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Computer System Architecture  

6.823 Quiz #3 

May 1, 2020 

 
 

Name: ___________________________        

 

90 Minutes 

 16 Pages 
 

Notes: 

 Not all questions are equally hard. Look over the whole quiz and budget your 

time carefully. 

 Please state any assumptions you make, and show your work. 

 Please write your answers by hand, on paper or a tablet. 

 Please email all 16 pages of questions with your answers, including this cover 

page. Alternatively, you may email scans (or photographs) of separate sheets of 

paper. Emails should be sent to 6823-staff@csail.mit.edu 

 Do not discuss a quiz's contents with students who have not yet taken the quiz. 

 Please sign the following statement before starting the quiz. If you are emailing 

separate sheets of paper, copy the statement onto the first page and sign it. 

 

I certify that I will start and finish the quiz on time, and that 

I will not give or receive unauthorized help on this quiz. 
 

Sign here: _______________________________ 

  

    Part A  ________     15 Points 

   Part B  ________     25 Points 

   Part C  ________     25 Points 

  Part D  ________    35 Points 
 

TOTAL          ________  100 Points 

mailto:6823-staff@csail.mit.edu?subject=6.823%20quiz%202%20answers
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Part A: Networks (15 points) 
 

Question 1 (6 points) 
 

Consider a fully connected network topology with N nodes, where each node is directly connected 

to all (N-1) other nodes. 

 

(a) What is the total number of network links? 

 

 

 

 

 

 

 

 

 

(b) What is the diameter of the network? 

 

 

 

 

 

 

 

 

 

(c) What is the bisection bandwidth this network? You may assume N is even, and only consider 

bisections that divide the number of nodes into equal halves. 
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Question 2 (9 points) 
 

Consider a star topology, where only a central node is connected 

to all (N-1) other nodes. The diagram to the right shows a star 

topology with N=8 nodes for illustration purposes. When 

answering the questions below, provide answers for N-node star 

networks (not for N=8). 

 

 

 

(a) What is the total number of network links? 

 

 

 

 

 

 

(b) What is the diameter of the network? 

 

 

 

 

 

 

(c) What is the bisection bandwidth this network? You may assume N is even, and only consider 

bisections that divide the number of nodes into equal halves. 

 

 

 

 

 

 

(d) Assume a dedicated buffer to receive flits at each end of each bidirectional link. If 180-degree 

turns are prohibited in this topology and messages are routed on minimal-length paths, can 

deadlock occur in this network? 
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Part B: Cache Coherence (25 points) 
 

Ben Bitdiddle wants to study design tradeoffs in a directory-based MSI coherence protocol. Ben 

starts by considering the directory-based MSI protocol presented in lecture. The protocol is 

described in the quiz handout and summarized in this cache-side state transition diagram: 

 
In this protocol, evictions of a cache line in the S state require sending a WBReq (without data) to 

notify the directory, so the directory can remove the cache from the sharer set. 

 

Ben thinks that he can reduce the number of messages sent on the network during cache evictions. 

Ben wants to silently drop cache lines when evicting cache lines in the S state, sending no message 

on the network. This means that a cache line can move from S to I without informing the directory.  

 

Question 1 (4 points) 
 

Consider a machine with two cores, where each core has a private cache that uses Ben’s proposal 

for silent drops. Suppose a cache line A is in S state and it is in Core 0’s cache. Core 0’s cache 

evicts line A, silently dropping it. The directory still has Core 0 in the sharer set for cache line A. 

 

(a) Assume that after the silent drop by Core 0’s cache, Core 0 performs a read of the evicted 

cache line A. To reobtain the cache line, Core 0’s cache sends a ShReq to the directory. Assume 

there have been no writes to cache line A. What network message, if any, should the directory 

send to respond to the ShReq to make the protocol work? 
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(b) Assume that after the silent drop by Core 0’s cache, Core 1 performs a write to cache line A.  

Core 1’s cache sends an ExReq to the directory. Since Core 0 is in the sharer set, the directory 

sends an InvReq to Core 0. What network message, if any, should Core 0’s cache send when 

receiving the InvReq while the requested cache line is in the I state? 

 

 

 

 

 

 

 

Question 2 (6 points) 
 

Consider the three-core system below. Each core has a private cache that can only hold a single 

cache line, and the caches start out empty. Each core runs a thread that performs four reads, 

alternating between reading two addresses. Each thread accesses different addresses on different 

cache lines. (Core 1’s thread reads addresses A and B, Core 2’s thread reads C and D, etc.) Due to 

evictions, all 12 accesses will be cache misses. Assume the directory has unlimited capacity. 

 

 
LD A 
LD B 
LD A 
LD B 

LD C 
LD D 
LD C 
LD D 

LD E 
LD F 
LD E 
LD F 

 

(a) How many writeback requests are sent in the original MSI protocol from lecture? 

