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Computer System Architecture  
6.823 Quiz #2 

November 12th, 2021 
 
 
 

 
Name: __________SOLUTIONS__________        

 
This is a closed book, closed notes exam. 

80 Minutes 
 14 Pages (+2 Scratch) 

 
Notes: 
• Not all questions are of equal difficulty, so look over the entire exam and 

budget your time carefully. 
• Please carefully state any assumptions you make. 
• Show your work to receive full credit. 
• Please write your name on every page in the quiz. 
• You must not discuss a quiz's contents with other students who have not 

yet taken the quiz. 
• Pages 15 and 16 are scratch pages. Use them if you need more space to 

answer one of the questions, or for rough work. 
 

     
   Part A  ________     15 Points 
   Part B ________     30 Points 
   Part C  ________     25 Points 
   Part D  ________     30 Points 

 
TOTAL          ________  100 Points 
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Part A: Multithreading (15 points) 
 
Ben Bitdiddle is designing an out-of-order superscalar processor that supports 
simultaneous multithreading up to two threads. He is considering different design options 
for the processor’s committed store buffer. The committed store buffer holds data for 
stores that have committed until they are written to the L1 cache in program order. An entry 
is allocated in the store buffer when a store instruction commits, and it is freed when the 
corresponding value is written to the L1 cache. 
 
Ben's processor executes two threads, A and B, with the following characteristics: 

• Thread A contains 1 store every 4 instructions. Each store takes on average 8 cycles 
between commit and writing to the L1 cache. 

• Thread B contains 1 store every 5 instructions. Each store takes on average 20 
cycles between commit and writing to the L1 cache. 

 
Question 1 (8 points) 
 
Ben first considers a shared store buffer design with 6 entries, where the two threads are 
both allowed to allocate entries on a single store buffer. The processor uses a round-robin 
fetch policy, which results in each thread committing 1 instruction per cycle. How many 
store buffer entries are used on average? 
 
Recall Little's Law: Average number of entries used = Average throughput * Average 
Latency. 
 
For Thread A, entries used = (1 IPC) * (1 store / 4 instr) * (8 cycles) = 2 entries 
For Thread B, entries used = (1 IPC) * (1 store / 5 instr) * (20 cycles) = 4 entries 
 
Thus, a total of 6 entries are used on average. 
 
Question 2 (7 points) 
 
Ben now considers a split store buffer design where each thread uses a separate 3-entry 
store buffer. By how much does the overall throughput decrease compared to the shared 
store buffer in Question 1? 
 
Notice that we are using round-robin policy, so the processor will equalize the throughput 
to the lowest one amongst all threads. Thread A is unaffected, but thread B has only 3/4 
of the needed entries, thus its throughput decreases to 3/4 IPC. Hence, total throughput is 
1.5 IPC total. 
 
  



 
 

Page 3 of 16 
 

 

Part B: Cache Coherence (30 points) 
 
Ben Bitdiddle is designing a 2-core processor where each core has a private, local cache 
with shared main memory. The private caches have 4-byte lines and are kept coherent by 
a directory-based MSI Protocol. The diagrams below show the block diagram of the system 
(left) and the coherence protocol’s processor-side state-transition diagram (right). 
 

 
 
Ben wishes to add a next-line prefetcher to each core to reduce the overall number of 
cache misses in his programs. The prefetcher works by monitoring the cache misses out of 
the processor. When the processor misses on cache line X and the prefetcher predicts that 
the next cache line (at address X+4, since lines are 4 bytes long) will soon be accessed by 
the core, the prefetcher signals the processor to send a ShReq for the next cache line in 
addition to the original coherence request for cache line X. 
 
 
Question 1 (5 points) 
 
Consider the following sequence of accesses happening in chronological order. Assume 
that the coherence transaction initiated by a core's read/write finishes before the next core 
action, including prefetches. 
 
 Core 1: read A 
 Core 1: read A+4 
 Core 2: write A+4 
 
Assume that all private caches are initially invalid, and Core 1's prefetcher signals the core 
to send a ShReq for line A+4 upon a cache miss to line A. 

