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Problem M11.1: Synchronization Primitives  
 
The mechanism here is as follows: LdR requests READ access to the address, StC requests 
WRITE access to the address. Many students suggested that LdR can request WRITE access to 
the address right away, which could lead to live lock. 
 
 
Problem M11.1.A  

 
Describe under what events the local reservation for an address is cleared. 
 
If another processor requests Write access to the same cache line. 
 
 
Problem M11.1.B  

 
Is it possible to implement LdR/StC pair in such a way that the memory bus is not affected, i.e., 
unaware of the addition of these new instructions?  Explain 
 
Yes. Writeback [P2C_Req(a) S] and [C2P_Req(a) S] are sent normally. The “reservation” is 
local (probably in the snooper or in the cache, though that might take too much resources – there 
are very few reservations needed at the same time for any processor). 
 
 
Problem M11.1.C  

 
Give two reasons why the LdR/StC pair of instructions is preferable over atomic read-test-
modify instructions such as the TEST&SET instruction.  
 

1. Bus doesn’t need to be aware of them. 
2. Everything is local. 
3. No ping-pong. 
4. No extra hardware (tied to 1) 

 
 
Problem M11.1.D  

 
LdR/StC pair of instructions were conceived in the context of snoopy busses. Do these 
instructions make sense in our directory-based system in the handout? Do they still offer an 
advantage over atomic read-test-modify instructions in a directory-based system? Please explain. 
 
No – our bus invalidates before transitioning from S to M. In general, maybe. 
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Problem M11.2: Implementing Directories  
 
 
Problem M11.2.A  

 
Overhead for a 4-processor system:  4 bits / 32 bytes = 4 / (32 * 8) = 1/64 
  
Overhead for a 64-processor system:  64 bits / 32 bytes = 64 / (32 * 8) = 1/4 
 
 
Problem M11.2.B  

 
Sequence 1 bit-vector scheme 

# of invalidate-requests 
single-sharer scheme 

# of invalidate-requests 
Processor #0 reads B 0 0 
Processor #1 reads B 0 1 
Processor #0 reads B 0 1 
 
For the bit-vector scheme:  No invalidate-requests are sent. 
 
For the single-sharer scheme: 
1 invalidate-request is sent to P0 when P1 reads B. 
1 invalidate-request is sent to P1 when P0 reads B the second time. 
 
 
Sequence 2 bit-vector scheme 

# of invalidate-requests 
single-sharer scheme 

# of invalidate-requests 
Processor #0 reads B 0 0 
Processor #1 reads B 0 1 
Processor #2 writes B 2 1 
 
For the bit-vector scheme:   
1 invalidate-request is sent to each shared processor (P0 and P1) when P2 writes B. 
-> 2 invalidate-requests are sent. 
 
For the single-sharer scheme: 
1 invalidate-request is sent to P0 when P1 reads B. 
1 invalidate-request is sent to the only sharer (P1) when P2 writes B. 
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Problem M11.2.C  

 
Sequence 1 global-bit scheme 

# of invalidate-requests 
Processor #0 reads B 0 
Processor #1 reads B 0 
Processor #0 reads B 0 

 
For the global-bit scheme:  No invalidate-requests are sent. 
 

Sequence 2 global-bit scheme 
# of invalidate-requests 

Processor #0 reads B 0 
Processor #1 reads B 0 
Processor #2 writes B 64 

 
For the global-bit scheme: 
1 invalidate-request is sent to each of the 64 processors because the global bit is set when P2 
writes B. -> 64 invalidate-requests are sent. 
 
Note: If the protocol is optimized, no invalidate-request would be sent to P2 and the number of 
invalidate-requests would be 63 instead of 64. 
 



Last updated: 
10/30/2021 

 

 
Problem M11.3: Tracing the Directory-based Protocol  
 
 

Processor A Processor B Processor C 
A1: ST X, 1 B1: R := LD X C1: ST X, 6 
A2: R := LD X B2: R := ADD R, 1 C2: R := LD X 
A3: R := ADD R, R B3: ST X, R C3: R := ADD R, R 
A4: ST X, R B4: R:= LD X C4: ST X, R 
 B5: R := ADD R, R  
 B6: ST X, R  

 
 
Problem M11.3.A  

 
Processor A Processor B Processor C 

Ins EO Messages Ins EO Messages Ins EO Messages 

A1 1 <M,A,Req,x,M> 
<A,M,Rep,x,I,M,0> B1 4 

<M,B,Req,x,S> 
<A,M,Req,x,S> 

<M,A,Rep,x,M,S,2> 
<B,M,Rep,x,I,S,2> 

C1 8 

<M,C,Req,x,M> 
<B,M,Req,x,I> 

<M,B,Rep,x,M,I,6> 
<C,M,Rep,x,I,M,6> 

A2 2  B3 5 

<M,B,Req,x,M> 
<A,M,Req,x,I> 

<M,A,Rep,x,S,I,-> 
<B,M,Rep,x,S,M,-> 

C2 9 

 