 

 

 

 

(b) How many writeback requests are sent with Ben’s proposal for silent drops? 
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Question 3 (6 points) 
 

Consider a different workload where the threads access shared data, as shown below. The number 

in parenthesis indicates the global order of the accesses (i.e. Core 1’s LD A happens before LD B, 

which happens before Core 2’s  LD A, etc.). Each access completes before the next one begins. 

Again, assume all caches start empty and each cache can only hold a single line at a time. 

 

 
(1) LD A 
(2) LD B 

 
 

(3) LD A 

 
 
 

(4) ST A 
 

 

(a) How many WBReq and InvReq messages are sent in the original MSI protocol from lecture? 

Count an invalidation of multiple caches as multiple requests. Do not count response messages. 

 

 

 

 

 

 

(b) How many writeback requests and invalidation requests are sent with Ben’s proposal for silent 

drops? 
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Question 4 (9 points) 
 

So far, we assumed each coherence transaction completes before the next transaction begins. 

Alyssa P. Hacker points out that Ben’s silent drops make it harder to solve races when there are 

concurrent coherence requests. To see this, we will consider two scenarios. In each scenario, Core 

0 silently drops a line from its private cache that it later needs to read, while Core 1 attempts to 

write to the same cache line. In each scenario, Core 0 receives an InvReq, and you must pick one 

of the three following answers: 

 

A: Acknowledge the InvReq by sending an InvResp, remaining in the IS transient state 

to wait for a later ShResp.  

 

B: Buffer or NACK the InvReq, waiting for a ShResp to first serve its read before 

performing an invalidation. 

 

C: Performing either of A or B will result in correct behavior. 

 

 

 

(a) In this scenario, the directory receives Cache 1’s ExReq before Cache 0’s ShReq. While Cache 

0 is waiting for a ShResp, it receives a InvReq from the directory. 

 

 

 

 

 

 

 

 

 

 

To maintain coherence, what action should Cache 0 take in response to the InvReq while in 

the IS transient state? 

 

 

 

  

Directory Cache 0 Cache 1 

Processor write, transition to IM 

Silent drop, transitions to I 

Processor read, transition to IS 
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(b) In this scenario, the directory receives Cache 0’s ShReq before Cache 1’s ExReq. The directory 

sends a ShResp to Core 0 followed by a InvReq. However, the ShResp is traveling slowly in 

the network, and Cache 0 receives the InvReq before the ShResp. 

 

 

 

 

 

 

 

 

 

 

 

 

To maintain coherence, what action should Cache 0 take in response to the InvReq while in 

the IS transient state? 

 

 

 

 

 

 

  

Directory Cache 0 Cache 1 

Processor write, transition to IM 

Silent drop, transitions to I 

Processor read, transition to IS 
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Part C: Memory Consistency (25 points) 

 

Consider a shared-memory machine that executes the following two threads on two different cores. 

Assume that memory locations a and b contain initial value 0. 

 

T1 T2 
 
T1.1:  Store (a)  1 
T1.2:  Load r1  (a) 
T1.3:  Load r3  (b) 
 

 
T2.1:  Store (b)  1 
T2.2:  Load r2  (b) 
T2.3:  Load r4  (a) 

 

 

Question 1 (5 points) 

 

If the machine implements sequential consistency, what execution outcomes (i.e., values of r1, 

r2, r3, and r4) can this code produce? 

 

Note: You can but do not have to express the result as (r1, r2, r3, r4) tuples. 
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Question 2 (4 points) 

 

If the machine implements the Total Store Order (TSO) consistency model, what execution 

outcomes (i.e., values of r1, r2, r3, and r4) can this code produce? 

 

Note: You can but do not have to express the result as (r1, r2, r3, r4) tuples. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Question 3 (4 points) 

 

If the machine implements a relaxed consistency model, RMO, which allows loads and stores to 

be reordered after later loads and stores, what execution outcomes (i.e., values of r1, r2, r3, and r4) 

can this code produce? 

 

Note: You can but do not have to express the result as (r1, r2, r3, r4) tuples. 
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Question 4 (4 points) 

 

The relaxed consistency model (RMO) has the following fine-grained barrier instructions: 

 

 MEMBARRR guarantees that all reads that precede MEMBARRR in program order will be 

performed before any read that follows the barrier. 

 MEMBARRW guarantees that all reads that precede MEMBARRW in program order will be 

performed before any write that follows the barrier. 

 MEMBARWR guarantees that all writes that precede MEMBARWR in program order will be 

performed before any read that follows the barrier. 

 MEMBARWW guarantees that all writes that precede MEMBARWW in program order will be 

performed before any write that follows the barrier. 

 

Add barrier instructions to T1 and T2 so that the RMO machine produces the same outputs as the 

SC machine for this code. Use the minimum number of memory barrier instructions. List the 

locations of each barrier below (e.g., “Add MEMBARRR after T1.1”). 

