

• I3 (blez) has been predicted to be Not-Taken by the branch predictor.  

• I5 (mul) has completed the decode stage. 

• I6 (addi) has completed the Fetch Stage.  

• The next PC is set to 0x40, which is the PC of I7 (add).  

 

 

 

 

  

     Addr 
I0  (0x24)      lw     r2, (r4), #0 
I1  (0x28)      addi   r2, r2,   #16 
I2  (0x2C)      lw     r3, (r4), #4 
I3  (0x30)      blez   r3, L1 
I4  (0x34)      addi   r4, r2, #8 
I5  (0x38)      mul    r1, r2, r3 
I6  (0x3C)      addi   r3, r2, #8 
I7  (0x40)  L1: add    r2, r1, r3 
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Problem M8.5.B  
 
The following figure shows the starting state of the processor. Suppose the decoded 

instruction I5 (mul) is now inserted into the ROB. Update the diagram to reflect the 

processor state after this event has occurred. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Reorder Buffer (ROB) 
use ex op p1 PR1 p2 PR2 Rd LPRd PRd 

1 1 lw 1 P3   r2 P1 P4 
1 1 addi 1 P4   r2 P4 P5 
1 1 lw 1 P3   r3 P2 P6 
1  blez  P6      
1  addi  P5   r4 P3 P7 
1  mul  P5  P6 r1 P0 P8 
          
          
          
          
          

 

Free List 
P8 
P9 

P10 
 
 
 
 
 
 
 
 

 

Fetched Inst. Queue 
PC Inst. 

0x3C I6 (addi) 
  

 

Prediction Counter 
Index Before After 
000 11  
001 00  
010 11  
011 01  
100 10  
101 11  
110 01  
111 00  

 

Decoded Inst. Queue 
Inst. 

I5 (mul) 
 

 
Next PC to be fetched 
Before After 
0x40  

 

Branch Global History 
Before After 

0010110  
 

Rename Table (Latest) 
Name Before After 

R1 P0 P8 
R2 P5  
R3 P6  
R4 P7  

 
Rename Table  
(Snapshot 1) 

Valid 
1 

Name Before After 
R1 P0  
R2 P5  
R3 P6  
R4 P3  

 

Physical Registers 
Name Value Valid 

P0 45 1 
P1 2 1 
P2 -3 1 
P3 100 1 
P4 20 1 
P5   
P6   
P7   
P8   
P9   

P10   
 

Next to 
commit 

Next 
available 
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Problem M8.5.C  
 
Start from the same processor state, shown below. Suppose now I1 (addi) has completed 

execution. Commit as many instructions as possible. Update the diagram to reflect the 

processor state after I1 execution completes and as many instructions as possible have 

committed. Again, assume no other events take place. 

 

 
 
 

 
 

 
 
 
 
 
 
 
  

Reorder Buffer (ROB) 
use ex op p1 PR1 p2 PR2 Rd LPRd PRd 

1 1 lw 1 P3   r2 P1 P4 
1 1 addi 1 P4   r2 P4 P5 
1 1 lw 1 P3   r3 P2 P6 
1  blez  P6      
1  addi 1 P5   r4 P3 P7 
          
          
          
          
          
          

 

Free List 
P8 
P9 

P10 
P1 
P4 

 
 
 
 
 
 

 

Fetched Inst. Queue 
PC Inst. 

0x3C I6 (addi) 
  

 

Prediction Counter 
Index Before After 
000 11  
001 00  
010 11  
011 01  
100 10  
101 11  
110 01  
111 00  

 

Decoded Inst. Queue 
Inst. 

I5 (mul) 
 

 
Next PC to be fetched 
Before After 
0x40  

 

Branch Global History 
Before After 

0010110  
 

Rename Table (Latest) 
Name Before After 

R1 P0  
R2 P5  
R3 P6  
R4 P7  

 
Rename Table  
(Snapshot 1) 

Valid 
1 

Name Before After 
R1 P0  
R2 P5  
R3 P6  
R4 P3  

 

Physical Registers 
Name Value Valid 

P0 45 1 
P1 2 1 
P2 -3 1 
P3 100 1 
P4 20 1 
P5 36 1 
P6   
P7   
P8   
P9   

P10   
 

Next to 
commit 

Next 
available 
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Problem M8.5.D  
 
Start from the same processor state, shown below. Suppose instruction I2 (lw) triggers an 

ALU overflow exception. Restore the architectural and microarchitectural state to recover 

from misspeculation. The exception handler for the processor is at address 0x8C (control 

is transferred to the exception handler after recovery). You do not need to worry about the 

number of cycles taken by recovery. Show the processor state after recovery. 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Reorder Buffer (ROB) 
use ex op p1 PR1 p2 PR2 Rd LPRd PRd 

1 1 lw 1 P3   r2 P1 P4 
1 1 addi 1 P4   r2 P4 P5 
1 1 lw 1 P3   r3 P2 P6 
1  blez  P6      
1  addi  P5   r4 P3 P7 
          
          
          
          
          
          

 

Free List 
P8 
P9 

P10 
P7 
P6 

 
 
 
 
 
 

 

Fetched Inst. Queue 
PC Inst. 