A4 3  B4 6  C4 10 
 

   B6 7    
 

 
How many messages are generated?   14 
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Problem M11.3.B  

 
 
Processor A Processor B Processor C 

Ins EO Messages Ins EO Messages Ins EO Messages 

A1 5 

<M,A,Req,x,M> 
<B,M,Req,x,I> 

<M,B,Rep,x,M,I,2> 
<A,M,Rep,x,I,M,2> 

B1 1 <M,B,Req,x,S> 
<B,M,Rep,x,I,S,0> C1 8 

<M,C,Req,x,M> 
<A,M,Req,x,I> 

<M,A,Rep,x,M,I,2> 
<C,M,Rep,x,I,M,2> 

A2 6  B3 2 <M,B,Req,x,M> 
<B,M,Rep,x,S,M,-> C2 9 

 

A4 7  B4 3  C4 10 
 

   B6 4    
 

 
How many messages are generated?   12 
 
 
Problem M11.3.C  

 
Can the number of messages in Problem M11.3.B be decreased by using voluntary responses?  
Explain. 
 
Yes – all the requests can be eliminated using voluntary rules. Total number of messages would 
be 6 instead of 12. 
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Problem M11.3.D  

 
Processor A Processor B Processor C 

Ins EO Messages Ins EO Messages Ins EO Messages 

A1 1 <M,A,Req,x,M> 
<A,M,Rep,x,I,M,0> B1 2 

<M,B,Req,x,S> 
<A,M,Req,x,S> 

<M,A,Rep,x,M,S,1> 
<B,M,Rep,x,I,S,1> 

C1 3 

<M,C,Req,x,M> 
<A,M,Req,x,I> 
<B,M,Req,x,I> 

<M,A,Rep,x,S,I> 
<M,B,Rep,x,S,I> 

<C,M,Rep,x,I,M,1> 

A2 4 

<M,A,Req,x,S> 
<C,M,Req,x,S> 

<M,C,Rep,x,M,S,6> 
<A,M,Rep,x,S,6> 

B3 5 

<M,B,Req,x,M> 
<A,M,Req,x,I> 
<C,M,Req,x,I> 

<M,A,Rep,x,S,I> 
<M,C,Rep,x,S,I> 

<B,M,Rep,x,I,M,6> 

C2 6 

<M,C,Req,x,S> 
<B,M,Req,x,S> 

<M,B,Rep,x,M,S,2> 
<C,M,Rep,x,I,S,2> 

A4 7 

<M,A,Req,x,M> 
<B,M,Req,x,I> 
<C,M,Req,x,I> 

<M,B,Rep,x,S,I> 
<M,C,Rep,x,S,I> 

<A,M,Rep,x,I,M,2> 

B4 8 

<M,B,Req,x,S> 
<A,M,Req,x,S> 

<M,A,Rep,x,M,S,12> 
<B,M,Rep,x,S,12> 

C4 9 

<M,C,Req,x,M> 
<A,M,Req,x,I> 
<B,M,Req,x,I> 

<M,A,Rep,x,S,I> 
<M,B,Rep,x,S,I> 

<C,M,Rep,x,I,M,12> 

   B6 10 

<M,B,Req,x,M> 
<C,M,Req,x,I> 

<M,C,Rep,x,M,I,4> 
<B,M,Rep,x,I,M,4> 

  

 

 
How many messages are generated?   46 
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Problem M11.4: Snoopy Cache Coherent Shared Memory 
 
 
Problem M11.4.A Where in the Memory System is the Current Value 

 
See Table M11.4-1, M11.4-2 and M11.4-3. 
 
 
Problem M11.4.B MBus Cache Block State Transition Table 

 
See Table M11.4-1, M11.4-2 and M11.4-3. 
 
 
Problem M11.4.C Adding atomic memory operations to MBus 

 
Imagine a dual processor machine with CPUs A and B.  Explain the difficulty of CPU A 
performing fetch-and-increment(x) when the most recent copy of x is cleanExclusive in CPU B’s 
cache.  You may wish to illustrate the problem with a short sequence of events at processor A 
and B. 
 
The problem is that CPU B can read the value in location x while CPU A is performing the 
fetch-and-increment operation—which violates the idea of fetch-and-increment being atomic.  
For example, consider the following sequence of events and corresponding state transitions and 
operations: 
 
Event CPU A CPU B 
1 Read(x); I->CS; send CR  
2  Snoop CR; CE->CS 
3  Read(x) 
4 Write(x); CS->OE; send CI  
5  Snoop CI; CS->I 
 
Fill in the rest of the table below as before, indicating state, next state, where the block in 
question may reside, and the CPU A and MBus transactions that would need to occur atomically 
to implement a fetch-and-increment on processor A. 
 