 

T1 T2 
 
T1.1:  Store (a)  1 
T1.2:  Load r1  (a) 
T1.3:  Load r3  (b) 
 

 
T2.1:  Store (b)  1 
T2.2:  Load r2  (b) 
T2.3:  Load r4  (a) 
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Question 5 (3 points) 

 

Consider a shared-memory machine that executes the following four threads on four cores. 

Assume that memory location a contains initial value 0. 

 

T1 T2 T3 T4 
 
Store (a)  1 
 

 
Store (a)  2 

 
Load r1  (a) 
Load r2  (a) 

 
Load r3  (a) 
Load r4  (a) 

 

If the machine implements the TSO consistency model, can it produce the following execution 

outcome (r1, r2, r3, r4) = (1, 2, 2, 1) ? 

 

 

 

 

 

Question 6 (3 points) 

 

Ben Bitdiddle modifies the above TSO machine. The original machine has one thread per core. 

Ben implements multi-threading, making each core support 2 thread contexts. The threads running 

on the same core share a single committed store buffer. 

 

This machine executes the four threads in Question 5. T1 and T3 run on Core 0, and T2 and T4 

run on Core 1. Can this machine produce the following execution outcome (r1, r2, r3, r4) = (1, 2, 

2, 1)?  

 

 

 

 

 

 

Question 7 (2 points) 

 

Does the machine described in Question 6 still maintain TSO? 
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Part D: Consistency with Speculative Execution (35 points) 
 

Ben Bitdiddle is building a multi-core processor and he wants to implement the sequential 

consistency model. The processor supports out-of-order execution and speculative execution. 

Following the standard out-of-order execution mechanism, all the instructions running on a core, 

including load instructions, can be issued and executed out of program order, but are always 

committed in program order. Each core has a private cache. All the private caches are kept coherent 

using a directory-based MSI coherence protocol. 

 

Ben adopts the SC scheme we explained in lecture: speculative loads can issue out of order. To 

check whether speculation is correct or not, each core monitors invalidation requests received by 

its private cache. If the core receives an invalidation request to a cache block accessed by a load 

instruction that has received its data from the cache but has not yet reached its commit point, the 

load is squashed and the core rolls back and re-executes from the load instruction. Otherwise, the 

load successfully commits. Note that stores are always non-speculative. In addition, for simplicity, 

while a store is waiting for a coherence response, other loads or stores are not allowed to execute. 

We call this implementation Machine 0. 

 

Ben analyzes the following scenario on Machine 0. Initially neither cache 0 nor cache 1 has the 

data in address A. Core 1 speculatively executes the load instruction “load A” at T0, receives the 

data from the cache at T1.  T2 is the earliest time when the load reaches the head of the ROB. 

Meanwhile, shortly after T0, Core 0 commits a store to the same location, and sends an invalidation 

request to Cache 1. The timeline of the execution of the cores and cache coherence transactions is 

shown below. 

 

 

 

 
store A 

Directory Cache 0 Cache 1 Core 0 

T0: load A is executed speculatively 

Core 1 

T2: the earliest time 
when load A can commit 

T1: load A finishes speculative execution 
(cannot commit due to 
other speculative instructions)  



 

Page 14 of 16 

 

 

Question 1 (6 points) 

 

Consider the above event sequence on Machine 0. Can the load commit successfully without re-

execution (re-sending coherence messages)? 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Question 2 (6 points) 

 

Does Machine 0 guarantee that all load instructions will eventually commit, i.e., a load cannot be 

prevented from committing indefinitely? If all loads can make forward progress, briefly explain 

why; otherwise, give a counterexample. 

 

Hint: You could slightly modify the example (e.g., by adding more instructions) for analysis. 
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Ben changes the machine to create a new machine, called Machine 1. Machine 1 eliminates the 

speculation check logic from Machine 0, allowing a load to commit without re-execution even if 

the cache block accessed by the load is invalidated before its commit time. This allows a load to 

commit despite having read a value that may have been changed before its commit time. 

 

Question 3 (5 points) 

 

Does Machine 1 maintain cache coherence? Briefly explain why or why not. 

 

 

 

 

 

 

 

 

 

 

Question 4 (5 points) 

 

Does Machine 1 implement sequential consistency? Briefly explain why or why not. 

 

 

 

 

 

 

 

 

 

 

 

Question 5 (4 points) 

 

Does Machine 1 implement TSO? Briefly explain why or why not. 
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Ben modifies Machine 0 to produce a new design, Machine 2. Machine 2 keeps the speculation 

check logic from Machine 0, but relaxes it slightly: it allows a load to commit despite receiving an 

invalidation if the load was the oldest speculative memory instruction in program order when it 

started execution. 

 

 

Question 6 (5 points) 

 

Does Machine 2 implement sequential consistency? Briefly explain why or why not. 

 

 

 

 

 

 

 

 

Question 7 (4 points) 

 

Does Machine 2 guarantee that all load instructions will eventually commit, i.e., a load cannot be 

prevented from committing indefinitely? If all loads can make forward progress, briefly explain 

why; otherwise, give a counterexample. 

 
 