Core 1 Core 2

Cache 1 Cache 2

Shared Main Memory

Directory
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S IInvReq / InvRespclean
PrRd / --

DownReq/ 
DownRespdirty

PrWr / --
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(a) Fill in the table below indicating how coherence states for the two cache lines A and 
A+4 change after each access. 
 

Standard MSI Protocol 
 Core 1's Cache Core 2's Cache 

Initial State A: I  A+4: I A: I  A+4: I 
After Core 1 reads A A: S A+4: S A: I A+4: I 
After Core 1 reads A+4 A: S A+4: S A: I A+4: I 
After Core 2 writes A+4 A: S A+4: I A: I A+4: M 

 
(b) How many coherence requests (ShReq, ExReq, DownReq, InvReq) were processed 
throughout the sequence of accesses? 
 
4 requests: 2 ShReqs, 1 ExReq and 1 InvReq 
 
 
 
 
 
 
 
Question 2 (5 points) 
 
Now consider the following sequence: 
 
 Core 1: read A 
 Core 2: write A+4 
 Core 1: read A+4 
  
Again, assume that all private caches are initially invalid, and Core 1's prefetcher signals 
the core to send a ShReq for line A+4 upon a cache miss to line A. How many coherence 
requests (ShReq, ExReq, DownReq, InvReq) were processed throughout this new 
sequence of accesses? 
 
6 requests: 
- 2 ShReqs by Core 1's first read 
- 1 ExReq and 1 InvReq to A+4 initiated by Core 2 
- 1 ShReq and 1 DownReq to A+4 initiated by Core 1 
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Ben wants to systematically characterize the effects of prefetches. He first classifies 
prefetches according to their usefulness to the requesting core: 

• Useful:  The prefetched line is referenced by the requesting core before it is evicted 
(either due to a conflict, or due to a write to the line from another core). 

• Useless: The prefetched line is not referenced by the requesting core before it is 
evicted. 

 

Ben further classifies useless prefetches into two sub-categories according to their 
harmfulness to the remote core: 

• Harmless: A useless prefetch is initially classified as harmless unless it satisfies 
the harmfulness criteria specified below. 

• Harmful: The prefetch downgraded a remote core's copy of the cache line, and that 
core subsequently wrote to the line before it was evicted. 

 

Note that this means a prefetch can be categorized into one of three classes: Useful, 
Harmless (implying Useless), and Harmful (also implying Useless). 
 
Question 3 (5 points) 
 
Consider the sequences from Questions 1 and 2. How would you classify the two prefetches 
according to Ben's categorization: Useful, Harmless, or Harmful?  
 
1: Useful since the line is referenced without any intervening invalidations or evictions. 
2: Harmless since while it is Useless, it did not downgrade a remote copy. 
 
 
 
 
Question 4 (5 points) 
 
Describe a sequence of accesses (like those in Question 1 and 2) that cause a Harmful 
prefetch in Ben’s system. All cache lines should start invalid at the beginning of your 
sequence, and the prefetched line should be in an invalid state at the end of the sequence.  
 
How many extra coherence requests does the prefetch incur for your sequence compared 
to a 2-core system that does not implement prefetching? 
 
Many possible answers here. One possible one is: 
 Core 2: write A+4 
 Core 1: read A <--- prefetch A+4 here 
 Core 2: write A+4 
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Ben modifies his coherence protocol to reduce the number of Harmful prefetches. Now, all 
ShReqs also contain a prefetch bit that is set if the ShReq was sent due to a prefetch from 
a core. Since ShReqs with the prefetch bit set are speculative, the directory decides how to 
process this request as follows: If no other core holds a copy of the line in the modified (M) 
state, the directory replies with a ShResp since the prefetch can never become Harmful. 
Otherwise, the directory NACKs the ShReq. 
 
 
Question 5 (5 points) 
 
Does Ben's modification remove all Harmful prefetches? Explain briefly. 
 