State other 
cached 

ops actions by this 
cache 

next 
state 

this 
cache 

other 
caches 

mem 

Invalid yes read CR CS Ö Ö Ö 
cleanShared yes write CI OE Ö   

 



Last updated: 
10/30/2021 

 

initial state other 
cached 

ops actions by this 
cache 

final 
state 

this 
cache 

other 
caches 

mem 

Invalid no none none I   Ö 
  CPU read CR CE Ö  Ö 
  CPU write CRI OE Ö   
  replace none Impossible 
  CR none I  Ö Ö 
  CRI none I  Ö  
  CI none Impossible 
  WR none Impossible 
  CWI none I   Ö 

Invalid yes none  I  Ö Ö 
  CPU read  CS Ö Ö Ö 
  CPU write  OE Ö   
  replace same Impossible 
  CR as I  Ö Ö 
  CRI above I  Ö  
  CI  I  Ö  
  WR  I  Ö Ö 
  CWI  I   Ö 

 
initial state other 

cached 
ops Actions by this 

cache 
final 
state 

this 
cache 

other 
caches 

mem 

cleanExclusive no none none CE Ö  Ö 
  CPU read none CE Ö  Ö 
  CPU write none OE Ö   
  replace none I   Ö 
  CR none or CCI1 CS Ö Ö Ö 
  CRI none or CCI1 I  Ö  
  CI none Impossible 
  WR none Impossible 
  CWI none I   Ö 

Table M11.4-1 

 
1 Some Sun MBus implementations perform CCI from the cleanExclusive state, while others do not.  We accept 
both answers. 
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initial state other 

cached 
ops Actions by this 

cache 
final 
state 

this 
cache 

other 
caches 

mem 

ownedExclusive no none none OE Ö   
  CPU read none OE Ö   
  CPU write none OE Ö   
  replace WR I   Ö 
  CR CCI OS Ö Ö  
  CRI CCI I  Ö  
  CI none Impossible 
  WR none Impossible 
  CWI none I   Ö 

 
initial state other 

cached 
ops actions by this 

cache 
final 
state 

this 
cache 

other 
caches 

mem 

cleanShared no none none CS Ö  Ö 
  CPU read none CS Ö  Ö 
  CPU write CI OE Ö   
  replace none I   Ö 
  CR none2 CS Ö Ö Ö 
  CRI none I  Ö  
  CI none Impossible 
  WR none Impossible 
  CWI none I   Ö 

cleanShared yes none  CS Ö Ö Ö 
  CPU read  CS Ö Ö Ö 
  CPU write  OE Ö   
  replace same I  Ö Ö 
  CR as CS Ö Ö Ö 
  CRI above I  Ö  
  CI  I  Ö  
  WR  CS Ö Ö Ö 
  CWI  I   Ö 

Table M11.4-2 

 
2 Some Sun MBus implementations perform CCI from the cleanShared state.  However, in these implementations, 
requests are not broadcast on a bus, but are handled by a central system controller.  The system controller arbitrates 
which cache with a cleanShared copy provides the data.  Unless an explanation is provided, CCI is not a valid 
response from this state. 
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initial state other 

cached 
ops actions by this 

cache 
final 
state 

this 
cache 

other 
caches 

mem 

ownedShared no none none OS Ö   
  CPU read none OS Ö   
  CPU write CI OE Ö   
  replace WR I   Ö 
  CR CCI OS Ö Ö  
  CRI CCI I  Ö  
  CI none Impossible 
  WR none Impossible 
  CWI none I   Ö 

ownedShared yes none  OS Ö Ö  
  CPU read  OS Ö Ö  
  CPU write  OE Ö   
  replace same I  Ö Ö 
  CR as OS Ö Ö  
  CRI above I  Ö  
  CI  I  Ö  
  WR  Impossible 
  CWI  I   Ö 

Table M11.4-3 
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Problem M11.5: Snoopy Cache Coherent Shared Memory 
 
Problem M11.5.A  

 
Fill out the state transition table for the new COS state: 
 

initial state other 
cached 

ops actions by this 
cache 

final 
state 

COS yes none none COS 
  CPU read none COS 
  CPU write CI OE 
  replace none I 
  CR CCI COS 
  CRI CCI I 
  CI none I 
  WR 

Or: 
Impossible 

  none COS 
  CWI none I 

 
Note that WR is not necessary during replace because the line is clean. 
Also, an incoming WR operations is Impossible because other caches can only have the block in 
the CS state, but (none, COS) was also accepted as a correct answer. 
 