0x3C I6 (addi) 
  

 

Prediction Counter 
Index Before After 
000 11  
001 00  
010 11  
011 01  
100 10  
101 11  
110 01  
111 00  

 

Decoded Inst. Queue 
Inst. 

I5 (mul) 
 

 
Next PC to be fetched 
Before After 
0x40 0x8c 

 

Branch Global History 
Before After 

0010110 ?001011 
 

Rename Table (Latest) 
Name Before After 

R1 P0  
R2 P5  
R3 P6 P2 
R4 P7 P3 

 
Rename Table  
(Snapshot 1) 

Valid 
1 

Name Before After 
R1 P0  
R2 P5  
R3 P6  
R4 P3  

 

Physical Registers 
Name Value Valid 

P0 45 1 
P1 2 1 
P2 -3 1 
P3 100 1 
P4 20 1 
P5   
P6   
P7   
P8   
P9   

P10   
 

Next to 
commit 

Next 
available 
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Problem M8.6: Out-of-order Processor Design (Spring 2014 Quiz 2, Part 
D) 
 

 

 

You are designing an out-of-order processor similar to the IBM 360/91 Tomasulo design 

shown above. This design distributes the re-order buffer around the processor, placing 

entries near their associated functional units. In such a design, the distributed ROB entries 

are called “reservation stations”. Entries are allocated when the instruction is decoded and 

freed when the instruction is dispatched to the functional unit. 

 

Your design achieves an average throughput of 1.5 instructions per cycle. Two-thirds of 

instructions are adds, and one-third are multiplies. The latency of each instruction type 

from allocation to completion is 5 cycles for adds and 14 cycles for multiplies. 

 

Type of operation Fraction of instructions Average latency 
Add 2/3 5 

Multiply 1/3 14 

 

The adder and multiplier are each fully pipelined with full bypassing. Once an instruction 
is dispatched to the FU, the adder takes 2 cycles and the multiplier takes 5 cycles. 

 

Throughput Add latency Multiply latency 
1.5 2 5 
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Problem M8.6.A  
 

How many entries are in use, on average, in the reservation station at each functional unit 

(adder, multiplier) in the steady state? Assume there are infinite entries available if needed. 

What is the average latency of an instruction in this machine? For partial credit, feel free 
to give any formulae you believe may be important to answer this question. 
 

This is a Little’s Law question: T = N / L. 

 

From the fraction of instructions and the machine’s total throughput, we can get the 

throughput of each type of instruction. 

 

Tadd = 2/3 * 3/2 = 1 

Tmul = 1/3 * 3/2 = 1/2 

 

To solve for the number of entries in use, we need to know the average latency an 

instruction spends in the reservation station. From the problem description, reservation 

stations are in use from allocation until the instruction is dispatched to the functional unit. 

So the latency in the reservation station itself is the end-to-end latency minus the latency 

of the functional unit. 

 

Lr,add = Ladd – Lfu,add = 5 – 2 = 3 cycles 

Lr,mul = Lmul – Lfu,mul = 14 – 5 = 9 cycles 

 

Thus the number of entries in use is on average: 

 

Nadd = Tadd * Lr,add = 3 

Nmul = Tmul * Lr,mul = 9 / 2 = 4.5 

 

The average latency can be computed from the frequency of instructions directly: 

 

L = 2/3 Ladd + 1/3 Lmul = 2/3 * 5 + 1/3 * 14 = 8 

 

Or from Little’s Law, but this is more complicated. We now want to know the number of 

adds and multiplies in flight. This is the number of entries plus the number of instructions 

in the FU themselves. The adder has an issue rate of 1, so the adder is always full. The 

multiplier has an issue rate of ½, so it is half full. Therefore: 

 

L = N / T = (3 + 2 + 4.5 + 5/2) / 1.5 = 8 

 

It’s nice to see that they agree, but really the first formulation is much e 