Yes, it removes all harmful prefetches. For a prefetch to be harmful, it needs to downgrade 
a remote core's copy of the line. However, the new mechanism directly prevents this by 
ignoring all prefetch requests when any other core has the line in modified state. 
 
 
 
 
 
 
Question 6 (5 points) 
 
Describe a sequence of accesses for Ben's 2-core system where Ben's modification to the 
coherence protocol prevents a Useful prefetch from happening. 
 
Core 2: write A+4 
Core 1: read A <---- tries to prefetch here, but request is NACKed. 
Core 1: read A+4 
 
Notice here that the prefetch for line A+4 would've been useful since it is read immediately 
without any intervening invalidations or evictions. 
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Part C: Memory Consistency (25 points) 
 
Consider a system with two processors. Assume the following: 

• Each processor has a private cache, and private caches are kept coherent. 
• Memory location A initially contains a value of 0. 
• The contents of registers R1 and R2 for both processors alias to the same memory 

location A, i.e., Reg[R1] == Reg[R2] == A. In other words, all memory 
operations are to the same address, A,  for both processors, but this is not necessarily 
known at issue time. 

 

Consider the following memory accesses performed by each processor: 
 

P1 P2 
 

P1.1:  ST 0(R1) ß 1 
P1.2:  ST 0(R2) ß 2 

 

P2.1: LD Ra ß 0(R1) 
P2.2: LD Rb ß 0(R2) 

 
Question 1 (17 points) 
 
For the following questions, answer whether the final set of values (Ra, Rb) = (2, 1) 
are possible under the corresponding memory consistency model. Note: Because caches 
are kept coherent, all memory consistency models must enforce coherence invariants (write 
propagation and write serialization). 
Note that for this to happen, either the stores or the loads need to be reordered w.r.t. 
program order. 
 

a) Sequential Consistency: stores and loads of individual processors happen in the order 
specified by the program. (4 points) 

 
No, as SC doesn't allow any out-of-program-order loads or stores. 
 
 

b) Total Store Order (TSO): stores can be reordered after later loads. (4 points) 
 
TSO is irrelevant here as there's no store-to-load reordering that can happen. 
 
 

c) Partial Store Order (PSO): stores can be reordered after later loads and stores. (4 
points) 

 
No. Key point here is that to preserve coherence, stores have to be visible to P2 in the 
program order of P1, so PSO does not allow store-to-store reordering. 
 
 

d) Relaxed Memory Order (RMO): loads and stores can be reordered after later loads 
and stores. (5 points) 

Yes. RMO allows load-load reordering. 
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Question 2 (8 points) 
 
The RMO machine has the following fine-grained barrier instructions: 

• MEMBARRR guarantees that all reads that precede MEMBARRR in program order will 
be performed before any read that follows the barrier. 

• MEMBARRW guarantees that all reads that precede MEMBARRW in program order will 
be performed before any write that follows the barrier. 

• MEMBARWR guarantees that all writes that precede MEMBARWR in program order will 
be performed before any read that follows the barrier. 

• MEMBARWW guarantees that all writes that precede MEMBARWW in program order will 
be performed before any write that follows the barrier. 

 
Using the minimum number of memory barrier instructions, rewrite P1 and P2 from 
Question 1 such that the RMO machine produces the same outputs as the SC machine 
for the given code. 
 

P1 P2 
 
 
 
P1.1:  ST (A) ß 1 
 
 
 
P1.2:  ST (A) ß 2 
 
 
 

 
 
 
P2.1:  LD Ra  ß (A) 
 
MEMBARRR 
 
P2.2:  LD Rb  ß (A) 
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Part D: Networks (30 points) 
 
Question 1 (8 points) 
 
Consider the following two topologies: A ring and a 2-dimensional mesh. 
 

     
 
 
 
Assuming that there are N nodes, calculate the following for each topology. Assume 
uniform random traffic for average distance calculation. For the average distance of the 
mesh, you can answer in terms of its asymptotic growth with respect to N (e.g., O(N3)).  
 