 
Problem M11.5.B  

 

cache transaction 
source 
for data 

state for data block B 
cache 1 cache 2 cache 3 cache 4 

0. initial state — I I I I 
1. cache 1 reads data block B memory CE I I I 
2. cache 2 reads data block B CCI  COS CS I I 
3. cache 3 reads data block B CCI COS CS CS I 
4. cache 1 replaces block B - I CS CS I 
5.cache 4 reads data block B memory I CS CS CS 

 
 
Problem M11.5.C  

 
When the CPU does a write, it can change a cache block from CE to OE with no bus operation, 
but to transition from COS to OE it must first broadcast a CI on the bus to invalidate any shared 
(CS) copies of the block. 
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Problem M11.6: Snoopy Caches 
 
 
Problem M11.6.A  

 
Hint: Consider how much processing can be performed safely on the following sequences after 
an invalidation request for x has been received 
 
Ld x; Ld y; Ld x  
 
Ld x; St y; Ld x  
 
The snooper can allow the CPU to continue executing normally, but cannot allow any new 
messages from the outside to enter the caches until AFTER the caches cleared their content. 
 
 
Problem M11.6.B  

 
Consider a situation when L2 has a cache line marked Ex and a ShReq comes on the bus for this 
cache line. What should the snooper do in this case, and why? 
 
Here the snooper MUST respond RETRY and get the cache to write back the value. 
 
 
Problem M11.6.C  

 
When an ExReq message is seen by the snooper and there is a Wb message in the C2M queue 
waiting to be sent, the snooper replies retry. If the cache line is about to be modified by another 
processor, why is it important to first write back the already modified cache line? Does your 
answer change if cache lines are restricted to be one word? Explain. 
 
Because otherwise the Wb can happen out of order with some other memory operation and SC 
could be broken. 
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Problem M11.7: Directory-based Protocol 
 

Problem M11.7.A            
 

The following questions deal with the directory-based protocol discussed in class. Assume XY 
routing, and message passing is FIFO. (XY routing algorithm first routes packets horizontally, 
towards their X coordinates, and then vertically towards their Y coordinates.) Protocol messages 
with the same source and destination sites are always received in the same order as that in which 
they were sent. For this question, assume that the cache coherence protocol is free from 
deadlock, livelock and starvation. 

 
 
Assume the node 6 serves as the home directory, where the states for memory blocks are stored. 
Assume all caches are initially empty and no responses are sent voluntarily (i.e. every response is 
caused by a request) 
 
        Processor 1     Processor 4       Processor 5 
1.1:  ST X, 10                   4.1:  LD R1, X             5.1:   ST X, 20 
 
Suppose the global execution order is as follows: 
 

4.1   =>   5.1   =>   1.1 
 
Assume that the next instruction will start its execution only when the previous instruction has 
completed. For each instruction, list all protocol messages that are sent over the link 5 -> 6 (the 
purple link in the above figure).  
 
4.1: <6,4,C2M_Req,X,S> (4.1), 
 
5.1: <6,5,C2M_Req,X,M>, <6,4,C2M_Rep,X,S,I> (5.1), 
 
1.1: <6,5,C2M_Rep,X,M,I,20> (1.1) 
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Problem M11.7.B            
 
For the directory protocol, we assume the message passing to be FIFO, meaning protocol 
messages with the same source and destination are always received in the same order as that in 
which they were sent. Now suppose messages can be delivered out-of-order for the same source 
and destination pairs. Describe one scenario that the cache coherence protocol will break due to 
this out-of-order delivery. 
 

1. Core 1: <M,1,C2M_Req,a,S>  => <1,M,M2C_Rep,a,I,S,data> (not yet reached) 
2. Core 2: <M,2,C2M_Req,a,M> => <1,M,M2C_Req,a,I> 

If <1,M,M2C_Req,a,I> arrives earlier than <1,M,M2C_Rep,a,I,S,data>, it will be ignored, and 
the core will not send any reply to home which is waiting. => Deadlock.  
 
 
 
 
 
 
 
 
 
 
 
 
 
Problem M11.7.C            
 
Under the 6823 directory-based protocol, a cache will receive a writeback request from the 
directory <M2C_Req, a, S>  for address “a” when it is in state M and another cache wants a 
shared copy. Is it possible for a cache in the S state to receive <M2C_Req, a, S> ? Describe how 
this scenario can occur using the messages passed between the cache and the memory, and the 
state transitions. 
 
 
Cache 1 in M, does voluntary writeback <M,1,M2C_Rep,a,M,S,data> and goes to S state. Now 
Cache 2 in I state does a <M,2,C2M_Req,a,S>. If the Mem hasn’t received Cache 1’s response 
yet, it will send a <1,M,P2C_Req,a,S> to Cache 1 which is in S. 
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Problem M11.8: Synchronicity (Spring 2014 Quiz 4, Part B) 
 
You are writing a queue to be used in a multi-producer/single-consumer application. (Producer 
threads write messages that are read by one consumer.) We assume here a queue with infinite 
space. The basic code is shown below. 
 
TST rs, Imm(rt) is the test-and-set instruction, which atomically loads the value at 
Imm(rt) into rs, and if the value is zero, updates the memory location at Imm(rt) to 1. This 
atomic instruction is useful for implementing locks: a value of 1 at the memory location indicates 
that someone holds the lock, and a value of 0 means the lock is free. 
 
Producer pushes a message onto queue: (memory operations in bold) 
 
void push(int** tail_ptr, int* tail_write_lock, int message) { 

while (lock_try(tail_write_lock) == false); 
**tail_ptr = message; 
*tail_ptr++; 
lock_release(tail_write_lock); 

} 
 
# R1 – contains address of data to enqueue 
# R2 – contains the address of the tail pointer of queue 
# R3 – address of tail pointer write lock 
P1 SpinLock:TST R4, 0(R3)  # try to acquire tail write lock 
P2  BNEZ R4, R4, SpinLock 
P3  LD R4, 0(R2)  # get tail pointer 
P4  ST R1, 0(R4)  # write message to tail 
P5  ADD R4, R4, 4  # update tail pointer 
P6  ST R4, 0(R2) 
P7  ST R0, 0(R3)   # release lock 
 
Consumer pops a message off queue: (memory operations in bold) 
 
int pop(int** head_ptr, int** tail_ptr) { 

while (*head_ptr == *tail_ptr); 
int message = **head_ptr; 
*head_ptr++; 
return message; 

} 
 
# R1 – will receive address contained in message 
# R2 – contains the address of the head pointer of queue 
# R3 – contains the address of the tail pointer of the queue  
C1 Retry: LD R4, 0(R2)  # get head pointer 
C2  LD R5, 0(R3)  # get tail pointer 
C3  SUB R5, R4, R5  # is there a message? 
C4  BNEZ R5, Pop 
C5  JMP Retry 
C6 Pop: LD R1, 0(R4)  # read message from queue 
C7  ADD R4, R4, 4  # update head pointer 
C8  ST R4, 0(R2) 
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Problem M11.8.A  

 
You are trying to port this code to an architecture that does not have the TST instruction (but, 
happily, the rest of the ISA is unchanged). Instead the new architecture has load-reserve/store-
conditional instructions. Implement TST rs, 0(rt) using load-reserve/store-conditional: 
 
LR rs, Imm(rt): 
 rs ß Memory[(rt) + Imm] 
 Track address (rt) + Imm 
 
SC rs, Imm(rt): 
 If (rt) + Imm modified: 
  rs ß 0     # Fail 
 Else: 
  Memory[(rt) + Imm] = (rs) # Succeed 
  rs ß 1 
 
TST rs, 0(rt): 
 LR rs, 0(rt)   # test: is 0(rt) 1? 
 BNEZ rs, skip 
 ADD rs, rs, 1  # set: try to store 1 
 SC rs, 0(rt) 
 NOR rs, rs, rs # invert result to match TST 
skip: NOP 
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Problem M11.8.B  

 
This new architecture is also not sequentially consistent. Give an example of memory orderings 
between the producer and consumer that would result in incorrect behavior. Explain your answer 
fully or you will not receive credit.  
 
Your answer should look something like: 
P1, P3, P4, C1, C2, P6, P7, C1, C2, C6, C8 
(Except that this is a sequentially consistent ordering, so it is not a correct answer.) 
 
If the tail write is visible to the consumer before the message write, then we have a problem. 
Thus any sequence that contains the subsequence: 
 

P6 C6 P4 
 
Will read an invalid message. There are many other invalid sequences. 
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Problem M11.8.C  

 
Show where memory fences should be added to the producer and consumer code to ensure 
correctness with a weak consistency model. Explain your answer fully. 
 
P1 SpinLock:TST R4, 0(R3)  # try to acquire tail write lock 
  FENCE_WR # don’t read tail ptr before getting lock 
 
P2  BNEZ R4, R4, SpinLock 
 
 
P3  LD R4, 0(R2)  # get tail pointer 
 
 
P4  ST R1, 0(R4)  # write message to tail 
  FENCE_WW # don’t update tail before writing message 
 
P5  ADD R4, R4, 4  # update tail pointer 
 
 
P6  ST R4, 0(R2) 
  FENCE_WW # don’t release lock before updating tail 
 
P7  ST R0, 0(R3)   # release lock 
 
 
 
 
 
C1 Retry: LD R4, 0(R2)  # get head pointer 
 
 
C2  LD R5, 0(R3)  # get tail pointer 
 
 
C3  SUB R5, R4, R5  # is there a message? 
 
 
C4  BNEZ R5, Pop 
 
 
C5  JMP Retry 
  FENCE_RR # don’t read message before tail is updated 
 
C6 Pop: LD R1, 0(R4)  # read message from queue 
 
 
C7  ADD R4, R4, 4  # update head pointer 
 
 
C8  ST R4, 0(R2) 
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Problem M11.8.D  
 
Let’s next consider performance with a single producer thread and consumer thread. The 
following happens repeatedly: 

1. The producer executes all instructions to push a message on the queue. 
2. The consumer executes all instructions to pop a message off the queue. 