 Ring 2-D Mesh 

Number of links N	 𝟐(𝐍	 −	√𝐍)	

Bisection 
Bandwidth 2	 √𝐍	

Diameter N/2	 𝟐(√𝐍 − 𝟏)	

Average 
Distance N/4	 O(√𝐍)	

 
 
  

Ring Topology 2-Dimensional Mesh Topology

Legend

Processor

Router

Link
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Now consider a 9-node network for the two topologies. Each node is assigned a unique 
ID as shown in the figure below: 
 

    
 
 
Question 2 (4 points) 
 
Consider a neighbor traffic pattern instead of the usual uniform random traffic. In this 
traffic pattern, processor i sends all of its traffic to processor (i + 1) mod 9.   
 
What are the average distances of the two topologies under the neighbor traffic pattern? 
 
Ring: every neighbor is 1 hop away, so it's 1 
Mesh: every neighbor is 1 hop away except: 2->3 and 5->6 which is 3 hops, and 8->0 
which is 4 hops. Thus, average diameter = (1*6 + 3*2 + 4)/9 = 16/9 
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Question 3 (4 points) 
 
Can a relabeling of nodes lead to a lower average distance for the mesh topology with the 
neighbor traffic pattern? If possible, show the relabeling in the figure below. If not, briefly 
explain your reasoning. 
 
Yes, multiple possible relabelings can result in lower average distance. One possible one: 
swap the labels of nodes 3 and 5. 
 

 
  

2-Dimensional Mesh Topology
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Now consider a 25-processor mesh network, as shown below: 
 

   
 
In this system, each processor produces a single value, and all values must be summed up:  
 
 sum = v0 + v1+ v2 + ... + v24 
 
where vi is the value produced by processor i. 
 
To accomplish this, each core sends a packet containing its value vi to a single processor, 
called the reduction node. The reduction node computes the final sum by adding values as 
they arrive. Ben chooses processor 12 as the reduction node.  
 
Assume the following: 

• Each processor i sends a packet containing its value vi at cycle 0. 
• Each packet takes 1 cycle to traverse a router. Assume unlimited buffering at each 

router. 
• Each router-to-router and router-to-processor link represents two channels in 

opposite directions. Channel traversal is instantaneous i.e., no additional cycles are 
spent in traversing a channel. 

• Only one packet can traverse a router-to-router link at a given cycle, whereas an 
unlimited number of packets can traverse a router-to-processor link at a given cycle. 
The processor is able to reduce all packets it receives in the same cycle. 

• The mesh network routes packets via XY-routing (all horizontal links are traversed 
before vertical links). 

 
 
  

2-Dimensional Mesh Topology
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Question 4 (4 points) 
 
We define that a router is congested when multiple packets in its input ports are wish to be 
routed to the same output channel in a given cycle. Which router is congested for the most 
number of cycles during the reduction? 
 
Routers 7 and 17 are the most congested since they need to route traffic from all nodes in 
their row and above/below, for a total of 10 packets. 
 
 
 
 
 
 
 
 
 
 
 
 
Question 5 (5 points) 
 
At what cycle does the last packet arrive at the reduction node? 
 
The congested router will start sending packets at cycle 0, so the last packet arrives the 
router at the reduction node at cycle 10. We need 1 more cycle to traverse the last router 
(note that we define the processor as the reduction node), so it arrives at cycle 11. 
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Ben tries to reduce router congestion by having each router sum up the packets as they 
arrive. Each router is now augmented with an adder. If multiple packets wish to be routed 
to the same output channel in the same cycle, the router creates a new packet at the output 
channel in the next cycle that contains the summed values of those packets.  
 
Question 6 (5 points) 
 
Assume each processor i sends a packet containing its value vi at cycle 0. At what cycle 
does the last packet arrive at the reduction node with the modified routers? 
 
Now it's simply the latency from the farthest processor to the reduction node, which is 5 
cycles (5 routers to traverse). 
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Scratch Space 
 
Use these extra pages if you run out of space or for your own personal notes. We will not 
grade these unless you tell us explicitly in the earlier pages. 
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