Assume data, head, and tail pointers all lie in different, non-conflicting cache blocks. 
 
First, after a few messages have been sent through the queue, will the consumer ever miss 
reading the head pointer? Will the producer ever miss reading the tail write lock, or fail to 
acquire the tail write lock? Explain in one or two sentences. 
 
No, the head pointer belongs exclusively to the consumer. Likewise with a single producer, the 
tail write lock belongs exclusively to the producer. The consumer and producer will ping-pong 
on the tail pointer, however, since each uses it. 
 
Problem M11.8.E  

 
We’ll now focus on the tail pointer only. Assuming a MSI invalidate coherence protocol, show 
the state of the tail pointer in the producer and consumer cache after each operation in the 
sequence below. Show any data or permissions transfers, e.g. “MemoryàC” or “C invalidates 
P”. 
 
Operation	 Producer	 tail	

pointer	state	
Consumer	 tail	
pointer	state	

Transfers	

	 I	 I	 	
P1	TST	try	lock	 	 	 	
P3	LD	tail_ptr	 S	 	 P	ß	Memory	
P4	ST	message	 	 	 	
P6	ST	new_tail	 M	 	 	
P7	ST	release	lock	 	 	 	
C1	LD	head_ptr	 	 	 	
C2	LD	tail_ptr	 S	 S	 C	ß	P	
C6	LD	message	 	 	 	
C7	ST	new_head	 	 	 	
P1	TST	try	lock	 	 	 	
P3	LD	tail_ptr	 	 	 	
P4	ST	message	 	 	 	
P6	ST	new_tail	 M	 I	 P	invalidates	C	
P7	ST	release	lock	 	 	 	
C1	LD	head_ptr	 	 	 	
C2	LD	tail_ptr	 S	 S	 C	ß	P;	Memory	ß	P	
C6	LD	message	 	 	 	
C7	ST	new_head	 	 	 	
How many state transitions occur per message in the steady state? 2 (second half of table) 
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Problem M11.8.F  
 
Stay focused on the tail pointer only. Assume an update coherence protocol where the state of 
each line is either valid (V) or invalid (I). Show the state of the tail pointer in the producer and 
consumer cache after each operation in the sequence below in the steady state. Show any data or 
permissions transfers, e.g. “MemoryàC” or “C invalidates P”. 
 
Operation	 Producer	 tail	

pointer	state	
Consumer	 tail	
pointer	state	

Transfers	

	 I	 I	 	
P1	TST	try	lock	 	 	 	
P3	LD	tail_ptr	 V	 	 P	ß	Memory	
P4	ST	message	 	 	 	
P6	ST	new_tail	 V	 	 	
P7	ST	release	lock	 	 	 	
C1	LD	head_ptr	 	 	 	
C2	LD	tail_ptr	 V	 V	 C	ß	P	
C6	LD	message	 	 	 	
C7	ST	new_head	 	 	 	
P1	TST	try	lock	 	 	 	
P3	LD	tail_ptr	 V	 V	 	
P4	ST	message	 	 	 	
P6	ST	new_tail	 V	 V	 C	ß	P	
P7	ST	release	lock	 	 	 	
C1	LD	head_ptr	 	 	 	
C2	LD	tail_ptr	 V	 V	 	
C6	LD	message	 	 	 	
C7	ST	new_head	 	 	 	
  
How many state transitions occur per message in the steady state? Zero, but one data transfer 
(P6). Memory may also be updated at P6, depending on the protocol (if not, VàI must 
writeback). 
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Problem M11.8.G  

 
Your new architecture supports “remote access” for cached lines. This lets you assign a “home 
cache” for lines so that all memory operations will be sent over the network to operate remotely 
on the line without allocating it in the requesting cache. 
 
For example, if line 0x100 is homed to processor A, and processor B writes 0x100, then 
processor A’s cache will be updated and processor B’s will be unchanged. 
 
Assume the tail pointer is mapped to the producer’s cache, and the cache uses an MSI invalidate 
protocol (similar to Question 5). Once again, show the state of the tail pointer for the sequence of 
operations in the steady state and data/permission transfers: 
 
Operation	 Producer	 tail	

pointer	state	
Consumer	 tail	
pointer	state	

Transfers	

	 I	 I	 	
P1	TST	try	lock	 	 	 	
P3	LD	tail_ptr	 S	 	 P	ß	Memory	
P4	ST	message	 	 	 	
P6	ST	new_tail	 M	 	 	
P7	ST	release	lock	 	 	 	
C1	LD	head_ptr	 	 	 	
C2	LD	tail_ptr	 	 	 C	processor	ß	P	
C6	LD	message	 	 	 	
C7	ST	new_head	 	 	 	
P1	TST	try	lock	 	 	 	
P3	LD	tail_ptr	 	 	 	
P4	ST	message	 	 	 	
P6	ST	new_tail	 	 	 	
P7	ST	release	lock	 	 	 	
C1	LD	head_ptr	 	 	 	
C2	LD	tail_ptr	 	 	 C	processor	ß	P	
C6	LD	message	 	 	 	
C7	ST	new_head	 	 	 	
 
How many state transitions occur per message in the steady state? Zero, but one data transfer. 
The difference is that in this case the transfer is on demand—which may or may not be an 
improvement, depending on consumer behavior. 
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Problem M11.9: Cache Coherence (Spring 2015 Quiz 3, Part B) 
 
Ben Bitdiddle is designing a snoopy-based, write-invalidate MSI protocol for write-back caches. 
Under the standard MSI protocol, when a cache observes a Bus Read Exclusive message 
(BusRdX), it has to invalidate its own copy of the cache block. Ben instead proposes an 
optimization, called delayed invalidation, to potentially reduce the number of read misses. The 
optimization works as follows:  
 
Delayed invalidation: When a cache observes a Bus Read Exclusive message (BusRdX) and it 
has a copy of the block in the Shared (S) state, the cache delays the invalidation of the block until 
before a cache miss happens. In other words, the cache will treat any subsequent requests from 
its own processor as if the BusRdX had not happened, until one of those requests causes a miss. 
At that point, all pending invalidations are performed before processing the miss.   
 
Problem M11.9.A  

 
Suppose processors P1 and P2 are have private, snoopy caches. Both caches are initially empty. 
Consider the following sequence of accesses:  
 

 
 
Assume blocks A and B do not conflict in the cache. Compare Ben’s delayed invalidation 
optimization with the standard MSI protocol by filling the states (on the next page) for each 
cache block after each operation is done and calculate the number of misses in both cases. 
 
 
 
 
 
 
 
 
 
 

I0   P2: read   A 
I1   P1: write  A  
I2   P2: read   A  
I3   P1: write  A 
I4   P2: read   A  
I5   P2: read   B 
I6   P2: read   A 
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Assume we use the standard MSI protocol. Fill in the following table.  
 

Standard MSI Protocol 
 Processor P1’s Cache Processor P2’s Cache 

Initial State A: I  B: I A: I  B: I 
After P2 reads A A: I B: I A: S B: I 
After P1 writes A A: M B: I A: I B: I 
After P2 reads A A: S B: I A: S B: I 
After P1 writes A A: M B: I A: I B: I 
After P2 reads A A: S B: I A: S B: I 
After P2 reads B A: S B: I A: S B: S 
After P2 reads A A: S B: I A: S B: S 

 
How many misses occur in the two caches?  2 write misses + 4 read misses = 6 misses 
 
 
 
Assume we adopt Ben’s delayed invalidation optimization. Fill in the following table. If there is 
a delayed invalidation, write it in the invalidation queue (the “Inv Queue” column). For example, 
“Inv L” means there is a delayed invalidation on block L.  
 

MSI Protocol with Delayed Invalidation 
 Processor P1’s Cache Processor P2’s Cache 
 MSI state Inv Queue MSI state Inv Queue 
Initial State A: I  B: I  A: I  B: I  
After P2 reads A A: I B: I  A: S B: I  
After P1 writes A A: M B: I  A: S B: I  Inv A 
After P2 reads A A: M B: I  A: S B: I  Inv A 
After P1 writes A A: M B: I  A: S B: I  Inv A 
After P2 reads A A: M B: I  A: S B: I  Inv A 
After P2 reads B A: M B: I  A: I B: S   
After P2 reads A A: S B: I  A: S B: S  

 
How many misses occur in the two caches?  1 write miss + 3 read misses = 4 misses 
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Problem M11.9.B  

 
Does Ben’s delayed invalidation optimization violate cache coherence rules? Please explain your 
answer in one or two sentences.  
 
No. There are two coherence rules:  
 

(1) Write propagation: Writes eventually become visible to all processors.  
 
è Yes. With delayed invalidation, writes from other processors become visible when a 

local miss, either a read miss (I->S) or a write miss (I->M or S->M), occurs.   
 

(2) Write serialization: Writes to the same location are serialized, and all processors see them 
in the same order.  
 
è Yes. With delayed invalidation, all processors still see the same global ordering of 

writes.  
 
 
Problem M11.9.C  

 
Suppose the original system guarantees sequential consistency. Does adding the delayed 
invalidation optimization break sequential consistency? Please explain your answer in one or two 
sentences. If your answer is yes, please provide a sequence of load/store operations that violates 
sequential consistency. 
 
No. The system is sequential consistent if the following conditions are met: 
 

(1) The result of any execution is the same as if the operations of all the processors were 
executed in some sequential order. In other words, all processors agree on a global 
ordering of reads and writes.  

 
è Yes. With delayed invalidation, the reads that happen before the invalidation is 

processed can be seen as reads happening before the write that causes BusRdX.  
Those reads hit in the cache and are not visible to other processors.  
For example, in Question 1, all processors agree on a logical ordering:   
I0 -> I2 -> I4 -> I1 -> I3 -> I5 -> I6.  
 

(2) The operations of each individual processor appear in program order.  
 
è Yes. Delayed invalidation only tries to re-order reads from other processors’ writes.  
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Problem M11.9.D  

 
Ben only applies delayed invalidation on cache blocks that are in the S state. When a cache 
observes a Bus Read Exclusive message (BusRdX) and the associated cache block is in the 
Modified (M) state, it sends out the data in response to a BusRdX message and changes the 
cache state to Invalid (I).   
 
Is it possible to delay invalidation when the cache block is in the Modified (M) state? If it is not, 
please explain why. If it is possible, please describe how to make delayed invalidations work 
when the block is in the M state. In other words, please describe the actions the cache needs to 
take when the cache observes a BusRdX message, how to handle subsequent read and write 
accesses if the invalidation is delayed, and when the invalidation needs to be processed. 
 
 
When observing a BusRdX message, change the cache state from M to S and send the data value 
to the bus. The invalidation needs to be processed before processing any subsequent read or write 
miss.  
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Problem M11.10: Cache Coherence (Spring 2015 Quiz 3, Part C) 
 
 
Problem M11.10.A  

 
Ben designs an architecture that does not have the atomic compare-and-swap (CAS) instruction 
but has load-reserve (LR) and store-conditional (SC) instructions.  
 
Help Ben implement a Boolean compare-and-swap instruction BCAS old, new, 
Imm(base) using load-reserve and store-conditional instructions: 
 

 
BCAS is a simplified CAS instruction that only deals with values 0 and 1. You can use 
temporary registers (tmp1, tmp2, tmp3…) and any algorithmic, logical, memory, and 
branch instructions in the MIPS instruction set.   
 

 
 
 
 
 
 
 

LR rs, Imm(rt): 
 <flag, addr> ß <1, rt + Imm> 
 rs ß Memory[rt + Imm] 
 
SC rs, Imm(rt): 
 If <flag, addr> == <1, rt + Imm>: 
  Memory[rt + Imm] ß rs 
          rs ß 1                 # Succeed 
 Else: 
          rs ß 0                 # Fail 
 

BCAS old, new, Imm(base): 
         LR   tmp1, Imm(base)  # load M[Imm+base] into tmp1 
         BNE  tmp1, old, fail  # if tmp1 != old, go to fail 
         MOV  tmp2, new        # copy new to tmp2 
         SC   tmp2, Imm(base)  # try to store tmp2  
         BNEZ tmp2, skip       # check if SC succeeds 
         NOR  tmp1, tmp1, tmp1 # invert the value of tmp1  
                                 (since M[Imm+base] is changed) 
  fail:  MOV  old,  tmp1       # copy tmp1 to old 
  skip:  NOP 
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Problem M11.10.B  

 
Suppose the hardware where the shared-memory queue from Handout #15 is executed has a 
weak consistency model that relaxes all the orderings of reads and writes. Give an example of 
memory orderings between the producer and consumer that would result in incorrect behavior. 
Please fully explain your answer to get full credit.  
 
Your memory ordering example should look something like: 
P1, C2, P2, C4, P4, C5, C7, C9, C10 
 
 
If the tail write is visible to the consumer before the message write, then we have a problem. 
Thus any sequence that contains the subsequence: 
 

P4, C7, P2 
 
will read an invalid message. 
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Problem M11.10.C  

 
Please add the minimum number of memory fences (FENCEWR, FENCERW, FENCEWW, or 
FENCERR) to the producer and consumer codes to ensure correctness with a weak consistency 
model. Please explain your answer fully. 
 
Code for producer to enqueue a message: 
 

 
 
 
Code for consumer to dequeue a message: 
 

 
 

P1: LD  R3, 0(R2) # get tail pointer 
 
 

P2: ST  R1, 0(R3) # write message to tail 
 
 

P3: ADD R3, R3, 4 # update tail pointer 
    FENCEWW # don’t update tail before writing message 
 

P4: ST  R3, 0(R2) 

C1: SpinLock: MOV  R6, R0        # set R6 to 0 
 
 

C2:           CAS  R6, R5, 0(R4) # try to acquire lock 
 
 

C3:       BNEZ R6, SpinLock 
    FENCEWR # don’t read head pointer before getting lock 
 

C4:           LD   R7, 0(R2)    # get head pointer 
 
 

C5: Retry:    LD   R8, 0(R3)    # get tail pointer 
 
 

C6:      BEQ  R7, R8, Retry # is there a message? 
    FENCERR # don’t read message before tail is updated 
 

C7:           LD   R1, 0(R7)    # read message from queue 
 
 

C8:       ADD  R7, R7, 4    # update head pointer 
 
 

C9:       ST   R7, 0(R2)      
    FENCEWW # don’t release lock before updating head 
 

C10:          ST   R0, 0(R4)     # release lock 


